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ABSTRACT

OPTICAL NEAR FIELD INTERACTION OF
SPHERICAL QUANTUM
DOTS

Togay Amirahmadov
M.S. in Physics
SupervisorAssoc. Prof. Hilmi Volkan Demir
July, 2012

Nanometessized materials can be used to make advanced photonic devices.
However, as far as the conventionaltfigid light is concerned, the size of these
photonic devices cannot be reduced beyond the diffraction limit of light, unless
emerging optical nedrelds (ONF) are utilized. ONF is tHecalized field on the
surface of nanmetric particles manifesting itsk in the form of dressed photons

as a result of lighatter interaction, which are bound to the material and not
masslessin this thesis, & theoreticallystudy a system composed of different
sized quantum dots involvin@NF interactions toenable optical excitation
transfer.Here this is explained by resonaremergy transfer via an optical near
field interaction between theweststate ofthe small quantum dot and tHest
dipole-forbidden excitedstate ofthe large quantundot via the dressed photon
exchange for a specifratio of quantum dot sizeBy using the projection operator
method, we derived the formalism for the transfered energy from one state to
another for strong confinement regime for the first time. We perfometkrical
analyses of te optical neafield energy transfer rate fospherical colloidal
quantum dotsnade ofCdSe, CdTe, Cd%&nS andPbSe.We estimated that the
energy transfer time to the dipole forbidden states of quantum dot is sufficiently
shorter than the radiative lifete of excitons in each quantum dot. This model of
ONF is essential to understanding and designing systems of such quantum dots for

use in neafield photonic devices.

Keywords: optical near field, dressed photon, resonance energy transfer,
excitons.
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K! RESEL KUANTUM NOKTALARI NI N
ALAN ETKKLEKKMK

Togay Amirahmadov
Fizi k B°l ¢mg, Y¢éksek Lisans
Tez Y°neticisi: Do - . Dr . Hi | mi Vo
Temmuz 2012

Nano °1I -ekl:i mal zemel er il eri fotoni k
ortaya konula opti k yakén alanlardan (OYA) f i
al an éEKej e kull anél ar ak, fotonik ci ha
indiril emez. OYA nanometriKk par - aceéekl

mal zemeye bajl é,ékgkdmmast ki lod kmamgians ovreu c u

d°kerdmitlonl ar Keklinde g°steren bir al
uyar el ma transferi sajlamak i -1in, fark
OYA etkilexkimli bir Si st emi taekatrairké me | &
kuantum nokta boyutlarénén belirld. bir

k¢-¢k kuantum noktasénén taban seviyye

uyar el mécx di pol yasakl e seviyyesi ar a
araceéel epawba enerpi aktar emeée il e a- ekl
y°entemini kull anar ak, i1k kez g¢-1 ¢ sE
di jerine aktarélan enerji i-in gereken

ve PbSe mal zemel erkiondeon dad p &luamt kigr exo&lt
yakén alan enerji aktaréem hézeéenén sayeée:
di pol yasakl e seviyelerine enerj.i aktar
eksitonlarén ékénéemsal oRlujésurn us ¢hreessa pnldaedé
OYA model i, yakeén al an fotonik ci hazl ar

sistemlerinin tasarémé ve anl akél masée i

Anahtar kelimelerOp t i k y adk°ékne mawlit aonn,, rezonans ene

eksitonlar.
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Chapter 1

| ntroduction

1.1 Theoptical far field and diffraction limit of light

One of the intrinsic characteristic of waves is diffraction. This phenomenon is
explained as following. Imagine that we have a plaite very small aperture on

the surface and plane light propagates on it. After the light passes through an
aperture it is converted into a diverging spherical wave. This divergence is called

diffraction. The divergence angle is/a for circular aperture where/ is the

wavelength of an incident light and is aperture radius. When the distance
between the aperture and the plane in which the pattern is observed is large
enough than thevavelength of light then, this region is often called as a far field

and expressed with a distance greater tii4/ , where, D is the largest

dimension in the aperture ard-is the waelength of the incident light.

As shown in the Figure 1.1the plane wave incident on a positive lens is focused
at a point by convex lengven if we focus the light to the convex lens due to the
diffraction limit the spot size of the light cannot kero. This phenomena is called

defocusing.

Ray by geometrical

optics
Incident light \
.\ ,, Defocusing
e == A/NA
Convex lens Focal plane

Figurel.1.1The schematic representation of residual defocusing
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The spot size of the light is about/ NA where, NA is called the numerical

aperture and usually is given assing. Here, n is the refractive index of the

medium and the anglg is obtained fromsing =(a/ ZM f2 {8/ 2" where fis

focal length anda is the diameter of the lens.[2]

The semiconductor lasers, optical waveguides and related integrated photonic
devices must confine the light within them for effective operation. However, as
long as conventional light is used, the diffraction limit restrict the miniaturization
of the optical science and technology. Therefore, to go beyond the diffraction
limit we need nonpropogating localized light that is free of diffraction. Since
optical nea fields is free of diffraction it has been proposed to transcend the
diffraction limit of light. [1]-[4]

1.2What is optical near fields?

The optical near felds are spatially localized fields on the surface of nanometric
particles. It is generated wieve excite the nanometric material by incident light.
Figure 1.2.1a represents the generation mechanism of optical near fields. Here the
radius a of the sphereS is assumed to be much smaller than the Vesgth of
incident light. In the Figure 1.2.1.a the scattered light represents the light scattered
from the surface of the sphef& and corresponds to the far field light. However,

as a result of lightnatter interaction an opticdocalized field with thickness
abouta is also generated on the surface of the splser@his localized field is
called optical neafield. Since it is localized on the sphe& it cannot be
seperated from the sphere. The volume of this optical near field is smaller than the
diffraction limited value because the size of a particle is much smaller than the
wavelength of incident ligha< < . Figure 1.2.1b represts generation of an
optical near field by a small aperture. The scattered light in the figure corresponds
to the far field light and propogaters to the far field. However, again the localized

field around the aperture corresponds to the near fi€lisdecay lengthof near



field is muchsmaller than the wavelength of incident light a@ndioes not depends

on the wavelength. It onigepends on the size of the nanometmaterial

In figure 1.2.1a the thickness of the optical near field is alauThis can be
explained as follow. By directing the light on the nanometric obfeaete excite
electrons inS. As a result, due to the Coulomb forces generating from the electric
field of incident light, the nuclei and electrons in atomsSofire displaced from

their equilibrium position.

Sphere S
Inf,:ident Plate
light Aperture

Incident light ~ A/NA

/ \ Optical

Optical nearfield T near field

Scattered light 24 @
@) a (b) Scattered light

Figure 1.2.1 The schematic representation of generation of ptical near fields
(a) Generation of optical near fields on the surface of the sphere S. (b) Generation of
optical near fields by a small subwavelength aperture

Electric line of force
of scattered light

optical near field
744
Incident light ‘
A4

Particle A
(Radius: a<<wavelength)

- Electric line of force of
Electric dipole moment

, » Distance

Electric field

a

Figure 1.2.2Generation of optical near field and electric field lin@saken from
M. Ohtsu Principles of Nanophotonics 2008.)



Since the nuclei and electrons are oppositely charged, their displacement direction
are opposite. Therefore, electric dipoles are generated on the surface of the sphere
S. The product of the charge and the displacement vector of electric dipole is
called the electric dipole moment. These electric dipoles are oscillated with the
oscillatingelectric field of incident light and attract or repel each otAera result

the spatlly localizedelectric field with thickness is generated on the surface of

the sphereFigure 1.2.2 shows the electric field lines of the dipoles on the sphere
A. Represented electric field lines on thaface of the particlé corresponds to

the optical near field. As shown in this figure the electric dipole moments are
connected by these electric field lines. They represent the magnitude and
orientations of the Coulomb force$hese electric lines tend to take possible
shortest trajectory. They emanate from one electric dipole moment and terminate
at another. This is the reason why optical near fields is very thin. As shown in the
Figure 1.2.2 as we move away from the surfacéhefparticle the optical near

field potential decreases rapidly and at distaacé becomes negligible small.

This arises from the fact that the most of the electric field lines are located on a
close distances to the surfaceagbarticle. The two kinds of electric field lines is
shown in Figure 1.2.2. One is the electric lines of the optical near field which are
at close proximity to the surface of partiéle The other force lines which form a

closed lop correspond to the far field.

Figure 1.2.3 represents the nanometric and macroscopic subsyN&msetric
subsystemconsiss optical near fieldand two particles The macroscopic
subsystem consistsf the electromagnetic fields of scattereght incident light
andsubstrate materiaBince the optical near fields localized on the surface of the
particle it does not carry energy to the far field, therefore it can not be detected. In
order to detect the optical near fields the second parBcles placednear the
particle S. By placing the particleP close to the near field of the particte

some of the force lines of the near field of the splters directed to the surface

of P and induces electric dipole moments BnBy this way, the near field of the
particle S is disturbed by the particl® and disturbed near field is converted to
the propogating light and its transferred energy can be detected by the

photodetector.



Scattered light \
Sphere § Sphere P
Incident Incident ® @ @ ® @ @
light =~ S

JACTO"
@ Sl

G 20 O

Macroscopic subsystem M

Optical nearfield

substrate \

Figure 1.2.3Nanometric subsystem composed of two nanometric particles and optical

near fields genetad between them

Here the two particles are considered interacting with each other by exchanging
the excitonpolariton energies. Since the local electromagnetic interaction happens
in a very short amount of tim#ée exchange of virtual excitepolariton energies

is allowed due touncertainty principle. Optical near fields mediates this
interaction, that is represented by Yukatpae function.[1]-[6] In the following
chapters the theoretical background of the optiear fields and the numerical
analysis for the energy transfer rate for different quantum dots is discussed. The

organization of the rest of this thesis is given as following:

In Chapter 2 the theoretical background of optical near fields is presehied. T
near field conditions is shown and the dipdipole interaction model is
described. By using the projection operator method the effective near field
interaction potential is derived and the nature of the optical near field is described

as a virtual clad of photons.

In Chapter 3 the optical near field energy transfer is explained. The equation for
the transfered energy from one state to another is derived for strong and weak
confinement regime. Theumerical analysis of the optical nef@eld energy
transfer rate for spherical CdSe, CdTe, Qd88 and PbSe quantum dots was
made.Finally, in Chapter 4 summarizing the thesis the aaion of the theory is

briefly discussed.



Chapter 2

Theoretical Background of Optical
Near Fields

2.1 Optical near fidd as a dipoledipole interaction
model

Let us investigate the optical ndald interaction in a viewpoint of dipoldipole
interaction model. For simplicity let us assume two separate hanometric particles

with seperation distanc& and charge densities, and r,. In this case the

Coulomb interaction energy between these two nanometric object is given by

L1 D) A g
= d’rd 2.1
e M~ 00 &3

12

If we assume that the extent of the charge distributiopnsand s, is much
smaller than their seperatidR, we can expand the interaction pdiahV,, in a

multiple series as

v (Rt %% ARB opr @ Rp P3Cp RH)R ¢
o 4p eg R R R R
(2.2)

as q=fy(fdd’r and p=py(firdir , respectively. Here the first term of
expansion is the chargdharge interaction and it spans over along distances since

the distance dependence '. The next two terms correspond to the charge

dipole interactionand has a distance dependenceRof. Therefore, it has a

shorter range than the first term. The fourth term shows the -edijgmiée

interaction and decays withR*. It is the most important interaction among

neutral particles and strongly depends on the dipole orientations. This term gives

6
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the electric field vector can be given [i2],[33]

3 al o - 1 gf
E= 4,0§'e K2(1h 3D ?Err ol3(n P O Ee - % (2.3)

Since the magnitude of the first term is larger kor>>1, it represents the
component dominating in the far field region. In contrast, the third term
represents the electric field component that dominates in tee pl@ximity of

p because it is the largest wh&n<<1.

Now let us assume two point light sources. The separation distance between these
two sources i and it is assumed to be teze of material object as shown in
Figure 2.1.1. The vector represents the seperation distance between the object
and the detection point &Since we can treat the two particles as a point light
source, the electric fieldE(F,t) at timet and the positiorr can be defined as a
superposition of the electric field vectors of the two point light sources

. L @im kb2 qiwikib/2

E(r,t)=E, —~ =N —~ (2.4)

I +b/2[ F /2]

where EO is the electric field vector of incident lightw=2 p is the angular

frequency andk =2p/ /is the wave number. The quantity f +b/2 |represents

the phase delayDt . Here depending on the valuestofand r , we can consider

three possible cases.

Case 1 1 <<kb<<kr

In this case, since 1<<kb, therm proportional tor* in (2.3)is larger than the
other terms and, hence, the value wf should be one. Thereforg2.4)

approximates to

L . og"m* § kb o kb 6 d** & kb . . kb
E(r,t)=E, ————3605— + Sin— c&s— i -sin— (2.5
(r.t) EO|F+b/2|g§ 2 2 0% Fb/2] ¢ 2 29



Source 1 Source 2

Figure 2.1.1Two point light sources with separation distafice

& kb 0 Kk r b
where we usedaxpaé’i@ ():cos@ i°sin@. Noticing that,n S N, - b
c 2 = 2 2 [T | |b]
and b<<r thus(2.5) becomes
-int ikr =
E(F,t)° 2E, & : coskb(;d“b) (2.6)

To estimate the valub let us assum that | E(F,t)| is maximum at the position
r, at which i, =| T, |/|r, |and (i, &},) 6. If at any other positiom the value of
| E(F,t)| is ma¥mum again, the relatiokb(n 3y)/2 p. From this relation we

can findb asb=2p/k(n &)

@_:'..l L] Jt ..........
: n To "
% Source 1 b Source 2}

e
-----

Figure 2.1.2 Two positionsr, and ; where| E(F,t) |reaches its maximum value



Case 2 kb <<1 << kr

In this case, sincekb<<kr again, the value ofm in (2.4) takes unity. To
estimateb from (2.6), the inequalitykb| n() | Zv should be satisfied. In other
words the phase difference between the light waves of the two light sources has to
be larger tharp at the detection point. Since we hayedy, | ¢, the requirement

above changes tkb2 2p . This condition represents the diffraction limit of light.
However, sincekb <<1 this requirement cannot Ibeet and, therefore, the value

of b cannot be obtained. In other words, since the phase difference between the
two light waves is sufficiently small, we cannot measure thewsauzlength

sized object at the detection pointin the far field.

Case 3 kb<kr<<1

In this case, sincekr < 4, the terms in(2.3)proportional tor * and r *are very
small and, thus, the i@ proportional to r* dominates. Therefore, we choose
m=3. Also, since the phase delaly|F+b/2| is sufficiently small, (2.4)

approximates to

11
+b/2f | b/ 2]

QKU=QGW%F (2.7)
G

If we assume that the electric field amplitude at pgjns | El land 1, is normal

to the vectorb , then the valué is derived from relatior{ii, &) € as

e 1% .0
=261l § 12 @ (2.8)

From this relation, we fincE, to be|E, | 2|E, (g +b/ 2§ ?ﬁ It means that

we can determine the value bfby the near field measurement. To conclude, the
relation kb< kr <X s called the near field condition and the range sdtisfying

this conditionkr < d.is called the near field.
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Figure 2.1.3 Electric dipole moment induced in the spheres S and P located very close to
each other.

Now let us assume that wave two spheres (sphere S and sphere P) and incident
light with electric field EO as shown in Figure 2.1.3. Here the sphere P can be
used as probe and the sphere S as a sample. The electric dipole moments induced
in the spheres S drP by the electric fieIcE0 of the incident light arep, and p,
respectively. The electric dipole momept of the sphere S generates an electric

field in the sphere P. This field induces the change, in the electric dipole

moment of the sphere P. In a similar way, the electric field generated by the

electric dipole momenp, induces the changBp in the electric dipole moment

of the sphere S. We can repeat this process infinitely. This process, which
mutually induces electric dipole moments in the spheres S and P, is called dipole

dipole interaction. In this case, the main controbution éoellectric field comes

from the terms proportional to'®, which is

g=309D) P (2.9)
a0 a )
Here since we havér < 4 we approximate the exponential parte ™ to 1.

When we take’ || p, the expression becomes

2p

E= 5
ap g

(2.10)

Similarly, when 1 is perpendicular t (r ~ p), the equation turnes into [32]

!

E=

2.11
4p g° (211
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Equations(2.10) and (2.11) represent the optical near field generated around the
spheres S and P. If we assume that the spheres S and P are dielectric, the electric

dipole momentp, induced by the incident electric fieﬁO is

P =asE (2.12)
Here a, is the polarizability of the diettric.

In the near field case, if the conditiokR< 4 and R|| pare satisfied, the electric

field generated in the sphere P by the electric dipole momeocan be writteras

_ 2p
E;, = S 2.13
S 4,0 §R3 ( )

Therefore, we can write the change in the electric dipole moment of the sphere P

as
L - 23,4 -
Dpp :aPEs Z/%ﬂ?s Eo (2.14)
Since we can represent the change in the dipole momebpas &.E,, the
change in the polarizability of the sphere P can be given as

Da, =22 & (2.15)
2p R

wherea, anda, area, =g,g° and g, =4p @q;—z‘ﬁ for (i=S,P),ag and a, are
Eve g

the respective radii, ard and e, are the electric constants of the spheres S and
P, respectively. If we replace the role of the spheres S and P, the discussion above

will be still valid. The electric dipole momeni, = a,E, will generate the electric

field E, =2,/ 40 @R in the sphere S and induce the chaige = &.E, in the

electric dipole moment. ThereforBag and Da, takes the same value as
ap &
Da, = @ === (2.16)
S zp @:23
Since in the near field conditiorkR< 4) we assume that the two spheres are
very close to each other, they can be recognized as a single object forfiblel far

detection. Therefore, the intensity of the scattered light generated from the

total electric dipole momenp, + B, #H; Pgis

11



Is"[(Pe + @) (Bs BIP (2.17)

Taking into account thap, =a.E, and Dp, = &.E,, we have
ls" @s+a)l|IE,F 4 B a 5T (2.18)

Here the first term(as+ &)°|E, Fcorresponds to the intensity of the light
scattered directly by the spheres S and P, whereas the second term
4Da(q + @lﬁo f represents the intensity s€attered light as a result of dipole

dipole interaction. From the equation above, we ol&in

o 0053 &
pe R

Relation 2.19 shows that the optical near field intensity strongly depertde on

(2.19)

size of the spheres.

2.2 Projection operatormethod, relevant nanometric
irrelevant macroscopic subsystems, P and Q spaces

We can use the projection operator method to derive effective interaction in the
nanometric material system illumireat by an incident light. This type of
interaction is called optical neéield interaction. It is estimated that optical near
field interaction potential between the nanometric objects with a separation
distanceR is given as a sumf Yukawa potentials

_exptaR)

- (2.20)

Here a' representsthe rangeof the interaction and corresponds tothe
characteristic size of nanatmic material systemlt depends on the size of the

nanomaterial and does not depend on the wavelengttheofincidentlight.

a’* represents the localization of photons around the nanomaterig¥][1],

12



On the basis of projectiorperator method, we can investigate the formulation of
the optical neafield system. In order to describe optical néeld interaction in a
nanometric system, we think of the relevant nanometric subsystem N and
irrelevant macroscopic subsystem M. The roacopic subsystem M is mainly
composed of the incident light and the substrate. The subsystem N is composed
of the sample, the probe tip, and the optical 1iietéd. To describe the quantum
mechanical state of matter in the subsystems N and M, the estatgg of the

sample and probe in the subsystem N are expresgesd asd | pd. The relevant

excited states for the sample and probe tip| ar@and | p 8. It is mostreasonable

to express the suppstem M as an excitepolariton. The macroscopic subsystem

M is composed of thenixed state o&lectromagnetic fieldndmaterial excitation.

Since the sample or the probe tip is excited by the electromagnetic interaction,
the state of the subsystem N can be expressed as the mixed states of the excited
and ground states. Therefore, we define Ehespace, which is spanned by the

eigenstateg7,8 and |£,8, Pyl {I7. 9 £}. [3L[7] Since it is expressed as a

mixture of the excited and ground states, we can d¢fydeand|7,0 as

713k IP 18A |01 [9,A (2.21)
where |sd and |s & are the ground and excited eigenstates of the sample and
| pdand | p 8 are the ground and excited eigetes of the probe tip. Here
| O\, Orepresents the vacuum state for excipotaritons to describe the

macroscopic subsystem M. The complementary space &pace is calledQ

space.
Total space

(Q Space)

[s*) Ip*) )
|S} — |P) - |0(M)) -
(P Space)

Figure 2.2.1The schematic representation Bpace spanned by the eigenstates
| 7,0and| 7,0 and its complementary spaGg.
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In Figure 2.2.1 we have the schernagpresentation oP and its complementary

spaceQ. The complementar®) space is spanned by a huge number of basis that

is not included in Pspace. This mbabd of description is called projection

operator method.

The projection operator method is used to describe the quantum mechanical
approach of the optical nefield interaction system that is nanometric materials
surrounded by the incident light. The sea why |7 dand |f,8 contain the
vacuum state 0dis to introduce the effect of the subsystem (M) by elimimating its

degree of freedom. This treatment is useful to derive consistent eppréssthe
magnitude of effective nedield interaction potential between the elements of the
subsystem (N). As a result of this approach, the subsystem (N) can be treated as

an independent system that is regartiedbe isolated fran the subsystem (M).

[11.[3].

2.3 Optical nearfield interaction potential in the
nanometric subsystem

By using projection operator method, we can evaluate effective interactfon in
space, which is derived in Appendix B, as
\E, =(PIBRE( Py VIR RuEgp: (2.22)

This result gives us an effective interaction potential of the nanometric subsystem
N, which can be found in Appendix A. The Hamiltonian for the interaction
between a sample or a probe aretebmagnetic fields as a dipole approximation

can be expressed as
\E= {/% () 7FD E(Q)} (2.23)
The electric dipole operator is denotedgy( as, p), where the subspt sand

prepresent the physical quantities related to the sample and the probe tip,

14



respectively.r,and r are the vectors representing the position of trepe and

and the tip, respectivelylij:“ (r) is the transverse component of the quantum

mechanical electric displacement operatcﬁf“.(?) can be expressed in terms of

the photons creatiorE/ (k) and annihilationE(IZ) operators as follows

2
a a2,0V lﬁ/
—lg -

e
A

S 0fEme -t ) (2.24)

where K is the wavevector,w. is the angular frequency of pton, Vis the

guantization volume in which electromagnetic fields exist éﬂ&) is the unit

vector related to the polarization direction of the photon. [34] Since exciton
polariton states as bases are emplogedhe bases to describe the macroscopic
subsystem M, the creation and annihilation operators for photon can be replaced
with the creation and annihilation operators of excpoiariton. Therefore, after

replacing photons creation and annihilation omegatvith excitorpolaritons and
substituting % = 7;(7&@) B*E?a)) into(2.24), we can change the notation from

photon base to excitgoolariton base as

Fe a a2,0h O(B(E) B (B)){K (kK Kk W) (2.25)

Here @(F&,)and If*(?a)denote the annihiton and creation operators fahe

electronic excitation in the sample or prolfa =s, p) and Ka(IZ) is the

coefficient of the couplingstrength beveen the excitomolariton and the

nanometric subsystem N aitds given by

K,()=a (m, &(K) f(K & (2.26)

we define f (k) as

_ck WA(K) - BV
f(k)_\/vW\/zvv?(k) - W (ek)? (2.27)

Wk) and Ware the eigenfrequencies of both excipmiariton and electronic

excitation of the macroscopic subsystem[M],[31]
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The amplitude of effective pbetip interaction exerted in the nanometric

subsystem can be defined as
V(2D B NE | £ (2.28)

In order to derive the explicit form of effective interactigp (2,1), the initial and

final states [£,0 s |p |§,A and|f,0 fs |P |§,A ) are employed in

P space before and after interaction. The appoximatio@vmf the first order is

(see Appendix B for derivations) given by

V, (21)= & |PVQVEE B)'P|f aﬂrpaé %'WQE/FrFf

(2.29)
=4 &|PVQIm @DV %—L
=4 & m { = EQM

where ES and Eg are eigenvalues of the unperturbed Hamiltonl'rEpin Pand
Q spaces. The equation shows that the matrix elerrahQ)( E -Eg)'1€Hf1
represents a virtual transition from the initial stg§#€d in Pspace to the
intermediate ste |[md in Q space andéf2|P\ﬁQ| m represents thevirtual
transition from the intermediate statend in Q space to the final statgf,d in

P space. So, we can transforf®.10) to the following equation (please refer to

Appendix B)

V. (2,1)= o eK JKK(K) KKK

ooy WK - WS W 40l (2:30)

where the summation ev k is replaced by E-integration, which is

a- (2,0)3nj3k and E;=7 \W(s) and E, =7 \W(p) are the excitation energies
K

of the sample (betweels dand |sd) and the probe tip (betwedp & and | pd),
respectively. Similarly, the probsample interactiorV,, (1,2)can be written as

follows

1€



(SRR K (R KR

Va2)= s i SV - WD) @) 0

(20)

(2.31)

The total amplitude of the effective samypl@be tip interaction can be defined as
the sum oV, (1, 2) andV,, (2,1)

2 - N, . - b
V()= —= & Affk&m(7) @k g78m &(® nrgh
LT (2.32)
33 eIr e'r g?:k 1a 8 (r) V'F (—r'.) B
F()rEa) HB-Hg 0 3 Feall Mo
_ (hk) : . : : .
where E(k) = E, +—— is the eigenenergy of excitgolariton andm,,, is
pol
effective mass of polariton. The integration gives us the following result
7 1€, re D, D. 1 09
Veffa f(r Eg(nl OOW e ( r.) _r?EL F+l;ﬂ;]
© i yu (2.33)
. é(D,. 3D. 31
(ﬁzﬂ(lpr)\ﬁeg . 3% 33§
, r r ey
whereD,. 1;%\/2Epo|(Em E.) andW,. is defined as
c
E 2 _ 2
. =2 En- B (2.34)

" E, (E,° E)E, -E,F E) £/2

After summing up and taking the angular average(AgfG5( m ik ()3,

we have

= - DL -aP
Vi (F) = (”wmaf RS W pEs @3
a=s,pi !

3 r

Equation(2.35)shows effective nedreld interaction potential in the nanometric
subsystem. The effective nefegld interaction is epressed as a sum of Yukawa

functions  ( D.r) e ?'/r with a heavier effective mas<,, (shorter

interaction range) and a lighter effective m&xs (longer interaction range). This
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part of the intesiction comes from the mediation of massive virtual photons or

pol aritons and this formulation indicat
result of lightmatter interaction, photons are not massless but
massive[1],[2],[3],[7}[10]

2.4 Optical neafields as a virtual cloud of phans
and locally excited states

To investigate the behavior of optical near field in a viewpoint of virtual photons

let us first calculate probe sample interaction poteMial p, 9

_ aK, (KK(K) KK KK
Ver (P9 = %N(k) W W W (2.36)

If we consider two infinitely deep potential wells with the wid#ysand a,, the

eigenenergies of sample and probe are given as

32 ap
xa

AW, (S) =
b(S) 2me Za,

(2.37a)

AN ﬁ)N

2 o 2»
3 Se;lp § (2.37b)

W, (p) “om
PG

Where m and m,,are the effective masses of electron in the sample and probe.
— — 2 T s
Since the coefficienK, (k) is expressed a&_ (k) = & (71, ©(Kk)) f(K &=, the
/=1

effectivesample probe interaction is then

a, b
(Mm@ (K)(p €R) £ EBY O
Ver (P, 9= 12ﬁd3k;1%1 o ~ o 2, 8
& 0 =
a, - 0
? (Mm@, (k)(“m &L R) F & g
@ )2 : &k’ 6 3n ap © 5
5

ge QEmp-FW@Zm%%gP 9
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Defining heavy and light effective massesiasand D. where we have

o o 12 - 12
D, 2™ MW E p P MW R (53
QmeSaZP h - (;mesazs h -

Therefore(2.38) changes to

ik (F,- ) é'k‘(r*S Fo)
.

h 2 h I 2 2
(K- B) z%(k +3p

p.s —

Ve ® = 7 )znoI ka(nz Ry (G f

(2.40)

where we approximate some of the terms as a constant and (iekas f .

In Figure 2.4.1 the positions given oy and r, represent the arbitrary positions

in the sample and probe, respectively, and the position vector is defined as

r=[r, 15| The integration of complex integral with respectktiagives us the

following result forV,, (p, 9 (refer to Appendix D for derivations)

,gexp(- Dr) exp( D)

Veff(pis)_ ‘—a(”L @) ij r r
(2.41)

|]—1

. expt D) exp( )

r r
and Veff ( D, S) - eXp(- P M/aP ) +equp g)/as) (242)
r r
Y
sphere P
sphere S o
[ as - 7 ap \
e/ ”
- = N
s 4" -

A X

Figure 2.4.1. Schemati representation of nedield optical systemrg andr, show

the arbitrary positions in sample and probe

1¢



\3m, \3m

where m=—2, m=—23 (2.43)
me My

The first term in Equatior{2.42)represents Yukawa function behavior. Its decay
lengh is a,/p giand proportional to the probe size,. The first term
expt p gu/a, )/r shows that there is optical electromagnetic field around the

probe and the extent of spatial distribution of this figl@quivalent to the probe
size. This field localizes around the probe like an electron dimalizedaround

an atomic nucleus. However, since the real photon does not have a localized
nature, it is considered that optical near fields contain massiuaiMphotons. As

a result of lightmatter interaction, the two particles are considered to be

interacting by exchanging real and virtual excifmiariton energies.

Figure 2.4.2 represents the real and virtual transitions. In this energy transfer
processthe virtual transition is mediated by the virtual excipmariton and does

not follow the conventional energy conservation law. This can be explained by the
fact that this virtual transition occurs in a sufficiently short period of tPheind

satisfies the uncertainty principlBE D #/2. In other words, since the required

time for this local neafield interaction is sufficientlysmall due to the
uncertainty principle the exchange of virtual excifmiariton energy between
these twananometrigoarticlesis allowed [1],[2],[4]

Exchange ofa real Exchange ofa virtual
exciton-polariton exciton-polariton
Excitedstate o e —
_ _
Ground state -
Sphere S SphereP Sphere S SphereP
Spherical wave function Yukawa function
exp(—ir/a) exp(—r/a)
T T

Figure 2.4.2 Exchange of real and virtual excitpolariton.
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When the quantum dot is excited by propogating light, the conventional classical
electrodynamics explairteat an electric dipole at the center of QD is induced and
the electric field generated from this electric dipole is detected in theeldr
region. However, in a quantum theoretical view, the electron in the quantum dot is
excited from the ground state an excited state due to the interaction between the
electric dipole and electric field of the propogating light, which is called electric
dipole transition. It is assumed that two anti paralel electric dipoles are induced in
a quantum dot and the elactfield generated by one electric dipole is cancelled
by the other in the far field region and thus the transition from the excited state
cannot take place. Then the transition and excited state are said to be dipole
forbidden[2].

Figure 2.4.3 illustras the system composed of two coupled quantum dots with
two arbitrary resonantly coupled energy levdlsese two resonant energy levels

are coupled @a result of the near field interactiand as a result of this coupling

the quantized energy levels ekciton are split in twgarts One halfof them
corresponds to the symmetric state of the exciton, and the other half corresponds
to the antisymmetric statd the exciton in the quantum ddthese two symmetric

and antisymmetric stateorrespond to thearalel and anpiaralel electric dipole

moments that is induced these relevant quantum d$13,[2],[11].

The ground and excited states of exciton in quantum dot S are expregsgdl as
and|s,d. Similarly, the ground and excited states in quantum dot P are expressed
as| p.,dand| p,d. The energy eigenvalues of the excited stiggS and | p,0 are
expressed ag&, while the energy eigenvalues of the ground stpged and | p,d

is E, . Since they have the equal energy eigenvalues, the ptadeend | p,d also

|s,0 and| p,d are said to be in resonance with each other.

The Hamiltonian of this two level system is expressed as following
HF=HEH_ (2.44)

where, I-II:—0 and He represent the unperturbed and interaction Hamiltonia

int
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15)
|4)

1 3

Energy levels of two
coupled quantum dots

QD S QDP

Figure 2.4.3The system composed of QD S and P with two resonant coupled energy

levels. | S and | Ad are correspond to symmetric and antisymmetric states.

When two isolated quantum dots placed close enough in order to induce the

effective neaffield interactionV,,(r), the energy eigenstate and eigenvalue for

symmetric stat¢ SO are expressed as

1
|S3 75("% 1§ 184s) (2.45a)
Es=E, . V(1 (2.45b)

while for antisymmetric statpAd are
15 =—(Ip, 1§ 18-Is) (2.46a)
\/E e
E,=E, £ V(0 (2.46b)

Equation (2.45a) means thasince excitonexists in both quantum dot S and

quantum dotP with equalt probabilitiesan exciton inthis system cannot be

distinguished.

Now, let us evalate the scalar product of the transition dipcﬁgéﬂg in terms of
the stated S0 and | A3. For simplicity we take transition dipole moments parallel
with magnitudes asn=| 1 >0 (i =s, p) . We can express the dipole moment by

creation and annihilation operators as

=t ©F (=sp) (2.47)
where

§1i,3 k. and i3 o (2.48)
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therefore we have
sim ais &2 sl al &l o} b BOREGFoI 51 pI P
=2 a1 ppiBofin 1 @ npoGRR 1Y M, B = >

&S| Gls dymmo (2.49)

It indicates that the transition dipole momemntg and /7 are paralel in

symmetric stat¢Sd. Similarly for antisysmmetric stajeAd we have
aA|lm @A 8 -0 (2.50)

and shows that they are antiparalel in antisymmetric state. It follows from

equations(2.49) and (2.50) that excitation of quantum dots with far field light

leads to the symmetric state with paralel dipoles produced in QDs S and P. In
contrast the nedreld excitation of QDs can produce either one or both of the
symmetric and antisymmetric statelhereforethe symmetric state is called the
bright state and antisymmetric state is called the dark state. This is one of the
major differences between the ndiaid and farfield excitations.In particular
locally excited states can be created is tino level system. These locally excited
states can be expressed by a linear combinati@yrofmetric and antisymmetric
states afl],[2],[5],[6].[7]

I p.3ls, 671—308 | &) (2.51a)
1
| p,dls 6:/‘?05 | 8)- (2.51b)

The righthand terms o{2.51a) and (2.51b) describeghe coupledstates via an

optical neaifield. Here,the optical neafield excitesboth of thecoupled states
However,in the far field excitation the only symmetric staédeexcited The state

vector|y (t)0 at timet is

1é& 3 iEdt
ly )0 == gexpp ——
& e

.|.%31

éxég Bl -gA (2.52)
¢ h =



where the state vectofg (t)dare also normalized and &t 0 [y (00 Ho, |9

and
2 iEt & AV (Nt g TR
v 08 ex%'_h_ gco%% P 89 §|n_gﬁ;) b 4
(2.53)
E:ES;_EA 5 K (2.54)

Then the occupation probability that the electrons irF&ccupy the excited and

the electrons in QES occupy the ground state is expressed as

. . aV, (Nt
Ios = 851 PRI YO T &O%E—”h (2.55)
¢
Similarly, the occupation probability that the electrons in-RRccupy the ground
and the electrons in @B occupy the excited state is expressed as
V. (Nt

Fos = 81 pally© 5Siﬁ§eh— (2.54)
G

The equationg2.55) and (2.54) shows that the probability varies periodically
with period of T = pi/V. (1) . It means that the excitation energy of the system is

periodically transfered between theupledresonant energy levels of @® and

QD-P. This process is called nutation.
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Chapter 3

Optical Near Field Interaction between
Spherical Quantum Dots

3.1 Intr oduction

There are three regimes of confinement introduced depending on the ratio of the
cristallite radiusR to the Bohr radius of electrons, holes, and eledxae pairs,
respectively. Very small quantum dots belong to stromgfinement regime. In

this confinement regime the Botadius of the exciton is several times larger than
the size of quantum dot. In these quantum dots we can neglect the Coulomb
interaction between the electron and the hole. Therdfwe@dividual notions of

the electron and the hole are quantized seperately. The Bohr radius of PbSe

nanocrystal is 46 nm and it is a good example for strong confinement.

If effective mass of the holes is much bigger than that of the electrons one can
speaks of intenediate confinement regime. In this confinement regime the radius
of the quantum dot has to be smaller than the Bohr radius of electron and larger
than the Bohr radius of the hole because the mass of the electron is smaller than
that of the holg14]

In weak confinement regime the radius of quantum dot is at least a few times
larger than the Bohr radius of an exciton. In this case the Coulomb interaction
potential between the electron and the hole is so strong that we can assume the
electronhole pair asa single particle called an exciton. Since the Bohr radius of
CuCl nanocrystal is 0.7 nm, this can be a typical example of weak confinement

regime.



3.2Energy states of semiconductor quantum dots

Quantum dots are nanostructures in which electrons aled hoe confined to a
small region in all the three dimensions. An elecinofe pair created in these
nanostructures by irradiating light has discrete eigenenergies. This assumption
arises from the fact that the wave functions of eleetr@le pairs areonfined in

these nanomaterials. This is called quantum confinement effect.

Since the property of nanostructures is determined by a lot of elduaiterpairs,

it is useful to employ the envelope function and effective mass approximation.
Therefore, the we-particle wavefunction in a semiconductor nanostructure can be
given by the product of the envelope function satisfying the boundary conditions
of the quantum dot and oarticle wavefunction in bulk form of the same

semiconductor material. Thus, thgenstate vector for single electron is given by

lv.d F°r x()BA)| F (3.0

where x (') is the envelope function of the electrgk () is thefield operator

for electron creation, andF ;¢ is the crystal ground state. Here the field

operators for the electron creatigﬁ*(r”) and annihilation)E(F) satisfy the

following Fermi anticommitation relation
SR, VE) g WD i JOE- &) BY) & o) (3.2)

where d(r - i) is the Dirac delta function. Since neither an electron in the

conduction band nor a hole in the valence band exists, we caderoth& ground
state of a crystal as a vacuum s{di®]. Therefore applying electron annihilation

operator to the crystal ground state gives us zero

JEMIF, 6 6 (3.3)

We can find the equation for envelope functigygfr) by using the Sch
equation 5
o £y, (3.4)

Here, E, is the enggy eigenvalue. From quantum mechanics we know that the

Hamiltonian of noninteracting electrotole system is

26



o

= & fr ﬁ;(r)Z‘e

a=eh

ZDZ

£ ) @35)

Since we are looking for a smgle electron in the QD Hhamiltonian will change

to

e n

E=fr B¢ o * 8F) Eaf D) 3.6)
a

where m, is the effective mass of electron aiq is the energy band gap dfet

bulk semiconductomaterial. Substituting the Hamiltonian for a single electron

I nt o tdinger gguaton, e obtain

B8 FNEOS o B dff £) B ,F o+
e u

2

+E, B () VE) off &) K81 F, 0 ¢t i o+ © g
e <m U
(o ) RO )Y B FES R GB)°

, (3.7)
SPr(dr T) RO ) &1 F az%e-dﬁ df fa)
s B (M) B) E &Y dff @ 7). B § F 0 -
“fifrg o B0 RO F B4 &) B, F O
e u
Here we used the Fer mi a nt idingerrequatibra t i on

simplified to the foIIowing expression
Blrd filrg oo TA0 BHOL L FEO &) W, ©9)

where we have

Elv.d £ rx() B F (3.9)

From Equationg3.7) and (3.8) it follows that the envelope function satisfy the

following eigenvalue equation for a single electron
- E%x (1) . B X7 (3.10)
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Similarly, we can olatin envelope function for one hole state as follows

h? = .
om Bx (f) E, X1 (3.11)

where E, = Ois used for hole.

Since we study spherical quantum dots, we assuntetithaenvelope function

satisfies the following spherical boundary condition.

x,(r)= Xr) O for |[F R (3.12)
The Laplace operator in spherical coordinates is then
| 2
p? =1L2r %
r r
éul L (3.13)
2= g PsingH += K

cSingu g ' ugsit  gh
We can separate the envelope functiefr) into radial and angular parts as
follows
xM)=1(F) n(g)
Here L is the orbital angular momentum operator and satisfies the following

eigenvalue equation

L w@ ¥ 30 B (.9 (3.14)

where |mi¢l (m=0, 9, 2,.) and functions (g, § are the spherical
harmonics withl =0,1,2,. To find the envelope function we have to solve the
eigenvalue equatio(B.10). Writing the Laplacian in the spherical coordinates the
eigenvalue equitn changes to

G T 80 @ (B O W0 315)
and

1 f(r) - 2

0@ T (1 0) 220 (0 7 ZRE, EMO W) (319)

taking the derivatives we have
2df(r) , d*fi(r) f(r)
rodr dr? r?

Il B a%()
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and finally we have
d’f 2df
+ -1
dr® rdr

@ {1+, O (3.17)

with a®1 Zhn} (E. -E,) for electron, ora®t Zh—n}Eh for hole. [35]

The solution for(3.17) has the form of spherical Bessel function of ordleas

JI (anlr/R)

f =
" ( ) J|+1(anl)

(3.18)

where j, is the spherical Bessel function of ordeard a,, can be determined
from the boundary conditions ag,(a,,) =0 for (n=0,1,2,...,and a,,=n¢,
a,,; =4.4934. The energy eigenvalues are discrete and givefi®ly [25], [26],
[27].

n? da, T W aa, i
= E +— ¢ and — 3.19
Ee,nlm 2rne g% R ( Eh nim — rnq @Q R S ( )

These are the energy levels of one particle states in a semiconductor quantum

dots.

Next, let us concentrate on the electhmte pair states in a quantum dot. The hole

is a quasiparticle relevant to an electron in the valence band from which an
electron is removed. The hole is characterized by the positive ctargdfective

massm, spiny2and kinetic energy with a sign
kinetic energy. When an electron acquires enough energy to move frenceal

band to conduction band,fiiee hole is created in the valence band and electron

hole pairs are generatdd3]

Here, we consider crystal ground state as a vacuum §tatbis stateneither
electron nor hole exists in the conduction and valence band, respectively.
However, in the first excited state there exists one electron otiduction band
and also there is one hole in the valence band. Therefore one eleaequair is

generated. The minimum energy which is sufficient for the creation of one
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electronhole pair is called band gap energy and define# by/Vhen electrons

are excited across the gap, the bottom of the conduction band and the top of

valence band are populated by the electrons and holes, respectively.

| E®

Conduction band

T e
5 Ekin

g hw

L E Pi:lin

Valence band

Figure 3.2.1Band sructure and energy band dap of bulk semiconductor. The diagram

shows the creation of one electrioole pair as a result of photon absorption.

Because of the photon absorptithrere occurs a transition from the ground state
to the first excited state. The conservation oérgg and momentum can be

written as following

nk, =hk, #k, '

where E and E} are the kinetic energy of the electron and h&nilarly,

7k and hlzh are the momentum of electron and hole, respectively. This is the

process of electrehole pair creation. The reverse process which is equivalent to

the annihilation of the electremole pair and creation of photon is also possible.

Sometimes to make calculations easier we ignore the interaction between
electrons and holes. However, in reality, since electrons and holes are charged
particles they interact with each other via the Coulomtéraction potential and

form an extra quasiparticle called an exciton. Interacting electrons and holes can

be described by the following Hamiltonian [13],[16]
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e @h—z 2y £ u(r) (3.21)
2m, 2m’ " e|t- T, | '

where m, and my, are the effective mass of the electron and the hole, respectively,

and e is the dielectric constant of the crystal.

Now, to compute the energies and wavefunctions dftrelehole systems in
spherical quantum dots, let us consider the following eigenstate vectors for an

electronhole pair

Ved HIFA T IEI)BE) ) E (3.22)

where|F ; ¢is the crystal ground statﬁ(r”e) andy ; (r,) are the field operators

for the electron creation in the conduction and hole creation in the valence band.

y(r,,r,) is the envelope function for an electrbale pair and satisfiethe

following equation

h? h?
B — ’DVs# Vit
2m, 2m,

Conf

ATeT) (B E L) (323

et

where V. is the Coulomb interaction potential and , is the confinement
potenti al. Kf the confinemReWLT)+0Ifgri on i s
T E R [25].

Kt mi g ht be usef ul-hole pair staes leyxcamparingethee | e c
confinement radiusR with the Bohr radius of exciton. Depending on the radius

of the quantum dots and the exciton Bohr radius, we can introduce three types of
confinement regimes. First is the strong confinement where the radiusnfisua

dot is smaller than the Bohr radius of excitdR<<ag,. As an example
intermediate confinememte consider the casehere the radius of quantum dot is

smaller than Bohr radius of electron and bigger than the Bohr radius of the hole

a, < R< g. The third is weak confinement regime in which the quantum dot size

is a few times larger than the exciton Bohr radiis> g, .
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3.3 Quantum confinement regimes

3.3.1 Strong confinement

In strong confinementegime, the size of the quantum dot is smaller than the Bohr

radius of excitonR—<<g,. In this case the Coulomb interaction between an

electron and hole pair is weak and each electron and hole can independently move
in the correspondinglectron or hole confinement potential [1]. For this quantum
dots it might be a good approximation if we take Coulomb interaction potential to
be zero. This is the basic assumption behind the strong confinement
approximation. Since individual motions dfet electron and the hole quantized
seperately and the size quantization effect of the electron and the hole is much
larger than the exciton effect, we can neglect the quantization effect of exciton

The envelope function in thesase is then

Y () T amlo Vaimln (3.24)

where y ..(r,) and y . .(r,) are the envelope functions of an electron in the

conduction band and the envelope function of the hol¢hé valence band,

respectively. The explicit form of these functions for spherical quantum dots is

[27]
— 2 jl (anl ®/R)
YVim = Q’E j|+l (am ) Im( )} (325)

The optical transitions is allowed between the conduction amthemlband states

only with the same quantum numbgiim- nilm) and the energy levels are

givenas
n aa, %
=E, +—gp ¢ 3.26
Enlm g Zm (;;EE E ( )
wherem, is the reduced mass and defined{}s:i o1
m m m

By using variational approach the energy of the ground@tef an electron

hole pair can be expressed in the following form
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ap o
=E +— 6 L 786— 3.27
B =B R 01780 (3.27)
where the ternme?/eR describesffective Coulomb interaction between electron

hole pairs ance is the dielectric permittivity of the medium. PbSe, PbS, HgSe,

GaAs, and I8b nanocrystals can be good example for strong confinement regime.

3.3.2 Intermediate confinement

The second confinement regime is known as intermediate confineirant.
example, in the case when the effective mass of the holes is much bigger than
tha of the electrons(m,/m, <<1) we can speak of intermediate confinement
regime. In this particular situation the radius of quantiohis smaller than the
Bohr radius of the electron but stibigger than the Bohr radius of the hole

a, < R=< g where

an

2
e a =&l (3.28)

ae:

Then one may assume that a hole can move in an average potential generated by a
free-electron cofined within a QD, and approximate the envelope function of the

exciton in the quantum dot as
Y () ) G €) (3.29)

Using the orthonormalization of,.(f,) we can write the equation for the

nim

envelope function of the holes as

hZ 2 A »
R Ot ) €30

APV, Lﬁ"m G agz E;

Here V_, =0 and spherical confinement is assumed. For spherical confinement
noa:

the discrete energy levels aEe—E”' and the envelope function of the electron is
m,
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()= Y..(). When the electron is in the stat@,| =0,m =0) the hole

experiences the following spherically symmetric potential

€ JY ., € 1 )
Voo = 0t L dii =——»b, —m @r (3.31)
*" g Mr-il & " 2
Y <ia2 2,2 2
where bn:Zﬁsm—de and an:gpn °
0o X 3mR &R

Here R, is the radius of a quantum dofhe explicit form of eigenfunction

cr(r) solvedwith the potential(3.31) is [15]

o0 emw, g 1 m VK 2
00 ([ 5 3.32
00( ) 8 ,Dh H ,—annl 92;_2 (0] =T ( )

where H,, is the njth order Hermite polynomiaand the energy states is defined as

ni00 —
EnOO =E

g

1
“+ 3.33
> (3-33)

ea

3.3.3 Weakconfinement

In larger quantum dots when thdet radiusR is small but still a few times larger

than the exciton Bohr radiu®>>> g, quantization of the exciton centef-mass

motion occurg8]. The confinement effects in this size regime are relativebllsm
Because the Coulomb interaction between an electron and a hole becomes strong,
it is good approximation to treat an electtoole pair as a single particle, which is

called an excitonDefining the mass of exciton asl =m, +m),, the cater of

mass coordinates as.,, =(m[, m,f,)/M, and the relative coordinates as

b=r, 1, the approximate electrdmle-pair wavefunction is [1]
Y nIm(Fe’ r_..h) :f( ﬁb »Vm r_.CM) (334)
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[0

a. {
!describes the relative motion in the lowest

S

where the functiorf( = E.

=

(Is)bound state of the bulk material apd, . (r.,)is the wavefunction for the
confined motion of the mass centerr,,, =(m,r, +,f,)/M . For spherical

boundary conditions the wavefunctign,, is

— f 2 jl (anl ®/R)
Im ~ _3 . Im 335
yn R JI+1 (anl) ( )’ ( )

The wavefunctioi3.6) is an exact solution fothe one electromole pair

stationary Schr°dinger equation (Wanni
eigenenergies for spherical quantum dots are

2,2
hea

Enlm = Eg _ER 2MR2 (336)

where E; is the binding energy of the exciton in the bulk semiconductor

nanocrystal Thisis sometimes called Rydberg energy. Since for the lowest state

quantum numbers satisfyn =1,1 =0)condition and &,, = £), the exciton energy

for this lowest(ls) state is expressed as

Els:Eg -ERy m% ¢ (337)

A weak confinement is realizable in wil@and semiconductor®of [-VII
compounds having a small exciton Bohr radius and large exciton Rydberg energy.
Copper chloride (CuCl) nanoctystals is the typical example for weak confinement

regime. Its exciton Rydberg energy B, =200meVand the Bohr radius is

a; =0.7nm.



3.4 Optical near field interaction energy between
spherical quantum dots for strong and weak
confinement regimes

There has been introduced various theories to investigate the excitation energy
transfer between nanometric objé s rster FeSonance energy transfer (FRET) is
one of the typical modeling of excitation energy transfer from smailantum

dot to larger quantum doBut since it is the point dipole modelings of excitation
energy transfer between nanometric matsythk transitions to forbidden energy
levels which is the case in the experimental conditions when the two quantum
dots are placed very close to each qtloeesnt allowed[17] The novel theory
based on dressed photon model can explain the allowandeisofotbidden

transitions.

3.4.1 Strong confinement

To calculate the optical nefield energy transfer driven by the exciton dynamics
between two quantum dots we can begin with the interaction Hamiltohinen.

interaction Hamiltonian between photonslaranomaterial is given 4§9]
HE, = (7)) A7) Dy (3.38)
where y *(r)and y (r) are the field operators for the electron creation in the

conduction bandand annihilation in the valence band{r) and 5(?) are the

dipole moment andhe electric displacement operators. The explicit form of

displacement operator in excitgolariton base (in terms of excitqolariton

creation and annihilation operatm% andzER) is[19]

ﬁziﬁa ?aé,(R)f(k)(z%éEf i gf:e*k‘f‘) (3.39)

In the case of strong confinement regime the Coulomb interaction is weakand
electron and the hole can move independently. Therefore, the wave function of
electronhole pair can be written as
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Y(Fe'rh) :Fm(re): /V‘(rﬂh) (340)
where F_(r,) is theenvelope function of conductidsand electron andf,(r;) is

the envelope function of valenband hole.,7=(m n 1) and 7i1=(m, n, 1) are

the set of quantum numbers corresponding to electron and hole, tnesdgec

Therefore, the exciton staf& , cis [15]
|Fn 0 a: FN(Fe)F i/g?h)£cﬁeiau§| gF (341)
R,Ri

Here, n=( miy and &, , &, arethe electron creation operator & in the
conduction band and hole annihilation operatorRatin the valence band, and
|F, ¢ is the crystal ground state. Thus, to estimate the eféedtiteraction

between two quantum dots, we must first calculate transition matrix elements

from the exciton statgF , ¢ to the ground stat¢F | ¢. The expansion of exciten
polariton field in terms of plane wavettsen given by

a I, |, 6i@é 4 Ay e OF QF G)E e Be)

R k /=1
(3.42)

Since we are looking at the near field here, we do ume long wave

approximatione’ o 1 which is usually used for the far fie]tl9]. Optical near

field interaction energy between two quantum dots in the lowest order is given by

.. = = _a 1
Vo =hU A y§|PWRQIn?  n|aQVR Y’ %ﬂ—]éﬁ = (3.43)
! m [} F;' Egn Eopf _Egn
where E; and Ej, are the eigenenergies of the unperturbed HamiltoniaR in

space for initial and final states arif. is the eigenenergy irQ space for
intermediate statgl]. We set the explicit form of initial and final states

space aslyd FF, | § P and |y;0 F JF| & F|0 whereas the

intermediate states iQ space that involve excitgpolariton wave vectok can

be defined as the combination of the ground and excited states as
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Im%8 EF| § K and [m®3 E F, | &,F |k, respectively. Using the
explicit form of transiton matrix elements(3.42), we obtain the effective

interaction energy between two quantum dots as follows (for derivation, see

Apppendix C)
U = RFOOF REF S00F 2 €9 +4 Q[ Fd? o (344)
here(a=AB), Iz =r, fzand _(r,;) is defined as

eiIZFAB g iKF ag

0
+ il |

K)+E(9 HR -E 3} gi
(3.45)

- 102 o am = A ool s a
a(Te) = F%r‘j kg, ek grge(nfy gg&(

where m is transition dipole moment anf, is the exciton energy in Q®, and

E(K) is the eigenenergy of the excitpolariton defined by
2
E(kl=n W m (3.46)
2m,,

E, is electronic excitation energy of the macroscopic subsystemnapdis the

m

effective mass of the excitgpolariton. After integration, the Equatiqi3.45)can

be converted to

R O e e Dirag - aPag i
L) = BODRy w-{ B @47)
3 | Mg Y )

whereW,. and D,. are e constants defined as (refer to Appendix B)

W, = Ewl E.- & (3.48)
: Ea (Emo Ea)(Em -Epoli E) -En/z

and D, = \[2E,(E, E). (E,~E) (3.49)

Here (r,z) is the optical neafield interaction potential between two quantum
dots located in close proximity. Depending on the mageguof E_ and E,,
D,. can be real or imaginary, which corresponds to the localized or propogation

a

modes of the light.
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The spatial integraﬁ:m(F)dSr in Equation (3.44) provide the criterion whether

the electric dipole transition is allowed or forbidden between the crystal ground

state|F , ¢ and the exciton statg=, ¢. It follows that it is forbidden if the syial

integral is zer¢y,(f)d’r =0 and allowed if the integral is not zero
ff.(r)d’r, 0

The integration of spatial integral for spherical quantum dots gives us the delta

function

oy -
ﬁ:m(r)d r _\/7 ﬁ;r_zdr Immﬁsn‘] de q 5‘ ,5 lo mot (350)

The delta function shows that only the transition to the state specified by the

quantum numbers=m =9 is allowed[1].

3.4.2 Weak confinement

In a similar way, since in weak cofinement regime the Coulomb interaction
betweerelectron and hole is strong, we can threat an elettots pair as a single

particle i.e., exciton. Therefore, the mass of exciton can be defined as

M =m, +m, and the center of mass coordinates &g =(m.f, +,f)/M and

relativemotion asb6 =r, 1, and the envelope function of the exciton is then

Ynlm(re' r?h) :f(abF m(rcm) (351)
1 &2 | |
where the function? ( h=———e&™ ' represents the relative motis of

NZS
excitons and F_(r,) is the envelope function for center of mass motion defined
as

2 j(a, O/R)

F(Foy) = 1|~
o) =\ 7 ()
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Therefore, the excitonic states in a quantumaiot ke definedby the quantum

numbersm and m and in aWannier representatioit can be expressed as a

superposition of excitorss

IF @ 8 Fulfoul £ MECEI oF (3.53)
R R

where Ecﬁ is the creation operator of an electronRain the conduction band and

E”ﬁi is the annihilation operator of an electronRjtin the valence bandF , Cis

the crystal ground stat&hen the transition matrix elements from the excstaie

|F ., Cto ground state is defined by

a lgll-Eint | & 6|@a aza G()Smc(r) é/(R)(:Em(h)/ LO)( ElZZ dR I;Eél}h}
(3.54)

R k /=1

where 77,(F) = fj () @ g7 is the transition dipole moment for each

unit cell and £ and £ are the excitopolariton creation and annihilation

operators, respectively. The optical néald interaction energy between two

quantumdots in the lowest order is defined by Equat{@w43). Here, we define

the initial and final states ithe P space as|y/d F .5 | & P and

Vid F Fl &,Fl0 and intermediate states inthe Q space as

Im?8 E F| & Kk and|m®8 E F | & Ak [15],[19],[20].

Using the transition matrix elements in Equat®43), we find the optical near

field interaction energy between twoupledquantum dots as
nJ =/ 50) S5 ORFACIF . (e A +elaldTdt (355

where  (F,z) is given by Equatior(3.45)
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3.5 Numerical results for CdSe, CdTe, CdS&nS and
PbSequantum dots

Here we iwestigate optical nedreld interaction between spherical quantum dots
for strong confinement regime. Based on the previous theory of optical near fields
(which was proposed by M. Ohtsu Group from the University of Tokyo), we
theoretically estimated thenagnitude of the optical neéield interaction

potential between(1,0,0) and (1,1,0) energy levels of the first and second

quantum dots, respectively. In conventional electrodynamics for thewdese
we considerspherical quantum dots, only transitions to the statefined by

(=m =0) are allowed. Here| and m are the orbital angular momentum and

magnetic quantum numbers. Note that the propogating far field generates a
symmetric states from the interaction of two resonant energy levels of excitons.
Therefore, for converdnal farfield light the state (1,1,0) is dipeferbidden
energy level for exciton and according to the selection rules, optical transition
from (1,0,0) state of small quantum dot (QDS) to the (1,1,0) state of large
quantum dot (QDL) is prohibited. Hower, since the quantum dots are very
close to each other, due to the localized nature and large spatial inhomogeneity of
optical neaffields localized on the surface of nanoparticles, transitions to the

dipole forbidden energy levels is allowed

T QDS QDL
e
=3 hU
g Es; = E(1,0,0) I T i : Er, = E(1,1,0)
E Tsub
B E;; = E(1,0,0)
Position

Figure 3.5.10ptical neasfield interactions between two spherical quantum dots with the
size ratio ofR,/R° 1.43.There is a resonance betwegérD,0)level of QDS and1,1,0)

level of QDL.
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There exists a resonance between (1,0,0) energy level of (@D%).4,0) energy
level of (QDL) when the ratio of the radius of QDL and QDS satisfies the
condition of R,/ R © 1.43[17],[18], [47],[48]

Figure 3.5.1 is the schematic representation of difusl@dden transition where
the local dipoles at the near siofiethequantum dotis excited byoptical near field
In the figure we introduce the optical ndeid energy transfer mechanism

between(l,0,0) and (1,1,0)levels of the first and second spherical quantum dots

based on dressed photon model.

The energy transfer is explainec\the optical nediield interaction between the
excitons lowest excited state,, in QDS and the secorddwest excited stat&,,

in QDL. These two levels are electric dipole allowed and forbidden energy levels.
However, in the case of the resonance conditQn= E ,, due to the localized
nature of optical nedields, the energy transfer to the forbidden state is allowed.
Thus, we observe optical nei@eld excitation transfer from one state to other.
Since the sublevel transition to the lowest state is much slibee the energy

transfer time, the transferred energy dissipated frBm to E, very fast

[21], [32], [42]. The energy eigenvalues in the QD with Siz@re expressed as

Qo

anl

EnIm = Eg +2h_
mg¢

and represent discrete energy leyveleereny is the reduced mass of the exciton,

(3.56)

ki

Egis the bandgap of the bulk semiconductor Bnd the size of quantum dot.

We numerically estimate the optical near field energy transfer from ground state
to the first dipole forbidden energy state. Wsed different quantum dots such as
CdSe, CdTe, CdSe/Zn&nd PbSavith different sizes, Bohr radius and excitation
energiesWe examine strong dependence of optical fietdt energy transfer on

size, and structure of the quantum dots. Also, near fielehpat strongly depends

on the distance between the two quantum dots and by changing the composition it
changes drastically. We analysed the strong confinement regime in different
quantum dots. [43], [44]
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Figure 3.5.20ptical nearfield energy and distance relation for CdSe spherical quantum
dots from(n,l,m) = (1,0, O)state of QDS tqnj,| ,m) = (1,1, O)state of QDL.

Figure 3.5.2 represents optical near field interaction energy between two spherical
CdSe quantumdots. The parameters for this coupling are set ltg =2.6 nm,

L,=3.72nM, E, =33eV, E,=174eV, E,=E, 217eV, m =0.08/ev (Y,

m =012/eV Ny , Ry.,e.=16 8% eV, R, =56NM , m =0.1Mm,.

The coupling corresponds to the resonant transition from the state (1,0,0) to the

state (1,1,0). The Bohr radius for CdSe quantum dots is estimategd=&ss nm.

Since theBohr radius is larger than the size of the particle, we can assume it as an
example of the strong confinement regime. For the distathed.5nm the

couping strength between the quantum dots is estimatetiUas 0.245 eV .

This distance is in a range of the part
of the particle. The energy transfer time for this local electgmatic interaction

is estimatedas ¢ =2.69ns. Figure 3.5.3 represent the energy transfer rate. The
transfer rate for the distance of=1.5nm is estimated agy=0.371/ns. The
graphshows that the energy transfer rate for CdSe quantum dots isnaatyand

after the distanced =1.5 nm it become even smaller. [45]
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Figure 3.5.3 Optical neaffield transfer rate and distance retattifor CdSe spherical
quantum dots fron{n,l,m) = (1, 0, O)state of QDS tdnij,| ,m) = (1,1, O)state of QDL.

| = CdTe (1,0,0,) to (1,1,0)]
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Figure 3.5.40ptical neaifield energy and distance relation for Cdgmherical quantum

dots from(n,|,m) = (1, 0, O)state of QDS tdni,| ,m) = (1,1,0) state of QDL.

The Figure 3.5.4 shows the coupling strength and distance relation between
(1,0,0) and (1,1,0) states of spherical CdTe quantum dots.
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Here, tle parameters are set tg, =2.6 NM, L, =3.7nm, E =33eV, E; =15eV,

E,=E, =2.08eV, m =o.13/ev omy, m ~0.19/ev @Oy , Ryiyr, =10 (0% eV,

R, =6.9Nm, andm, =0.082m, .

Since the Bohr radius is larger than the quantum confinememnitoe treated as an
example othe strong confinement regime. For CdTe quantum dots the interaction energy
and the energy ransfer time for the distanced=2nm is estimated as

rU =0,7737eVand t =852 ps. Figure 3.5.5shows the energy transfer raaed

distance relation. Froni¢ rate distance relation, fire distanced =2 nm the energy
transfer rate is estimated gs=1,173ns'. The numerical results show thdtea

the distance ofl =2 nm the graph decays faster. As we know from the Chapter 1 this
distance corresponds to the néiald of the quantum dot. After the distance ofrifl the

rate decreases even faster and afternd0it approximately goes to zero. The
composition of the quantum dots also affect the transfer rate. Although the
particle sizes is almost the same for both cases, the transfer rate for CdTe is five
times larger than that of CdSe. [22],[23],[24]
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Figure 3.5.5 Optical neaffield transfer rate and distance relation for CdSe spherical
quantum dots fron{n, l,m) = (1, 0, O)state of QDS tdnij,| ,m) = (1,1, O)state of QDL.
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Figure 3.5.6 Optical neaffield energy and distance relation for CdSe/ZnS spherical
quantum dots fron{n,l,m) = (1, 0, O)state of QDS tdnij,| ,m) = (1,1, O)state of QDL.

Here the parameters are setl{p=2.8nm, L, =4nm E_ =33eV E 6 =184eV

Ea=Eg 2.55eV, 7mp =0.14/eV oy’ m, =0.2/eV ony’ Ryz:dse zns=16 °eV,

Ry =4.9Nm, and m =0.088m,

The figure 3.5.6 shows the distance dependence of coupling strength between
(1,0,0)and (1,1,0) states of spherical CdSe/ZnS-sbidl quantum dot structures.
Since the expression we derived is not for core/shell structures it can give us
unreliable result for CdSe/ZnS quantum dots. However, since the electron and the
hole is assumed tde in the core, we can treat it as strong confinement.
Therefore, the results gives sense. For these quantum dots the coupling strength
and energy transfer time for the distanc@=3nm is estimated as

hU =5 neVandr =132 ps. Figure 3.5.7 represents the energy transfer faate
CdSe/ZnS quantum dots. In a distams® nm, the transfer rate is estimated as
g=7.57ns*. The graph shows that, after the distancel f3 nm the fast decay

is observed for the transfer rate and afterdistance oti=40 nmit approximately
goes to zeroFrom the comparison of the transfer rates for CdSe and CdSe/ZnS
we realize the huge difference. The results show that, as we chargjeutitere

of a particle the rate changes drastically. [46]
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Figure 3.5.7 Optical neaifield transfer rate and distance relation for CdSe/ZnS
spherical quantum dots froifn, |, m) = (1, 0, O)state of QDS tdnij,| ,m) = (1,1, O)state

of QDL.
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Figure 3.5.80ptical neaifield enegy and distance relation for PbSe spherical qguantum
dots from(n,l,m) = (1,0, O)state of QDS tqnij,| ,m) = (1,1, 0) state of QDL.

The figure 3.5.8 shows the coupling between (1,0,0) and (1,1,0) states of spherical
PbSe quantum detHerg to estimate the energy transfer rate the experimental

values for the dipole moment of PbSe quantum dots is [&&J29].
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Figure 3.5.9Optical neaifield transfer rate and distance relation for PbSe spherical
quantum dots fron{n,l,m) = (1, 0, O)state of QDS tqnij,| ,m) = (1,1, O)state of QDL.
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Ryppse = 2.05 @0° €V, andm, =0.035m,.
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Figure 3.5.10 Comparison of optical nedield energy transfer foPbSe, @Se/ZnS,
CdTe and CdSe spherical quantum doten (1,0, O)state of QDS to(1,1, O)state of
QDL.
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Since the Bohr radius of PbSe quantum dots is , it is the typical

exanple of strong confinement regime and we can treat the electron and the hole
as an independent particles from each other. The Figure 3.5.8 and and Figure 3.5.9
represent the distance dependence of near field potential and the energy transfer

rate respectiely. For spherical PbSe QD#)e interaction energy and energy

transfer time for the distance is estimated as and
. The transfer rate for is . For the distance
the interaction energy and energy transfer time is and

. On the other hand thente for sublevel transition from the state

(2,0,0) to (1,1,0) of large quantum dot is estimated as a few picoseconds.
Calculations show that the stronger confinement we choose the better result we
get. This is veryfast energy transfebetween two resonarnergy levels and

suitable for the operation of nanophotonic devices.

Here, the dipole moments for quantum dots is estimated by using the known
formula for radiative lifetimg¢22],[30]

Therefore, we find thdipole moment of quantum dots as follows

where, is the effective dielectric constant, is the excitation

energy of quantum dots, and the radiation lifetime is

where is the quantum yield and is the exciton lifetime in donor.

To estimate the transition dipole moment the Equation is used. For
example, the experimental results for CdTe quantum dots are ,

. By using the radiative lifetime of excitons in quantum dots we
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