Ungor, B.Kurtulmaz, Y.Halicioglu, S.Harmanci, A.2016-02-082016-02-0820151726-3255http://hdl.handle.net/11693/24358Let R be an arbitrary ring with identity and M a right R-module with S = End<inf>R</inf>(M). In this paper, we study right R-modules M having the property for f, g ∈ End<inf>R</inf>(M) and for m ∈ M, the condition fgm = 0 implies gfm = 0. We prove that some results of symmetric rings can be extended to symmetric modules for this general setting. © Journal “Algebra and Discrete Mathematics”.EnglishAbelian modulesPrincipally projective modulesReduced modulesRickart modulesRigid modulesSemicommutative modulesSymmetric modules13C9916D80Symmetric modules over their endomorphism ringsArticle