Bayındır, MehmetAbouraddy, A.F.Shapira O.Viens J.Saygin-Hinczewski, D.Sorin, F.Arnold, J.Joannopoulos, J. D.Fink, Y.2016-02-082016-02-0820061077-260Xhttp://hdl.handle.net/11693/23676A preform-to-flber approach to the fabrication of functional fiber-based devices by thermal drawing in the viscous state is presented. A macroscopic preform rod containing metallic, semiconducting, and insulating constituents in a variety of geometries and close contact produces kilometer-long novel nanostructured fibers and fiber devices. We first review the material selection criteria and then describe metal-semiconductor-metal photosensitive and thermally sensitive fibers. These flexible, lightweight, and low-cost functional fibers may pave the way for new types of fiber sensors, such as thermal sensing fabrics, artificial skin, and large-area optoelectronic screens. Next, the preform-to-fiber approach is used to fabricate spectrally tunable photodetectors that integrate a photosensitive core and a nanostructured photonic crystal structure containing a resonant cavity. An integrated, self-monitoring optical-transmission waveguide is then described that incorporates optical transport and thermal monitoring. This fiber allows one to predict power-transmission failure, which is of paramount importance if high-power optical transmission fines are to be operated safely and reliably in medical, industrial and defense applications. A hybrid electron-photon fiber consisting of a hollow core (for optical transport by means of a photonic bandgap) and metallic wires (for electron transport) is described that may be used for transporting atoms and molecules by radiation pressure. Finally, a solid microstructured fiber fabricated with a highly nonlinear chalcogenide glass enables the generation of supercontinuum light at near-infrared wavelengths.EnglishAmorphous semiconductorChalcogenide glassIntegrated fiberMicrostructured fiberOptical fiberPhotonic bandgapSelf-phase modulationSemiconducting nanowireSuper-continuum generationCrystal structureInsulating materialsLight transmissionOptical fibersOptical waveguidesPhotodetectorsSelf phase modulationSemiconductor materialsChalcogenide glassIntegrated fiberNanophotonic devicesPhotonic bandgapSemiconducting nanowireSuper continuum generationThermal monitoringNanostructured materialsKilometer-long ordered nanophotonic devices by preform-to-fiber fabricationArticle10.1109/JSTQE.2006.882666