Bouc, S.Yalçın, E.2016-02-082016-02-0820070021-8693http://hdl.handle.net/11693/23460We show that there is an exact sequence of biset functors over p-groups0 → Cb over(→, j) B* over(→, Ψ) DΩ → 0 where Cb is the biset functor for the group of Borel-Smith functions, B* is the dual of the Burnside ring functor, DΩ is the functor for the subgroup of the Dade group generated by relative syzygies, and the natural transformation Ψ is the transformation recently introduced by the first author in [S. Bouc, A remark on the Dade group and the Burnside group, J. Algebra 279 (2004) 180-190]. We also show that the kernel of mod 2 reduction of Ψ is naturally equivalent to the functor B× of units of the Burnside ring and obtain exact sequences involving the torsion part of DΩ, mod 2 reduction of Cb, and B×. © 2006 Elsevier Inc. All rights reserved.EnglishBorel - Smith functionsBurnside ringDade groupRepresentation ringsBorel-Smith functions and the Dade groupArticle10.1016/j.jalgebra.2006.11.0221090-266X