Wahab, Malik AbdulErdem, E. Yegan2021-02-122021-02-1220200960-1317http://hdl.handle.net/11693/55110We introduce a multi-step microfluidic reactor for the synthesis of hybrid nanoparticles. As part of this study, nanoparticles composed of chitosan and iron-oxide are synthesized at room temperature by forming sequential droplets of reagents in the microreactor followed by merging and mixing them in a step by step process. The obtained nanoparticles were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, and energy dispersive x-ray analysis. Results were compared with nanoparticles of the same composition synthesized with batch-wise conventional techniques. As a result, the obtained nanoparticles showed better size distribution. This microfluidic device can be used for the synthesis of other types of nanoparticles that require multi-step procedures.We introduce a multi-step microfluidic reactor for the synthesis of hybrid nanoparticles. As part of this study, nanoparticles composed of chitosan and iron-oxide are synthesized at room temperature by forming sequential droplets of reagents in the microreactor followed by merging and mixing them in a step by step process. The obtained nanoparticles were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, and energy dispersive x-ray analysis. Results were compared with nanoparticles of the same composition synthesized with batch-wise conventional techniques. As a result, the obtained nanoparticles showed better size distribution. This microfluidic device can be used for the synthesis of other types of nanoparticles that require multi-step procedures.EnglishMicrofluidicsMicroreactorDroplet-based flowDroplet mergingNanoparticle synthesisHybrid nanoparticlesMulti-step microfludic reactor for the synthesis of hybrid nanoparticlesArticle10.1088/1361-6439/ab8dd2