Significance of the Mn-Oxidation State in Catalytic and Noncatalytic Promotional Effects of MnO\textsubscript{x} Domains in Formic Acid Dehydrogenation on Pd/MnO\textsubscript{x} Interfaces

Bartu Karakurt, Yusuf Kocak, Igor Lyubinetsky, and Emrah Ozensoy

Cite This: J. Phys. Chem. C 2020, 124, 22529−22538

ABSTRACT: The influence of MnO\textsubscript{x} overlayers/nanoclusters deposited on the Pd(111) single-crystal model catalyst surface on the catalytic dehydrogenation of double-deuterated formic acid (FA, DCOOD) was studied under ultrahigh vacuum conditions via temperature-programmed desorption and X-ray photoelectron spectroscopy techniques. A significant boost in D\textsubscript{2} generation was observed in the catalytic FA dehydrogenation on MnO\textsubscript{x}/Pd(111) as compared to that of a clean Pd(111) model catalyst, demonstrating the cooperative interaction between Pd(111) and MnO\textsubscript{x} sites. Maximum FA conversion was observed at a submonolayer MnO\textsubscript{x} surface coverage of 0.25 ML (monolayer) on Pd(111), whereas D\textsubscript{2} formation was found to be suppressed when the Pd(111) surface was entirely covered with relatively thick (15 ML) MnO\textsubscript{x} overlayers. A direct correlation between increasing relative abundance of oxidized Mn surface states (i.e., Mn2+, Mn3+, and Mn4+) and increasing catalytic FA dehydrogenation was observed. Different modes of promotion of FA dehydrogenation via MnO\textsubscript{x} (i.e., catalytic promotion versus noncatalytic/stoichiometric promotion) were discussed as a function of the differences in the model catalyst preparation and the extent of oxidation of the MnO\textsubscript{x} overlayer.

1. INTRODUCTION

Formic acid (FA) is a promising hydrogen-based energy vector as it possesses a relatively high hydrogen content by mass (i.e., 4.4 wt %) and exists in liquid form under ambient conditions, having low toxicity and low flammability.1,2 FA can be obtained from naturally abundant sources such as CO\textsubscript{2}3,4 as well as renewable biomass feedstocks.5 These features render hydrogen production from FA a favorable option in various hydrogen energy applications.6,7 Catalytic decomposition of FA occurs via two competing pathways, namely dehydrogenation (HCOOH → H\textsubscript{2} + CO\textsubscript{2}) and dehydration (HCOOH → H\textsubscript{2}O + CO). As the FA dehydration pathway does not yield any H\textsubscript{2}, catalytic selectivity toward H\textsubscript{2} is governed by the dominance of dehydrogenation over dehydration. In addition, CO generated as a result of dehydration can bind to the catalytically active noble metal sites (e.g., Pd) in a strong and a rather irreversible manner at room temperature (RT), leading to site blocking and catalytic poisoning. Hence, the dehydration pathway significantly limits the catalytic selectivity and the catalyst life span.

FA decomposition on various late transition-metal surfaces such as Pd,8−12 Rh,13−15 Ru,16,17 Pt,18−20 Cu,21−23 Co,24 Ag,25 as well as Pd−Ag26 and Pd−Au27 bimetallic systems, has been extensively studied under ultrahigh vacuum (UHV) conditions. These studies showed that many high-coordination transition-metal single-crystal surfaces were capable of carrying out FA dehydrogenation effectively.8,9,13,16,18,19 One of the key aspects associated with the catalytic action of these metal surfaces is their ability to stabilize the main FA decomposition intermediate, that is, formate.28

Pd is known to be one of the most active catalytic metals that can efficiently generate ultrahigh purity hydrogen from biomass side products such as FA.29−32 The catalytic FA dehydrogenation performance of Pd-based heterogeneous catalytic systems is often improved via the introduction of additional bases into the reaction medium33 or via the utilization of catalytic metal oxide promoters functionalized with basic groups in order to initiate the reaction and enhance selectivity toward H\textsubscript{2} formation.32,34,35 Former UHV studies on various single-crystal model catalysts revealed that the presence of Brønsted (e.g., NH\textsubscript{3})8 and/or Lewis bases13,18 (e.g., atomic O) can enhance the selectivity of group VIII transition-metal single-crystal surfaces toward FA dehydrogenation.

Received: July 29, 2020
Revised: September 16, 2020
Published: September 23, 2020
ation. In a former study, we also showed that a high-surface-area mesoporous powder catalyst containing PdAg bimetallic nanoparticle active sites promoted with MnOx nanodomains (dispersed on an amine-functionalized SiO2 support) exhibited an extraordinarily high activity and selectivity in FA dehydrogenation at RT. Using in situ Fourier transform infrared (FTIR) spectroscopy, we demonstrated that MnOx promoter enhanced the catalytic FA decomposition over Pd active sites by (a) increasing FA adsorption on the catalyst surface through the formation of new FA adsorption sites, (b) facilitating FA deprotonation and formate production, (c) stabilization of the formate species on the catalyst surface, and (d) capturing/storing the catalytically generated CO(g) side product in the form of carbonates and preventing CO poisoning of the Pd active sites on which formate species are converted into the ultimately desired catalytic product, H2. However, to this date, the relationship between the detailed electronic structure of the MnOx domains and FA dehydrogenation performance has been mostly unknown.

Along these lines, in this study, the influence of MnOx overlayers/nanoclusters deposited on a Pd(111) single-crystal model catalyst on catalytic FA dehydrogenation is investigated using surface-sensitive UHV experimental methods. In the current work, we show that the presence of a MnOx/Pd(111) interface increases the hydrogen production as compared to a clean Pd(111) single-crystal model catalyst surface, where a correlation is established between the boosted catalytic performance and the extent of the oxidic character of the MnOx surface states.

2. EXPERIMENTAL SECTION

2.1. Experimental Setup. Experiments were conducted in a custom-made UHV chamber with a base pressure of 1 × 10−10 Torr. The UHV chamber was equipped with the following modules: an X-ray photoemission spectroscopy (XPS; Riber Mg/Al dual anode X-ray source and a Riber EA 150 double pass cylindrical mirror electron energy analyzer) system, a custom-made low-energy electron diffraction optics, temperature-programmed desorption (TPD) instrument, temperature-programmed reaction spectroscopy (containing Ametek Dycor Dymaxion DM 200 quadrupole mass spectrometer and a Heatwave model 101303 PID-controlled linear sample heater) module, custom-made Mn thin-film evaporators, and an Ar+ ion gun (LK Technologies, NGL3000). Moreover, the UHV chamber also contained three separate gas dosing lines equipped with high-precision leak valves. The Pd(111) single-crystal sample (10 mm diameter × 1 mm thickness disc, polished on both sides, purity > 99.999%, MaTeck GmbH) was affixed on Ta wires, which allowed cooling of the sample with liquid nitrogen to 90 K and heating it up to 1073 K via resistive heating. The temperature of the sample was measured by using a K-type thermocouple (thickness: 0.005 in., Omega Inc.) which was spot-welded on the upper side of the Pd(111) single crystal.

2.2. Cleaning of Pd(111) Single-Crystal Surface. Before each experiment, the Pd(111) sample surface was cleaned by using various methods depending on the extent of contaminations present on the surface of the Pd(111) sample. The first method consisted of multiple cleaning cycles, where Pd(111) was exposed to O2(g) (Linde AG, purity ≥ 99.999%) (P02 = 1.0 × 10−8 Torr, 5 min at 600 K) and subsequently annealed at 727 K for 5 min in vacuum. In the second method, after exposing the Pd(111) sample to the conditions given above, the sample was flash-heated to 1000 K and then Ar+ -sputtered (Ar(g), Linde AG, purity ≥ 99.999%) with an ion gun (1.5 kV × 15 mA) at RT, followed by annealing at 1000 K in UHV for 5 min. The third method included Ar+ sputtering at RT, followed by annealing at 1000 K in UHV for 5 min. The cleanliness of the Pd(111) surface was checked by performing blank TPD experiments, where the m/z = 28 desorption channel was monitored to verify the absence of strongly bound CO species on the surface before conducting the experiments.

2.3. Utilization of Deuterated FA (DCOOD). DCOOD (FA-d2, D ≥ 98%, D2O < 5%) was purchased from Cambridge Isotopes Laboratories Inc. (USA). The pristine DCOOD sample vial was initially opened inside a glovebox (i.e., under a controlled atmosphere) and transferred into a UHV-compatible glass bulb equipped with a Swagelok VCR Nupro valve in order to prevent the exposure of DCOOD to atmospheric H2O and CO2. The UHV-compatible glass bulb was also covered with an Al foil to prevent possible photochemical reactions. Then, DCOOD(g) was introduced to the UHV chamber through a dedicated high-precision leak valve, using a fresh DCOOD dose before each TPD experiment as DCOOD is known to decompose upon its long-term interaction with stainless steel.

2.4. Manganese Deposition and MnOx Film Preparation. Before each experiment, metallic Mn(s) (MaTeck GmbH, Germany, Mn foil casted, purity: >99.9%) was thermally evaporated onto the clean Pd(111) single-crystal model catalyst surface at RT in UHV. The custom-made thermal evaporator had the dimensions of 1 mm × 5 mm × 1 mm and was operated with an input power of 1.5 V × 12 A = 18 W via resistive heating. In the experiments where the MnOx/Pd(111) surface was initially oxidized with O2, Mn was first deposited on the clean Pd(111) substrate in UHV at RT. Then, this MnOx/Pd(111) sample was flash-heated to 1000 K in UHV in order to mimic the morphology changes that might occur during the FA TPD experiments on MnOx/Pd(111). Next, the MnOx/Pd(111) system was exposed to 4.8 × 10−5 L of O2 at 623 K (4 × 10−8 Torr × 20 min) in front of the dedicated O2 leak valve.

2.5. TPD and XPS Data Acquisition. TPD experiments were performed with a heating rate of 1 K/s. Multiplexing of each desorption channel during the TPD data acquisition was carried out using a dwell time of 30 ms. XPS measurements were performed by applying 250 W power to a Mg anode. The dwell time used for each energy step in the XPS measurement was 1 s, and each XPS spectrum was averaged over 15 scans.

3. RESULTS AND DISCUSSION

3.1. DCOOD Adsorption on Pd(111). The TPD profiles presented in Figure 1 were obtained by the adsorption of DCOOD, with an exposure of εDCOOD = 8 × 10−3 L (1 L = 10−6 Torr s), on a clean Pd(111) surface at 123 K. Note that this particular FA exposure was chosen in order to be able to monitor all the relevant desorption features/products clearly (for instance, as shown in Figure S1, a relatively lower FA exposure of εDCOOD = 4 × 10−3 L did not yield sufficiently strong desorption signals to effectively monitor all relevant reaction desorption channels), while minimizing the effects of water impurities in the FA feedstock, which can react with CO to replenish the poisoned Pd active sites. Figure 1 reveals the presence of m/z = 4 (D2), m/z = 30 (DCO), and m/z = 48 (DCOOD) desorption signals, which is consistent with the
adsorption of DCOOD on Pd(111). On the other hand, the occurrence of $m/z = 2$ (H$_2$) and $m/z = 3$ (DH) desorption signals indicates the presence of singly deuterated (DCOOH/HCOOD) and nondeuterated (HCOOH) FA species in the DCOOD feedstock and/or proton exchange events between DCOOD and the background H$_2$ and/or H$_2$O. It should be noted that the $m/z = 46$ desorption signal can be associated with both DCOO (i.e., mass spectroscopic fragmentation of DCOOD) and molecular HCOOH species.

The TPD profiles shown in Figure 1 can be divided into four main desorption windows. The first desorption window is centered at ca. 167 K, and it is attributed to the desorption of catemeric/monomeric FA species formed on Pd(111). It should also be pointed out that the signals belonging to water species, that is, $m/z = 20$ (D$_2$O), $m/z = 19$ (DHO), and $m/z = 18$ (H$_2$O) signals, desorbing around 167 K are in line with the typical submonolayer water desorption from Pd(111). These species are assigned to the minor impurities in the FA feedstock. Thus, the first desorption window is mostly due to the mass spectroscopic fragmentation of catemeric/monomeric FA units inside the quadrupole mass spectrometer rather than catalytic FA dehydrogenation/dehydration/decomposition reactions.

In Figure 1, the second desorption window is centered at 192 K. The presence of a minor molecular FA desorption feature along with the appearance of intense CO$_2$, D$_2$O, DHO, and H$_2$O signals (accompanied by D$_2$, DH, and CO desorption signals observed at higher temperatures) suggests that FA is catalytically decomposed on Pd(111) at 192 K. Various experimental and theoretical studies on group VIII metal surfaces such as Pd(111) reported the formation of bidentate bridging formate species upon FA exposure. Consequently, the presence of an intense $m/z = 44$ (CO$_2$) signal at 192 K may suggest that the Pd(111) surface can decarboxylate the formate intermediate, facilitating FA dehydrogenation. However, simultaneous desorption of $m/z = 44$ (CO$_2$), $m/z = 20$ (D$_2$O), $m/z = 19$ (DHO), and $m/z = 18$ (H$_2$O) species at 192 K suggests that the Pd(111) single-crystal model catalyst is not 100% selective toward dehydrogenation. Note that the $m/z = 28$ (CO) signal at \leq192 K is attributed to the mass spectroscopic fragmentation of CO$_2$ as the line shapes of the corresponding $m/z = 44$ and $m/z = 28$ signals show significant resemblance, and CO desorption from the Pd(111) surface at submonolayer coverages occurs typically at much higher temperatures, such as 470–500 K, because of the strong chemisorption of CO on Pd(111).

The third desorption window in Figure 1 is centered around 320 K, and it is due to the recombinative desorption of hydrogen species, that is, $m/z = 4$ (D$_2$), $m/z = 3$ (DH), and $m/z = 2$ (H$_2$), from the Pd(111) surface, which are generated as a result of dehydrogenation. In order to clarify the origin of $m/z = 2$ (H$_2$), the corresponding background H$_2$ desorption signal from a clean Pd(111) surface (i.e., without any FA adsorption) was investigated in a control experiment (Figure S2). This control experiment revealed that H$_2$ adsorbed onto a clean Pd(111) surface from the background desorbed around 335 K, with the tail extending to higher temperatures.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://dx.doi.org/10.1021/acs.jpcc.0c06942
Corresponding differences in the desorption maxima and the lack of the high-temperature desorption tail in the \(m/z = 2 \) (\(\text{H}_2 \)) desorption channel given in Figure 1 suggest that the \(m/z = 2 \) (\(\text{H}_2 \)) desorption signal in Figure 1 is not due to background \(\text{H}_2 \) adsorption. Moreover, considering the different intensity scales in Figures 1 and S2, it is clear that the magnitude of \(\text{H}_2 \) desorption in the DCOOD/Pd(111) system is greater than that of the clean Pd(111) surface. Therefore, the \(m/z = 2 \) (\(\text{H}_2 \)) desorption signal that is observed in Figure 1 was also classified as a dehydrogenation product.

Finally, the last temperature window in Figure 1 is positioned at ca. 480 K and reveals a relatively intense \(m/z = 28 \) desorption signal, whose desorption maximum is in accordance with the CO desorption observed upon the decomposition of FA on Pd(111). The absence of any \(m/z = 44 \) (CO\(_2\)) desorption signal at this temperature suggests that this species is not associated with CO\(_2\). Thus, it is apparent that while the first dehydration product (\(i.e., \text{H}_2\text{O}, \) desorbing at \(T \leq 192 \) K) is bound relatively weakly to the Pd(111) surface, the second dehydration product (\(i.e., \text{CO}, \) desorbing at 480 K) adsorbs extremely strongly on Pd(111) and blocks/poisons the surface.

3.2. \(\text{D}_2 \) Formation on \(\text{MnO}_x/\text{Pd}(111) \)

In order to investigate how the \(\text{MnO}_x/\text{Pd}(111) \) surface differs from the clean Pd(111) surface in terms of \(\text{D}_2 \) generation capability and how \(\text{D}_2 \) generation evolves after consecutive reaction runs, 1.5 ML (monolayer) \(\text{MnO}_x \) was deposited on clean Pd(111) prior to FA exposure and investigated in a comparative fashion \(\text{via} \) TPD (Figure 2a) and XPS (Figure 2b). In these sets of experiments, three successive identical FA adsorptions were carried out on the \(\text{MnO}_x \) (1.5 ML)/Pd(111) surface. Before each FA exposure, XPS analysis was carried out, and after each FA exposure, TPD analysis was performed (see Section 2.4 and Figure S3 for further details regarding \(\text{MnO}_x \) deposition protocols and quantification of the \(\text{MnO}_x \) overlayer coverage on the Pd(111) surface). For \(\theta_{\text{MnO}_x} < 1.5 \) ML, the signal-to-noise ratio of the Mn 2p\(_{3/2}\) XPS signal of the currently utilized photoelectron energy analyzer was low, rendering the accurate Mn oxidation state analysis \(\text{via} \) XPS rather difficult. Therefore, comparative XPS and TPD studies were performed at a \(\text{MnO}_x \) coverage of 1.5 ML, as shown in Figure 2. It should also be noted that the Pd 3p\(_{3/2}\) region (ca. 532 eV\(^{27} \)) of the XPS data overlaps with the O 1s species because of the manganese oxide domains (529.5—532 eV). Thus, the deduction of conclusive information from the O 1s region of the XPS data regarding the detailed nature of the oxidized manganese overlayer species (such as the possible existence of Mn(OH)\(_x\) species) was not possible.

Figure 2b presents the Mn 2p\(_{3/2}\) XPS spectrum obtained after the 1.5 ML \(\text{MnO}_x \) deposition on Pd(111). It is well known that the Mn 2p\(_{3/2}\) XPS spectrum of metallic Mn has a single peak at ca. 638.8 eV. However, in the former studies regarding Mn overlayers grown on face-centered cubic (fcc) transition-metal surfaces (including Pd\(^{52}\)), the main Mn 2p\(_{3/2}\) XPS peak was observed at 640 eV and exhibited an intense satellite separated from the main feature by ca. +5 eV.\(^{33–35}\) Therefore, in Figure 2b, the peak located at 640.3 eV, along with the intense satellite feature at 645.3 eV, can be attributed to Mn\(^0\) species. Moreover, earlier studies have also shown that the main Mn 2p\(_{3/2}\) XPS peak of Mn overlayers grown on Pd(100)\(^{52}\) and Ni(110)\(^{35}\) exhibited an additional feature located below 640 eV, corresponding to the metallic Mn species that weakly interact with the fcc metal surface underneath. Consequently, the lowest binding energy peak detected at 638.5 eV in Figure 2b is also attributed to Mn\(^0\) species. The XPS spectra of manganese oxide overlayers grown on Pd(100) single-crystal surface showed a close resemblance to bulk manganese oxides,\(^{52,56}\) where Mn 2p\(_{3/2}\) peaks located at ca. 642 eV were mainly associated with the presence of Mn\(^{3+}\) and Mn\(^{4+}\) states in bulk manganese oxides.\(^{57–59}\) Furthermore, it was reported in earlier studies that the Mn\(^{2+}\) state had a distinct satellite feature around 647 eV.\(^{60–62}\) As a result of these findings, the presence of the broad peak located at 641.9 eV, along with an additional satellite feature occurring at ca. 647 eV, strongly suggests the presence of Mn\(^0\) as well as oxidic Mn species (\(i.e., \text{Mn}^{3+}, \text{Mn}^{4+}, \text{and Mn}^{4+} \)).

Therefore, the bottommost XPS spectrum in Figure 2b suggests that the deposited manganese overlayer was partially oxidized, where this partial oxidation can be tentatively attributed to the oxidation of Mn by the background water/hydroxide species generated due to the background pressure spike (ca. 1.5 \(\times 10^{-9} \) Torr) that occurred during Mn thermal evaporation onto the Pd(111) substrate. The blue \(\text{D}_2 \) \((m/z = 4)\) TPD profile given in Figure 2a, corresponding to the first of the three successive TPD runs, was obtained after FA adsorption on a freshly prepared \(\text{MnO}_x(1.5 \text{ML})/\text{Pd}(111) \) surface. As can be seen from Figure 2a, the freshly prepared \(\text{MnO}_x(1.5 \text{ML})/\text{Pd}(111) \) surface yielded a significantly smaller \(\text{D}_2 \) desorption signal as compared to that of the clean Pd(111) surface. Moreover, the presence of Mn\(_x\) domains also induced a shift in the \(\text{D}_2 \) desorption temperatures toward higher values, which can be attributed to the hindrance of hydrogen atom surface mobility.\(^{64,65}\) Importantly and contrary to the first observation, dosing a second identical exposure of DCOOD on the Mn\(_x(1.5 \text{ML})/\text{Pd}(111) \) surface used in the first run (\(i.e., \text{spent surface} \)) led to a significant increase in the \(\text{D}_2 \) formation in the second TPD run, and the \(\text{D}_2 \) desorption signal converged to a constant value in the third subsequent TPD run. It should be noted that the boost in \(\text{D}_2 \) formation in the second FA TPD run on the Mn\(_x(1.5 \text{ML})/\text{Pd}(111) \) surface was also observed for other FA exposures and a variety of Mn\(_x\) coverages (\(e.g., \) see Figures S4 and S5). In other words, this phenomenon was neither specific to a particular FA exposure nor a unique Mn\(_x\) coverage. Although this general behavior was observed for different Mn\(_x\) coverages, variation in the Mn\(_x\) coverage had an effect on the ultimate magnitude of the \(\text{D}_2 \) increase, as well as the number of runs it took for the \(\text{D}_2 \) signal to saturate (see Figure S4).

An additional control experiment also revealed that the observed phenomenon was not solely due to the thermally induced morphology changes in the Mn\(_x\) overlayer, such as the variations in the dispersion of the Mn\(_x\) overlayer on Pd(111) that might occur during the TPD temperature ramp in UHV. Along these lines, running the same reaction on a Mn\(_x(1.5 \text{ML})/\text{Pd}(111) \) surface which was initially annealed in UHV at 1000 K for 1 min before FA exposure generated a smaller amount of \(\text{D}_2 \) with respect to the clean Pd(111) surface (Figure S6).

It should also be emphasized that the deposition of a relatively thick (ca. 15 ML) Mn\(_x\) overlayer, which presumably covered the entire Pd(111) surface, completely suppressed \(\text{D}_2 \) and DH formation, while substantially boosting the CO formation (Figure S7). This observation strongly suggested that Mn\(_x\) sites were not capable of enhancing \(\text{D}_2 \) formation on their own and the existence of Mn\(_{x}\)/Pd interfaces was essential for FA dehydrogenation.
The XPS spectrum in the middle of Figure 2b shows that before the second TPD run (i.e., after the first FA adsorption and subsequent TPD run), the MnO$_x$ overlayer was further oxidized. This is somewhat surprising as FA is not a well-known oxidizing agent. Furthermore, the oxidation of MnO$_x$ was also accompanied by an increase in the overall Mn 2p$_{3/2}$ XPS intensity, which could be attributed to the increased dispersion of the MnO$_x$ overlayer on the Pd(111) substrate upon the first TPD temperature ramp to 1000 K (as in the case of a typical strong metal−support interaction). Similarly, the XPS spectrum obtained before the third TPD run, shown as the topmost spectrum in Figure 2b, indicated an additional but minor increase in the oxidic character of the MnO$_x$ overlayer. These findings suggest that increasing the oxidic character of the MnO$_x$ overlayer enhanced D$_2$ formation, implying that the oxidation state of MnO$_x$ plays a crucial role in the D$_2$ production ability of the Pd/MnO$_x$ interface in FA dehydrogenation.

3.3. D$_2$ Formation on MnO$_x$/Pd(111) Surface Oxidized with O$_2$ Prior to FA Exposure. As the findings discussed above indicated that the increase in the oxidic character of MnO$_x$ promoted D$_2$ formation, an additional set of experiments was carried out on the MnO$_x$(1.5 ML)/Pd(111) surface, where the freshly prepared MnO$_x$(1.5 ML)/Pd(111) surface was oxidized via O$_2$ (P$_{O_2}$ = 4 × 10$^{-8}$ Torr, 623 K, 20 min) prior to FA dosing (Figure 3a,b). After the initial oxidation of the MnO$_x$(1.5 ML)/Pd(111) surface with O$_2$, three successive FA exposures were introduced on this model catalyst surface. Then, XPS/TPD analyses were performed before/after each FA dose. The bottommost Mn 2p$_{3/2}$ XPS spectrum given in Figure 3b suggests that the MnO$_x$(1.5 ML)/Pd(111) surface that was initially oxidized with O$_2$ prior to FA exposure...
adsorption had a MnOₓ overlayer with the highest oxidic character among all other currently studied cases. Furthermore, the TPD profiles in Figure 3a clearly show that the oxidation of MnOₓ with O₂ prior to FA adsorption caused an immediate boost in the D₂ formation. It should be noted that the initial oxidation with O₂ prior to FA adsorption also shifted the D₂ desorption maxima to higher temperatures (by ca. 20 K). This shift can be attributed to the hindrance of hydrogen atom mobility⁶,⁶⁴ and stabilization of the formate intermediate by MnOₓ oxidized with O₂ (see Figure 5c).

Unlike in Figure 2a, the reactivity boost due to initial oxidation with O₂ was observed only for the first TPD run in Figure 3a, and this boost diminished in the successive TPD runs. As a result of this observation, it can be argued that O₂ exposure can lead to the formation of more reactive but less stable MnOₓ/Mn(OH)ₓ species compared to FA, where these more reactive species are depleted immediately after reacting with FA.

The XPS spectrum in the middle of Figure 3b indicates that, before the second TPD run (i.e., after the oxidation step and the first TPD run), the oxidic character of MnOₓ considerably decreased. On the other hand, the topmost XPS spectrum in Figure 3b suggests that, within our detection limits, the third reaction run caused a negligible change in the general oxidation state of the MnOₓ overlayer as compared to that of the second run. As a result, it can be argued that the correlation between the increasing oxidic character of the MnOₓ overlayer and enhanced FA dehydrogenation activity observed for MnOₓ(1.5 ML)/Pd(111) in Figure 2 was also generally valid for the data given in Figure 3 for the MnOₓ(1.5 ML)/Pd(111) surface which was initially oxidized with O₂.

3.4. Effects of MnOₓ Coverage on Catalytic FA Decomposition

The influence of the MnOₓ overlayer coverage on the catalytic FA decomposition ability of the MnOₓ/Pd(111) model catalysts was also investigated. Hence, different MnOₓ/Pd(111) model catalysts with varying MnOₓ overlayer coverages were prepared, and the optimum MnOₓ overlayer coverage was determined. Figure 4 illustrates the integrated relative quantities of FA dehydrogenation and dehydration products (see Figure S8 for the associated TPD profiles and Table S1 for the integration temperature intervals used for the calculation of the histograms in Figure 4). One can see in Figure 4 that both the dehydrogenation and dehydration products followed a similar trend, having a maximum yield at the MnOₓ coverage of 0.25 ML. It should be emphasized that a somewhat different trend was observed for the integrated H₂ production signals (which might be attributed to the influence of the background H₂ in the UHV chamber).

It is clear that the highest FA conversion was obtained for the MnOₓ (0.25 ML)/Pd(111) surface. On this surface, the MnOₓ overlayer had a submonolayer coverage and did not fully cover the Pd(111) substrate surface, allowing the existence of active Pd/MnOₓ interfaces available for FA adsorption. Hence, it is clear that within 0 < θₘ₀ₓ < 0.25 ML, there exists a sufficiently large number of available/exposed Pd(111) active sites, and thus, catalytic performance increases monotonically with the increasing surface coverage of MnOₓ domains which act as promoters. However, at coverages higher than θₘ₀ₓ > 0.25 ML, because of the blocking of the Pd(111) active sites, the number of Pd(111) active sites decreases below the sufficient value and the catalytic performance starts to diminish.

3.5. Catalytic and Noncatalytic Promotional Effects of MnOₓ on FA Decomposition over Pd(111)

After having determined the optimum MnOₓ overlayer coverage for DCOOD dehydrogenation on MnOₓ/Pd(111) model catalysts as 0.25 ML, we investigated the detailed behavior of this particular MnOₓ overlayer coverage in successive FA TPD runs in the absence (Figure 5a) and presence of initial oxidation with O₂ (Figure 5c).

The TPD data in Figure 5a,c correspond to two of the most active MnOₓ(0.25 ML)/Pd(111) model catalysts obtained (i) after oxidation with FA (Figure 5a, third TPD run) and (ii) in
a single FA TPD run after initial oxidation with O₂ (Figure 5c, first TPD run). Comparison of these two different types of MnOₓ(0.25 ML)/Pd(111) model catalysts (Figure 5a,c) with that of the clean Pd(111) surface (Figure 1) is given in Figure 5e. This comparison reveals that increasing the oxidic nature of the MnOₓ overlayer either by successive FA TPD runs or via initial oxidation with O₂ leads to a simultaneous increase in both dehydrogenation and dehydration products and an increase in the overall total FA conversion (see Table S2 for the integration temperature intervals used for the calculation of the histograms given in Figure 5e).

Despite the fact that both of the MnOₓ(0.25 ML)/Pd(111) model catalysts given in Figure 5a,c increase the overall FA conversion, surface chemistries of these differently prepared catalysts were quite dissimilar. First, the comparison of the CO₂ desorption signals for the FA TPD data of clean Pd(111) (Figure 1) and that of the third FA TPD run of MnOₓ(0.25 ML)/Pd(111) (Figure 5a) points to the fact that when the MnOₓ overlayer was oxidized via three successive FA TPD runs (Figure 5a), an additional high-temperature CO₂ desorption shoulder was observed at 322 K, which was absent in the case of clean Pd(111) (Figure 1). Moreover, the inset given in Figure 5b reveals the presence of an additional broad CO desorption feature that centers at ca. 750 K in Figure 5a, whereas these high-temperature CO features are absent for clean Pd(111) (Figure 1). In our former in situ FTIR studies,36,38 we reported the formation of carbonates on the PdAg/MnOₓ/SiO₂ and MnOₓ/SiO₂ mesoporous powder catalysts upon CO adsorption. Therefore, the high-temperature CO₂ desorption features observed in Figure 5a and the high-temperature CO desorption features observed in Figure 5b can be attributed to the presence of adsorbed carbonate species on MnOₓ domains, where the presence of CO and CO₂ desorption peaks around 750 K was also attributed to the presence of strongly bound carbonate species that are formed upon the adsorption of FA on K-promoted Rh(111) surface.65 This observation suggests that this particular oxidic character of MnOₓ can enhance FA adsorption and deprotonation,66 where FA adsorbed on manganese oxide domains can eventually spillover onto the Pd(111) active sites, regenerating/unveiling the MnOₓ adsorption sites for the next catalytic cycle. This particular performance-enhancing action of the MnOₓ overlayers can be considered to be a noncatalytic (i.e., stoichiometric or sacrificial) effect, as this type of promotional effect is expected to gradually diminish as the MnOₓ domains are continuously and irreversibly covered with strongly bound carbonate species. Accordingly, lack of significant differences in the desorption temperatures of the major desorption features of the clean Pd(111) single crystal (Figure 1) and that of the MnOₓ(0.25 ML)/Pd(111) surface shown in Figure 5a also implies such a noncatalytic performance enhancement by MnOₓ domains. In addition, the presence of high-temperature CO desorption features (Figure 5b) also suggests that MnOₓ domains can act as sacrificial sites for CO adsorption39 and hinder CO poisoning of the Pd(111) active sites.

On the other hand, as a manifestation of the differences in the oxidic nature of the MnOₓ overlayers due to the variations in catalyst preparation protocols, catalytic promotional effects of the MnOₓ domains can also be envisaged, particularly in the case of the MnOₓ(0.25 ML)/Pd(111) surface which was initially oxidized with O₂ (Figure 5c). Similar to the case in which the MnOₓ overlayer was oxidized via three successive FA TPD runs (Figure 5a), Figure 5d also reveals the presence of high-temperature CO desorption signals which can be attributed to the presence of strongly adsorbed carbonate species.65,66 Unlike in Figure 5a, the major CO₂ desorption signal in Figure 5c was observed to shift to a significantly higher temperature of 283 K (along with a drastic growth in CO₂ desorption intensity) as compared to that of the clean Pd(111) surface, whereas the major CO₂ desorption signal appeared at 192 K in the latter case (Figure 1). This significant increase in the major CO₂ desorption temperature for the MnOₓ(0.25 ML)/Pd(111) surface which was initially oxidized with O₂ (Figure 5b) implies that, when MnOₓ is sufficiently oxidized, it can simultaneously improve FA adsorption/deprotonation and formate stability,39 positively contributing to the catalytic FA dehydrogenation.39 Moreover, Figure 5c also reveals that oxidizing MnOₓ with O₂ separates the desorption temperatures of water (243 K) and CO₂ (283 K) species, suggesting that oxidized MnOₓ is also capable of decoupling the dehydrogenation and dehydration reactions that occur simultaneously on a clean Pd(111) surface (Figure 1) via improving formate stability. On the other hand, Figure 5c reveals that oxidizing MnOₓ with O₂ also possibly triggers additional dehydration pathways (such as the condensation reactions of catemeric FA species, leading to the formation of water), once again showing that MnOₓ does not selectively enhance catalytic FA dehydrogenation. As a result, the significant alterations that were observed in the FA decomposition chemistry after MnOₓ oxidation with O₂ suggest that MnOₓ can also catalytically contribute to FA decomposition when it is sufficiently oxidized. It should be noted that similar to the MnOₓ overlayer that is oxidized via three successive FA TPD runs, the presence of high-temperature CO adsorption features implies that manganese oxide that was initially oxidized with oxygen can contribute to the enhanced catalytic FA conversion performance of MnOₓ(0.25 ML)/Pd(111) by hindering CO poisoning of the Pd(111) active sites as well.

4. CONCLUSIONS

In the current work, we investigated catalytic FA decomposition on planar model catalyst surfaces composed of a MnOₓ overlayer grown on a Pd(111) single crystal surface using various catalyst preparation protocols and compared the catalytic behavior of these systems to that of a clean Pd(111) benchmark catalyst. Increasing the oxidation state of the Mn²⁺ species in the MnOₓ overlayer was found to boost both the dehydrogenation and dehydration pathways in a simultaneous manner. As a consequence of the differences in the surface chemistry and oxidation extent of the MnOₓ overlayers on Pd(111) in different model catalyst preparation protocols, different promotional effects for MnOₓ domains were proposed. In the case of the noncatalytic (i.e., stoichiometric or sacrificial) promotional effect, MnOₓ overlayers mainly serve as additional FA adsorption sites and facilitate FA adsorption/deprotonation, where FA that is adsorbed on the MnOₓ domains can eventually spillover onto the Pd(111) active sites, regenerating/unveiling MnOₓ adsorption sites for the next catalytic cycle. This particular promotional effect was observed for the moderately oxidic MnOₓ overlayers on Pd(111). On the other hand, in the case of the catalytic promotional effect, highly oxidic MnOₓ domains increased the formate stability and decoupled the dehydrogenation reaction from the dehydration reaction in terms of the corresponding product desorption temperatures. In all cases, MnOₓ overlayers...
also acted as CO capture domains, hindering CO poisoning of the Pd(111) active sites. The currently reported mechanistic results on MnOx/Pd(111) model catalysts are in very good agreement with the former literature on high-surface-area powder catalysts containing Pd/MnOx interfaces and provide valuable molecular-level insights regarding the fundamental understanding of the promotional effects of MnOx in the catalytic dehydrogenation of FA on Pd. Along these lines, current results can also be potentially applicable to the catalytic dehydrogenation of not only FA but also other organic acids or carboxylated oxygenates on different mesoporous high-surface-area transition-metal/metal oxide interfaces in order to design superior dehydrogenation catalysts to produce hydrogen from sustainable biomass feedstock.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.0c06942.

TPD profiles obtained upon a relatively low DCOOD exposure of $e_{\text{DCOOD}} = 4 \times 10^{-3}$ L on clean Pd(111); $m/z = 2$ desorption channel from a blank (control) TPD experiment on a freshly cleaned Pd(111) surface in the absence of any intentionally introduced adsorbates; variation of the Mn 2p$_{3/2}$/Pd 3d integrated XPS intensity ratio of MnOx/Pd(111) as a function of Mn deposition time; D$_2$ ($m/z = 4$) desorption channel in the TPD data upon three successive FA adsorption steps on MnOx/Pd(111) with varying MnOx surface coverages; variation of the D$_2$ ($m/z = 4$) desorption channel in the TPD data upon three successive DCOOD adsorption steps on MnOx(0.25 ML)/Pd(111); change of the D$_2$ ($m/z = 4$) desorption signal in the TPD data upon two successive FA exposures of $e_{\text{DCOOD}} = 8 \times 10^{-3}$ L on a MnOx(1.5 ML)/Pd(111) surface which was initially annealed in UHV at 1000 K for 1 min before the first TPD run; TPD profiles for DCOOD adsorption on MnOx(15 ML)/Pd(111), where a very thick (multi-layer) MnOx overlay layer entirely covers/blocks the Pd(111) substrate; TPD profiles for DCOOD adsorption on MnOx/Pd(111) as a function of MnOx coverage; integration temperature intervals of the histograms given in Figure 4 of the main text; and integration temperature intervals of the histograms given in Figure 5e (PDF).

AUTHOR INFORMATION

Corresponding Author

Emrah Ozensoy — Department of Chemistry and UNAM-National Nanotechnology Center, Bilkent University, 06800 Ankara, Turkey; orcid.org/0000-0003-4352-3824; Email: ozensoy@fen.bilkent.edu.tr

Authors

Bartu Karakurt — Department of Chemistry, Bilkent University, 06800 Ankara, Turkey

Yusuf Kocak — Department of Chemistry, Bilkent University, 06800 Ankara, Turkey; orcid.org/0000-0003-4511-1321

Igor Lyubinetsky — Department of Chemistry, Bilkent University, 06800 Ankara, Turkey

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcc.0c06942

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

E.O. acknowledges the scientific collaboration with the TARLA project funded by the Ministry of Development of Turkey (project code: DPT2006K-120470). The authors also acknowledge Prof. Mehmet Erbudak (ETH Zurich) for his invaluable assistance with the UHV experimental setup. I.L. acknowledges The Scientific and Technological Research Council of Turkey (TUBITAK) and Horizon 2020 Marie Sklodowska-Curie CoCirculation2 Program for financial support (project code: 119C014). E.O. acknowledges the scientific collaboration with the TARLA project funded by the Republic of Turkey Presidential Directorate of Strategy and Budget (project code: 2006K12-827). The authors also acknowledge Mete Duman (UNAM-National Nanotechnology Center, Bilkent, Ankara, Turkey) for the design and production of the technical schematics.

REFERENCES

(10) Kovács, I.; Kiss, J.; Solymosi, F. On the Role of Adsorbed Formate in the Oxidation of C1 Species on Clean and Modified Pd (100) Surfaces. Vacuum 2017, 138, 152–156.

(13) Houtman, C.; Barateau, M. A. Reactions of formic acid and formaldehyde on Rh(111) and Rh(111)-(2 x 2)O surfaces. Surf. Sci. 1991, 248, 57–76.

(65) Kovács, I.; Kiss, J.; Kónya, Z. The Potassium-Induced Decomposition Pathway of HCOOH on Rh(111). Catalysts 2020, 10, 675.