Özel, TuncaySarı, EmraNizamoğlu, SedatDemir, Hilmi Volkan2016-02-082016-02-0820070277-786Xhttp://hdl.handle.net/11693/27081Date of Conference: 2–4 May 2007Conference name: Proceedings of SPIE, Photonic Materials, Devices, and Applications IIWe present a novel dual-operation InGaN/GaN based quantum optoelectronic device (QOD) that operates as a quantum electroabsorption modulator in reverse bias and as a light emitter in forward bias in the spectral range of near-ultraviolet (UV). Here we report the design, epitaxial growth, fabrication, and characterization of such QODs that incorporate ∼2-3 nm thick InGaN/GaN quantum structures for operation between 380 nm and 400 nm. In reverse bias, our QODs show an optical absorption coefficient change of ∼14000 cm -1 with a reverse bias of 9 V (corresponding to ∼40 cm -1 absorption coefficient change for 1 V/μm field swing) at 385 nm, reported for the first time for InGaN/GaN quantum structures in the near-UV range. In forward bias, though, our QODs exhibit optical electroluminescence spectrum centered around 383 nm with a full width at half maximum of 20 nm and photoluminescence spectrum centered around 370 nm with a full width at half maximum of 12 nm. This dual operation makes such quantum optoelectronic devices find a wide range of optoelectronics applications both as an electroabsorption modulator and a light emitting diode (LED).EnglishGaNInGaN/GaN quantum structuresLEDsNear-ultravioletQuantum electroabsorption modulatorsEpitaxial growthLight absorptionQuantum theorySpectrum analysisUltraviolet radiationGaN quantum structuresQuantum electroabsorption modulatorQuantum electroabsorption modulatorsLight emitting diodesNear-UV InGaN/GaN-based dual-operation quantum optoelectronic devicesConference Paper10.1117/12.721992