Üzengi, Aktürk O.Aktürk, E.Çıracı, Salim2018-04-122018-04-1220162469-9950http://hdl.handle.net/11693/36556A recent study predicted that a 2D single layer of antimony in buckled honeycomb as well as asymmetric washboard structures, named antimonene, is stable at high temperature and displays semiconducting properties. Based on first-principles, spin-polarized density functional calculations, we investigated chemisorption of selected adatoms and physisorption of molecules on two antimonene phases. Since adspecies-adspecies interaction is minimized by using large supercells, our results mimic the effects of isolated, single adatoms or molecules. We found that molecules such as H2,O2, and H2O neither form strong chemical bonds nor dissociate; they are physisorbed with a weak binding energy without affecting the properties of antimonene. The adatoms, such as H, Li, B, C, N, O, Al, In, Si, P, Cl, Ti, As, and Sb, are chemisorbed with significant binding energy, whereby the atomic and electronic structures are modified locally. Boron and carbon adatoms are implemented into buckled antimonene crystal leading to a local reconstruction of the crystal. Nitrogen gives rise to Stone-Wales type defects. The localized states originating from adatoms give rise to diversity of electronic structure. The lowest conduction and highest valence bands of antimonene in asymmetric washboard structures have very high curvature. Once combined with adatom states, these bands offer a variety of features. Specific adatoms lead to spin polarization, attain magnetic moments, and can attribute a half-metallic character to antimonene.EnglishEffects of adatoms and physisorbed molecules on the physical properties of antimoneneArticle10.1103/PhysRevB.93.0354502469-9969