Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss’ to Voigt’s Bound

The objective of this contribution is to present a unifying review on strain-driven computational homogenization at finite strains, thereby elaborating on computational aspects of the finite element method. The underlying assumption of computational homogenization is separation of length scales, and hence, computing the material response at the macroscopic scale from averaging the microscopic behavior. In doing so, the energetic equivalence between the two scales, the Hill–Mandel condition, is guaranteed via imposing proper boundary conditions such as linear displacement, periodic displacement and anti-periodic traction, and constant traction boundary conditions. Focus is given on the finite element implementation of these boundary conditions and their influence on the overall response of the material. Computational frameworks for all canonical boundary conditions are briefly formulated in order to demonstrate similarities and differences among the various boundary conditions. Furthermore, we detail on the computational aspects of the classical Reuss’ and Voigt’s bounds and their extensions to finite strains. A concise and clear formulation for computing the macroscopic tangent necessary for FE calculations is presented. The performances of the proposed schemes are illustrated via a series of two- and three-dimensional numerical examples. The numerical examples provide enough details to serve as benchmarks. [DOI: 10.1115/1.4034024]

Keywords: computational homogenization, finite strains, random composite, FE², multiscale

1 Introduction

Almost all materials possess heterogeneous structures at a certain scale of observation. Such heterogeneities may be desirable, for instance, in applications of magnetorheological elastomers in artificial muscles. Understanding the behavior of such media is not an easy task as their physical properties depend entirely on their underlying microstructures which may differ in morphology, volume fraction, and properties of the constituents from one to another composite. The complexity of the microstructural behavior is further pronounced by incorporating the interaction between the constituents, debonding along interfaces or damage caused by fracture of the constituents or matrix. Therefore, the prediction of the responses of composite materials requires appropriate and generally sophisticated methods.

Conducting experiments on a large number of material samples with different physical and geometrical properties is nearly impossible from time and cost point of views. Also, performing a direct numerical simulation of the entire body including all the heterogeneities leads to a huge problem whose solution is computationally expensive and demands high memory storage requirements. To overcome this problem, several multiscale techniques have been developed during the past decades. These models are based on the physics of the microstructures and are able to effectively and efficiently predict the macroscopic behavior of heterogeneous materials. Multiscale models are traditionally categorized into the homogenization method, where the length scales of micro- and macroproblems are sufficiently separate, and the concurrent method, see, e.g., Refs. [1–20], which considers strong coupling between the scales. This contribution details on the former one. In passing, we mention that one of the very popular tools for modeling multiphase materials is asymptotic homogenization. This approach is based on asymptotic expansions of strain and stress fields around their corresponding macroscopic values and utilizing variational principles leading to a set of boundary value problems at the micro- and the macroscale. An extensive body of literature is devoted to study this technique among which we refer to Refs. [23–41]. Reviews of the different multiscale approaches can be found in Refs. [42–44]. The main objective of the homogenization method is to estimate the effective macroscopic properties of a heterogeneous material from the response of its underlying microstructure, thereby allowing to substitute the heterogeneous material with an equivalent homogeneous one. Although most of the ongoing researches in homogenization methods are limited to the spatial homogenization, different temporal scales might also exist in different processes such as chemical reactions. Homogenization in both space and time has been treated in Refs. [45–51].

The first part of this contribution provides a literature review of analytical, semi-analytical, and computational homogenization. Clearly, any attempt to provide a comprehensive review with this scope is a challenging task and a matter of interest to a certain extent. We believe that the following structure forms a continuous and rigorous composition.

1.1 Historical Review of Analytical and Semi-Analytical Homogenization. Preliminary steps in homogenization date back to the 19th century when Voigt [52] proposed to assume uniform strain within the heterogeneous material. This assumption was later followed by Reuss [53] in a somewhat opposite manner.

Saba Saeb
Chair of Applied Mechanics
University of Erlangen–Nuremberg, Egerland Str. 5, Erlangen 91058, Germany
e-mail: saba.saeb@ttm.uni-erlangen.de

Paul Steinmann
Chair of Applied Mechanics
University of Erlangen–Nuremberg, Egerland Str. 5, Erlangen 91058, Germany
e-mail: paul.steinmann@ttm.uni-erlangen.de

Ali Javili
Department of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey
e-mail: ajavili@bilkent.edu.tr

Dedicated to the memory of Professor Christian Miehe, 1956–2016

Copyright © 2016 by ASME

Applied Mechanics Reviews SEPTEMBER 2016, Vol. 68 / 050801-1
Reuss approximated the stress field within the aggregate of polycrystalline material as uniform. These two approximations, when applied to multiphase composites in pure mechanical problems, yield two bounds for the elastic strain energy [54]. The Voigt’s assumption, as the upper bound, violates the equilibrium of the stress field. Also, the Reuss’ assumption, as the lower bound, violates the compatibility of the strain field. The bounds are typically quite wide [55] and are justified only for linear material properties. The nonlinear equivalents to Voigt’s and Reuss’ assumptions are usually referred to as Taylor’s and Sachs’ bounds [56,57], respectively, originally derived for polycrystals [58]. While universal and very simple, these bounds do not carry any information of the microstructural morphology and take only the inhomogeneity volume fraction into account. Even though several authors, e.g., Leffers [59], Van Houtte [60], Kocks and Chandra [61], and Van Houtte et al. [62], suggested strengthening modifications of these assumptions, they typically provide very rough estimates of the overall material properties and are not reliable for complex nonlinear structures.

Some decades later, Hashin and Shtrikman presented an extension of the method, based on variational formulations, to obtain bounds on bulk and shear moduli [63] and magnetic permeability [64] for isotropic composites consisting of isotropic constituents. Their proposed bounds were later generalized by Walpole [65], Milton and Kohn [66] for anisotropic media, and by Zimmerman [67] to obtain bounds on the Poisson’s ratio of the composites. Further improvements were achieved by using three point bounds in the works of Beran and Molyneux [68], Milton and Phan-Thien [69], and Torquato [70]. Employing the same approach, Rosen and Hashin [71] Gibransky and Torquato [72] derived bounds for the thermal expansion coefficient in thermoelastic problems and Biseigni and Luciana [73,74]; Horii and Nemat-Nasser [75] obtained bounds for the effective piezoelectric moduli in piezoelectric problems. Note that Hashin–Shtrikman bounds and their improvements yield very wide bounds for the case of considerable mismatch in phase properties [76]. The generalization of the Hashin–Shtrikman variational approach to predict tighter bounds compared to the Voigt’s and Reuss’ bounds was made in Refs. [77–79] mainly by incorporating the geometrical information of the phases.

A more sophisticated method was established by Eshelby [80] based on dilute family methods assuming that the inhomogeneities are so dilutely distributed that their interactions might be neglected. So, the problem is reformed into the analysis of a single inclusion embedded in an infinite matrix [42]. Eshelby’s conjecture on validity of his proposed method for only ellipsoidal inclusions has been addressed in Refs. [81–88]. However, neglecting the interaction of particles is an unrealistic assumption of Eshelby for materials with randomly dispersed particulate microstructure, even at a few percent volume fraction [89]. Further proposed models such as Mori–Tanaka [90–92], the self-consistent scheme [93–98], the generalized self-consistent scheme [99–103], and the differential method [104,105] are mainly based on the mean-field approximation [106] and approximate the interaction between the phases. The extension of these models to account for the electroelastic behavior of composite materials was addressed by Dunn and Taya [107]. Further contributions to the self-consistent scheme were made by Nemat-Nasser et al. [108] for periodic porous composites, Herve and Zaoui [109] for multilayered spherical inhomogeneities, and by Huang and Hu [110] for aligned elliptical heterogeneities in two-dimensional problems. Recently, Benveniste and Milton [111,112] made a comprehensive comparison on various derivatives of self-consistent and generalized self-consistent schemes in the context of dielectric two-phase composites and elasticity. In particular, their results indicated that both schemes may violate the Hashin–Shtrikman bounds under certain circumstances, see also Ref. [113] for an overview of self-consistent methods. Also, comparison of Mori–Tanaka estimate and generalized version of Hashin–Shtrikman bounds [65,114] can be found in Ref. [115], Riccardi and Monthiellite [116] compared Mori–Tanaka estimate and the generalized self-consistent scheme and showed that the generalized self-consistent method predicts a stronger dependence on the inclusion aspect ratio. Based on the works introduced in Refs. [100] and [117], Halpin [118] and Halpin and Kardos [119] proposed the Halpin–Tsai equations for the mechanical behavior of continuous aligned fiber composites. Horii and Nemat-Nasser [120] proposed the double-inclusion model which is a unified generalization of the self-consistent and Mori–Tanaka schemes and takes the interaction between the phases into account more appropriately. This model has been developed and studied further in Refs. [121] and [122]. See Ref. [123] for an evaluation of accuracy of various analytical models to predict the stiffness of aligned short-fiber composites.

The extension of the application of the analytical homogenization to nonlinear composites and finite deformation elasticity was studied in the pioneering works of Hill [124] and Ogden [125]. Improved bounds for nonlinear composites were obtained by Willis [126] for nonlinear dielectrics, Ponte Castaño and Willis [127] for two-phase random composites made of nonlinearly viscous phases, Suquet [128] for power-law composites, Olson [129] for perfectly plastic composites, and Talbot and Willis [130] for general classes of nonlinear composites. A significant development took place with the derivation of a nonlinear variational principle by Ponte Castaño et al. [131–135] to estimate the effective property of nonlinear incompressible and compressible composites, and in particular, composites made of a ductile and a brittle phase, based on the corresponding linear properties with the same microstructural distribution of phases. Later, exact second-order estimates were established by Ponte Castaño et al. [136]. Labellec et al. [137] employed and developed this method to estimate the behavior of hyperelastic periodic composites and compared their results with the experimental and numerical data. Leroy and Ponte Castaño [138], however, demonstrated that such a methodology may violate Hashin–Shtrikman bounds in some special cases. In order to resolve this shortcoming, Ponte Castaño [139,140] proposed an improvement of the method which was further extended in Refs. [141] and [142]. Later, deBotton and Hariton [143] and deBotton [144] obtained a general expression for the behavior of incompressible sequentially laminated composites in small deformation and finite elasticity and compared their results with Hashin–Shtrikman bounds and proposed estimates of Ponte Castaño [136]. In passing, we mention that an important application of homogenization is to predict the behavior of fiber-reinforced materials reported in Refs. [145–148] and references therein.

Analytical methods for modeling reinforced composite materials considering imperfect interface conditions have been developed recently [149–163]. Also, the importance of the interphase zone in modeling composite materials has been discussed in Refs. [164–176], among many. Detailed reviews and comparisons of analytical models of micromechanics can be found in Ref. [177–196]. In particular, see the review by Mura et al. [182].

1.2 Computational Homogenization. In the past two decades, substantial progress has been made in the computational homogenization of complex multiphase materials. Detailed reviews on computational homogenization can be found in Refs. [197] and [198]. One of the widely used approaches in modeling heterogeneous materials is the unit-cell method which leads to a global macroscopic constitutive model for a heterogeneous material based on detailed modeling of the microstructure [199–203]. As a generalization to unit-cell method, direct micro–macro methods have been introduced. These methods evaluate the stress–strain relationship at each point of the macroscale through solving the boundary value problem associated with the microscale. In the literature, the microscale sample is referred to as representative volume element (RVE) for geometrically irregular microstructures and to unit-cell for regular ones. The boundary conditions of the microproblem are defined such that the energy equivalence
between the two scales, known as Hill–Mandel condition [124,204], is preserved. Extension of this formulation to account for inertia and body forces is considered in Refs. [51] and [205–210]. The transition between the two scales is obtained via averaging the internal fields within the RVE. Yue and E [211] discussed alternative averaging methods and reported that weighted or truncated averaging introduced in Refs. [212] and [213] can improve the solution in some cases. Based on Saint-Venant’s principle, Wongsto and Li [214] proposed to obtain the effective properties of unidirectional fiber-reinforced composites by only considering the regions sufficiently far from the boundary so as to avoid boundary condition effects.

1.2.1 Choice of the Boundary Condition. The Hill–Mandel condition is satisfied for a variety of boundary conditions among which (i) linear displacement boundary conditions, (ii) periodic displacement and antiperiodic traction boundary conditions, and (iii) constant traction boundary conditions are more common. The first and the last boundary conditions are sometimes referred to as homogeneous boundary conditions. Many authors, e.g., Refs. [215–224], have shown that in pure mechanical linear and nonlinear problems, the effective behavior derived under periodic boundary conditions is bounded by linear displacement boundary conditions from above and constant traction boundary conditions from below for a finite size of the RVE. Kaczmarczyk et al. [225] made similar conclusions in the context of second-order computational homogenization. However, this does not imply that the results obtained under periodic boundary conditions are always close to the exact solutions as clearly stated by Terada et al. [221] “there is no guarantee that periodic boundary conditions are the best among a class of possible boundary conditions. Nonetheless, the periodic boundary conditions provide the reasonable estimates on the effective moduli in the sense that they are always bounded by the other.” Also, it has been claimed in Ref. [226] that “periodic boundary conditions require the continuity of the inclusions on opposite boundaries to ensure the periodicity of the microstructure. Because such unnatural periodicity is seldom observed in real heterogeneous materials, periodic boundary conditions are not appropriate for finite element models developed by cutting out fragments of actual microstructures or by using simulated microstructures based on actual microstructures.” Furthermore, Drago and Pindera [227] observed that for the effective value of transverse Poisson’s ratio \(\nu_{y3} \), the estimation based on periodic boundary conditions is not necessarily bounded between the results obtained from linear displacement boundary conditions and constant traction boundary conditions. Recently, inspired by the classical Irving–Kirkwood procedure, Mercer et al. [228] derived a wider set of admissible boundary conditions for the RVE that fill the gap between the homogeneous boundary conditions.

Pecullan et al. [229] investigated the behavior of periodic unidirectional linear composites with different inclusion to matrix stiffness ratio under different boundary conditions. They demonstrated that linear displacement boundary conditions produce a stiffness tensor closer to the effective stiffness tensor for materials with stiff matrix and compliant inclusions. In contrast, constant traction boundary conditions yield better estimates for composites with compliant matrix and stiff inclusions. Similar studies were conducted by Jiang et al. [230], Ostoja-Starzewski [231], Larsson and Runesson [232], and Saroukhani et al. [233]. Pecullan et al. [229] also concluded that the effective bulk moduli obtained under linear DBCs for very high matrix to inclusion stiffness contrast ratio may not satisfy the Hashin–Shtrikman upper bound. Xia et al. [234] reported that the homogeneous boundary conditions, when applied on periodic microstructures, “are not only overconstrained, but may also violate the boundary traction periodicity conditions” under loading types with shear components. Hazanov and Huet [235], Hazanov and Amieur [236], and Pahl and Zysset [237] proposed uniform mixed-type boundary conditions that consider applying constant traction boundary conditions on some parts of the boundary and linear displacement boundary conditions to the other parts such that the apparent elasticity tensor for this boundary condition lies between the apparent tensors obtained with homogeneous boundary conditions. Mesarovic and Padbidri [238] argued that there is no reason to assume that an RVE with random microstructure behaves as a periodic unit cell and suggested the use of minimal kinematic boundary conditions. However, minimal kinematic boundary conditions are not always bounded by linear displacement boundary conditions that are in close to the RVE boundary [239]. A comprehensive comparison of this type of boundary conditions and periodic boundary conditions was made by Inglis et al. [240]. Recently, Larsson et al. [241] presented a novel variational formulation based on the weak enforcement of periodic boundary conditions. Their proposed idea resolves the restriction of having a periodic RVE mesh to implement periodic boundary conditions, see also Ref. [242]. Gluge [243] introduced a generalized framework of the classical boundary conditions based on partitioning of the boundary of the RVE so that the stiffness of the RVE can be adjusted. Aspects of the numerical solution and computational cost associated with different types of boundary conditions are investigated by Fritzten and Böhlke [244].

1.2.2 The Size and Morphology of the RVE. The choice of the RVE for heterogeneous materials with complex microstructures is a delicate task. Ideally, one would like to reach the maximum accuracy with the least computational effort. The RVE must be large enough to be statistically representative of the composite so that it effectively includes a sampling of all microstructural heterogeneities that occur in the composite [245]. On the other hand, it must remain sufficiently small to be considered as a volume element of continuum mechanics [223]. The first-order computational homogenization scheme critically relies on the principle of separation of scales, which requires that the microscopic length scale is assumed to be much smaller than the characteristic length over which the macroscopic loading varies in space” [197]. This assumption is particularly valid when macrogradients remain small and material failure does not occur. The second-order computational homogenization partly alleviates the assumption of scale separation by taking the gradient of the macro deformation gradient tensor into account [246–250]. Furthermore, second-order computational homogenization introduces a physical length to the microscale that is missing in the first-order homogenization. It is also possible to formulate a first-order computational homogenization accounting for size effects by taking surface energies at the microscale into account [251,252]. This is justified by the fact that due to the large surface-to-volume ratio at smaller scales, surface contributions to the overall response of the material are no longer negligible at the microscale. This approach shows an excellent agreement with atomistic simulations [255]; see also Ref. [256] where the size effect is introduced in the context of the first-order computational homogenization for transient heat conduction problems.

Strictly speaking, the response of the material must be independent of the choice of boundary conditions imposed on the RVE [257,258]. According to Hill [259], an RVE is well defined when it contains a sufficient number of inclusions and the responses under linear displacement and constant traction boundary conditions coincide. The effective properties obtained from volume elements smaller than the true RVE are referred to as apparent properties [260]. Hill’s definition on the RVE has been the basis of the work of Ostoja-Starzewski [231] to determine the size of the RVE. He discussed that the size of the RVE is heavily dependent on the type of the problem, and in particular, matrix-to-inclusion stiffness ratio. Temizer and Zohdi [261] carried out similar study and reported that depending on the mesh resolution of the finite element discretization of the microsample, different sizes of the RVE may be obtained. Jiang et al. [230] studied elastic antiplane responses of unidirectional fiber-reinforced composites focusing on the effects of the scale of observation and boundary conditions on the overall elastic moduli. They demonstrated that

3The link between second-gradient continua and first-order continua with surface energies is interpretable in the seminal work of Mindlin [253], see also Ref. [254].
the results obtained under displacement and traction boundary conditions are more sensitive to the window size compared to those obtained under periodic boundary conditions. Their results were in accordance with the ones reported by El Houdaigui et al. [262] for the case of isotropic polycrystalline copper. Jiang et al. [230] concluded that a relatively small size of the RVE is sufficient to evaluate the effective moduli and boundary conditions for a wide range of inclusion to matrix stiffness ratios. A new statistical definition for the RVE based on the mean constitutive response was given by Drugan and Willis [245]. They observed that the minimum size of the RVE is unexpectedly quite small and approximately 4.5 reinforcement diameters to limit the maximum error in the effective modulus estimates to 1% for a variety of matrix and reinforcement materials within the elastic regime. They also found that the apparent property obtained by performing ensemble averaging of stress and strain on a finite microstructure converges very quickly to those achieved from an infinite length. Their findings were numerically verified by Gusev [263]. Gusev studied the overall elastic constant of three-dimensional microstructures subject to periodic boundary conditions based on the finite element method and Monte Carlo simulations and found out that only a few dozen spheres in the unit cell are sufficient to obtain a small scatter in the apparent property. Shan and Gokhale [264] utilized probability density functions of critical microstructural variables such as nearest neighbor distances and also microstress distribution to derive a sufficiently small RVE for a ceramic matrix composite possessing fiber-rich and fiber-poor regions. Kanit et al. [223] proposed a quantitative definition for the RVE through statistical and numerical approaches in the case of linear elasticity and thermal conductivity. Based on their studies, the size of the RVE is a function of five parameters: the physical property, the contrast of properties, the volume fraction of components, the relative precision for the estimation of the effective property, and the number of realizations of the microstructure. Their proposed methodology was evaluated by Dirrenberger et al. [265] to study the size of the RVE for a probabilistic model of random structures. Harper et al. [266] determined the critical size of the RVE for discontinuous fiber composites with increasing fiber length and volume fraction. They evaluated a number of microsamples and confirmed that it is computationally more efficient to study fewer large microsamples rather than many small ones. Jafari et al. [267] proposed the use of repeating representative volume element (RVE) which could be understood as an RVE in which the particles along the boundaries are periodically distributed. They employed similar criteria as described in Ref. [266] to determine the size of the RVE for piezoelectric nanocomposites. The influence of the number of realizations of the microstructure on the obtained RVE size has been also studied by Temizer and Zohdi [261]. They showed that microsamples containing more inclusions typically require a smaller number of realization. A comparison between two different approaches, namely, ensemble averaging of multiple realizations and enlarging the size of a single microstructure, to determine the size of the RVE was given in Ref. [268]. They reported that these two methods generally yield equivalent results. Trías et al. [269] reviewed various criteria such as the typical interfiber distance distributions to determine the minimum size for a statistical RVE. While they noted that it strongly depends on the application of interest, they reported the minimum size of the statistical RVE to be 50 fiber radius for carbon fiber-reinforced epoxy. Gitman et al. [270] carried out statistical studies on the existence of an RVE in different regimes of the material behavior such as linear elasticity, hardening, and softening. They showed that the material loses the representative properties in the softening regime and no RVE can be found. In addition, they introduced a new combined numerical-statistical method to determine the size of the RVE. They made use of their proposed approach to study the effect of volume fraction and material periodicity on the size of the RVE. Böhm and Han [271] reported that when inelastic behavior of constituents is considered, larger sizes of the RVE are required compared to the estimates given in the literature for elastic composites. A similar conclusion was made by Pelisso et al. [272] for quasi-brittle composites. The size of the RVE for nonlinear composites containing elastic rigid heterogeneities embedded in an elastoplastic or elastoviscoplastic matrix has been studied recently by Hoang et al. [273]. Stroeven et al. [274] quantified the size of the RVE for nonlinear heterogeneous materials by performing statistical analysis based on specific factors such as particle size, applied peak load, dissipated energy, and strain concentration. They clarified that each of these criteria leads to a different size for the RVE [275]. Khiaseva and Estoja-Starzewski [276], similar to Ref. [231], estimated the size of the RVE by performing quantitative investigation on the convergence trend of the material properties to the effective values with increasing size of the microstructure for nonlinear elastic random composites at infinite strains. They demonstrated that the RVE size changes depending on the maximum stretch ratio, the deformation mode, and the mismatch properties of constituents. They also made a brief comparison on the methodology they utilized and the statistical approaches, for instance, the one introduced in Ref. [263], and concluded that the size of the RVE obtained based on the statistical approach generally underestimates the one obtained under their approach. Temizer et al. [277] proposed the use of window method to investigate the convergence behavior of different boundary conditions with increasing the size of the RVE in the case of linear thermal conduction. They demonstrated that, given a sufficiently thick embedding frame, the convergence of different boundary conditions to the effective value exhibits a much faster trend compared to the case that boundary conditions are directly applied to the external boundary of the microsample. Salimi et al. [278] reported that using nonsquare or noncubic microstructures that contain no heterogeneity crossing the boundary leads to a significantly improved rate of convergence of boundary conditions in linear matrix-inclusion random composites. The comparison of spherical and cubic RVE with different boundary conditions in Ref. [279] concludes that the smaller surface-to-volume ratio associated with a spherical RVE yields less influence of the boundary resulting in a better convergence to the effective material behavior as the size of the RVE increases, see also Ref. [280]. The size of the RVE has been also examined in the context of the granular media by Meier et al. [281] where the discrete element method is used to evaluate the size of the RVE. Balzani et al. [282] and Scheunemann et al. [283] proposed the construction of a statistically similar representative volume element (SSRVE) to reduce the size and accordingly the computational effort associated with a large complex RVE. They compared the stress–strain curves obtained with their proposed SSRVE including three inclusions with the one obtained from a very large RVE and showed a good agreement of the results along with a significant reduction of computation time of the problem. Methods for determination of the statistically equivalent representative volume element have also been discussed by Swaminathan and Ghosh for fiber-reinforced composites for two cases of with and without damage [284,285]. Similarly, Zeman and Sejnoha [286] employed two-point probability functions and second-order intensity functions to characterize the RVE of a graphite–epoxy composite in terms of a periodic unit-cell which possesses similar statistical properties. Furthermore, the minimum size of the RVE for polycrystals has been studied in Refs. [287] and [288]. Recently, Moussaddy et al. [289] argued the validity of existing well-known methodologies to determine the critical size of the RVE for the case of composites reinforced by randomly oriented fibers and presented a new scheme based on statistical variations of average property. The present size of the heterogeneities and their spatial distribution on the macroscopic response of composite materials have been extensively addressed in the literature through analytical and numerical methods [290–314]. Numerical studies to analyze the effect of shape, distribution, and volume fraction of particles in a metal-matrix composite were performed by Brockenbrough et al. [315]. They reported that the distribution pattern
of the particles has stronger effect on the overall response compared to their shapes. Moreover, the influence of the inclusion arrangement becomes more significant as the inclusion volume fraction increases. Koznetsova et al. [316] discussed the influence of the randomness of the microstructure on the macroscopic behavior for a constant volume fraction of voids. Their results show that a microstructure with random distribution of the voids leads to more compliant behavior compared to a microstructure with periodically distributed voids for elastic materials. These results shall be compared with the results obtained by Wongsto and Li [214] who carried out numerical analyses of unidirectionally fiber-reinforced composites for both random and regular packed fibers in the context of linear elasticity. Trias et al. [317] provided a detailed comparison on random and periodic models for fiber-reinforced composites and reported that the periodic models could lead to underestimation of matrix failure initiation. Segurado and Llorca [318] conducted finite element analyses to determine the influence of particle clustering in cubic RVE reinforced with stiff spherical elastic particles. They revealed that the particles’ spatial distribution has no strong effect on the effective properties of the composite in the elastic and plastic regimes. Kari et al. [319] showed that, for a given volume fraction, the influence of the size of the spherical particles on the effective material properties is not significant in the case of linear elasticity. The effect of interface debonding and particle size on behavior of particulate composite materials was studied by Tan et al. [320]. Based on their observations, small and large particles yield hardening and softening behavior, respectively. Chawla et al. [321] studied the influence of different particle shapes (spherical, ellipsoidal, and angular) on the elastic-plastic behavior of particle-reinforced composites. They reported that the shape of the particles may have a considerable impact on the behavior of the composite even for very small strains. Li et al. [322] studied the influence of size, interphase thickness, and inclusion shape on the enhancement mechanism of composites via a closed-form approach based on the Mori–Tanaka scheme. Mortazavi et al. [323] carried out three-dimensional numerical investigations to evaluate the influence of the interphase thickness, second phase geometry, volume fraction, and properties contrast on the effective elastic modulus of nano-composite RVEs. They demonstrated that the more the inclusion shape deviates from spherical, the more the contrast between the phases influences the effective property. Kochmann and Venturini [324] studied the behavior of a composite with periodic arrangement of stiff interconnected inclusions within a compliant matrix. They showed that such a microstructure results in a composite which exhibits auxetic behavior with auxeticity increasing with increasing Young’s modulus mismatch. The effect of the particle size and its distribution, volume fraction, and particle–matrix interface adhesion strength on the macroscopic failure response of heterogeneous adhesives made of stiff particles has been examined by Kulkarni et al. [325] based on a multiscale cohesive framework described in Ref. [326], see also Ref. [327].

1.2.3 Analysis at the RVE Level. To date, numerous schemes have been introduced to perform various analyses over the RVE. Ghosh and Moorothy [328], Ghosh et al. [329], and Moorothy and Ghosh [330] developed Voronoi cell finite element scheme to better capture the arbitrary distribution of heterogeneities so as to study the effects of microstructural morphologies on the effective properties. The other technique recently developed is fast Fourier transform (FFT) proposed originally by Moulinec and Suquet [331] and further studied and improved in Ref. [332–338]. The initial idea of the method was to make direct use of the digital images of the real microstructure in the numerical simulation which reduces the effort to generate compatible microstructural finite element discretizations [331]. Michel et al. [339] compared and reviewed the analysis of RVE using the finite element method and FFT. They concluded that the FFT method is computationally superior for linear composites given that the contrast between the phases is not too large. However, the basic model of FFT fails to produce reasonable results in the presence of voids or rigid heterogeneities as its rate of the convergence is proportional to the contrast between the phases. Recently, Monchiet and Bonnet [340] proposed a polarization-based FFT iterative scheme to determine the overall properties of multiphase composites with arbitrary phase contrast, see also Refs. [341–344]. The use of a discrete element formulation to resolve the RVE problem has been addressed in Refs. [345–347] among others, in particular for granular media. Another approach to solve the boundary value problem at the microscale is the boundary element method, studied, for instance, by Kamiński [348], Okada et al. [349], and Procházka [350]. Renard and Marmonier [351] first introduced the idea of using a finite element discretization at the microstructure. This idea has been further developed in Refs. [222] and [352–363]. Møes et al. [364] presented an extended version of the classical finite element method, referred to as XFEM, to solve microproblems involving complex geometries [365]. Feyel [366] introduced the general method of FE2 in which a spatially resolved RVE discretized by finite elements corresponds to the macroscopical integration points of finite elements at the macroscopic scale, and separate finite element computations are performed at the two scales. Although this method is known to be computationally expensive, it is trivially parallelizable as the computations at the microscale are completely independent of each other [367–370]. Also, a number of methods have been recently developed aiming at reducing the computational cost and increasing the accuracy of multiscale analysis [371–375]. These methods are typically based on decomposing the macroscale problem and selective usage of computational techniques discussed in Refs. [5] and [376–378], employing a database of precomputed, effectively “hard” behavior from macroscopic information addressed in Refs. [379–383], transformation field analysis [384–390], or proper orthogonal/generalized decomposition [391–397].

1.2.4 Beyond Purely Elastic Problems. Extension of the computational homogenization scheme to multiphysics problems can be found in Refs. [398–405] for thermomechanical problems, Refs. [406–409] for magnetomechanical problems, Refs. [410–416] for electromechanical problems, and Refs. [417] and [418] for hydromechanical problems, see also Refs. [419] and [420]. Also, see Refs. [421–446] for more details on multiscale modeling of failure, damage, and crack propagation and Refs. [430] and [447–456] for background on modeling instability phenomena such as buckling in the context of multiscale modeling.

1.3 Key Features and Objectives. Computational homogenization is a very mature field with an extensive body of literature. However, some computational aspects seem to require further details. This contribution elaborates on a unifying overview of the first-order strain-driven computational homogenization framework in the context of finite deformations using the finite element method. Special attention is devoted to the presentation of subtle details regarding the computational aspects and implementation of this problem. The key features and objectives of this paper are as follows:

- to detail on the computational implementation using the finite element method
- to study numerically the overall behavior of random microstructures
- to investigate the converging behavior of different boundary conditions when increasing the number of inclusions within the macroscopic model
- to present a concise and clear formulation for computing the macrogradient necessary for the FE2 approach
- to provide simple numerical examples with enough details to serve as benchmarks
- to demonstrate the influence of the nonlinearity and robustness of the numerical schemes
The rest of this paper is organized as follows. The finite deformation formulations governing the response of the macro- and microstructure, admissible boundary conditions, and the connection between the scales are discussed in Sec. 2. Section 3 furnishes the finite element formulation of the microproblem and details on the computational algorithms to solve the problem. The application of the proposed algorithms is elucidated through numerical results for both two- and three-dimensional problems. This is then followed by presenting the finite element formulation of the macroproblem and the associated computational algorithm. At the end of this section, multiple FE2 simulations are performed. Section 4 summarizes this work. The notations, operators, and key definitions used throughout the paper are listed in the Nomenclature section.

2 Theory

This section elaborates on theoretical aspects of modeling a heterogeneous material whose microstructures are far smaller than the characteristic length of the macroscale. This separation of scales allows to view the problems as two coupled subproblems at the macro- and the microscale, see Ref. [231] for more details on scale separation. Due to the heterogeneity, it is not easily possible to assign a specific constitutive law to the material at the macroscale. It is assumed that the constitutive responses of the microstructures are known and in a homogenized sense result in the material configuration at any time \(t \), with the boundary \(\partial B_0 \) and the surface unit normal \(t \).

2.1 Macroproblem Definition. Consider a continuum body that takes the material configuration at time \(t = 0 \) and the spatial configuration at any time \(t > 0 \), as shown in Fig. 1. At the macroscale, the body occupies the material configuration \(M_B \) with the boundary \(\partial M_B \) at time \(t = 0 \). The outward unit normal vector to \(\partial M_B \) is denoted as \(M_N \). The macroscopic spatial configuration is denoted \(M_B \), with the boundary \(\partial M_B \) and the surface unit normal \(M_n \). A material point at the macroscale, labeled by the position vector \(M_X \), is mapped to its spatial counterpart \(M_x \) via the nonlinear deformation map \(M \phi \) according to \(M_X = M \phi (M_X) \). The macroscopic deformation gradient \(M_F \) linearly maps a line element \(d M_X \) in the material configuration to a spatial line element \(d M_x \) according to

\[
d M_X = M_F \cdot d M_X \quad \text{and} \quad M_F = M \text{Grad} M \phi \tag{1}
\]

The equations governing the macroproblem are the balances of linear momentum and angular momentum. In the absence of inertia effects, the balance of linear momentum reads

\[
M \text{Div} M F = M P \tag{2}
\]

with \(M P \) denoting the macroscopic body force density in the material configuration and \(M F \) denoting the macroscopic Piola stress. The traction on \(\partial M B_0 \) is \(M t_0 \), and \(M t_0 \) denotes the prescribed traction on the Neumann portion of the boundary \(\partial M B_0 \). The local form of the balance of angular momentum in the macroscopic material configuration reads

\[
M P \times M F = \tau \tag{3}
\]

For the sake of simplicity of presentation, the material is assumed to be hyperelastic, and thus nondissipative at the microscale and, as a consequence, at the macroscale. Therefore, the macroscopic free energy density \(M \psi \) is only a function of the macrodeformation gradient \(M F \) as \(M \psi (M F) \). The Coleman–Noll procedure dictates that for a hyperelastic material, the macro Piola stress \(M P \) derives from \(M \psi \) as

\[
M P = M \psi (M F) \tag{4}
\]

Consequently, the macro Piola stress can be a function of the macrodeformation gradient. In order to solve a nonlinear problem using the Newton–Raphson scheme, not only the stress but also the stress tangent is needed. The macroscopic Piola tangent with respect to the macrodeformation gradient is denoted \(M \lambda \) and is a fourth-order tensor

\[
M \lambda := \frac{\partial M P}{\partial M F} = \frac{\partial^2 M \psi}{\partial M F^2} \tag{5}
\]

In general, the macroscopic free energy and its derivatives cannot be expressed explicitly due to the complex microstructures of the material. This fact motivates the central idea of first-order strain-driven computational homogenization. That is, to prescribe the macroscopic deformation gradient \(M F \) to the microscale problem and to compute the overall response of the macroproblem as shown in Fig. 1 (right).

2.2 Microproblem Definition. The material configuration at the microscale is denoted \(B_0 \) and is assumed to be representative of the material at the macroscale in the sense that it contains enough details to sufficiently capture the microstructural features of the material. See Refs. [185], [231], [270], [282], and [461] for more details on the definition of the RVE. The boundary of the RVE is denoted \(\partial B_0 \) with the outward unit normal \(N \) (see Fig. 1). The spatial configuration at the microscale is defined in analogy to the material configuration.

Let \(X \) be the position vector of a point in \(B_0 \). The nonlinear deformation \(\phi \) maps \(X \) to its counterpart \(x \) in the spatial configuration \(B_0 \). A material line element \(dX \) is mapped to its spatial counterpart \(dx \) via the linear deformation map \(F = \text{Grad} \phi \). The
The balance of linear momentum reads

\[\text{Div} \mathbf{P} = 0 \quad \text{in} \quad \mathcal{B}_0 \quad \text{subject to} \quad \mathbf{P} \cdot \mathbf{N} = t_0 \quad \text{on} \quad \partial \mathcal{B}_0 \]

and \(t_0 = t_0^0 \) on \(\partial \mathcal{B}_0 \) \(\quad (6) \)

in which \(t_0 \) denotes the traction on the boundary \(\partial \mathcal{B}_0 \). The prescribed traction on the Neumann portions of the boundary \(\partial \mathcal{B}_{0N} \subset \partial \mathcal{B}_0 \) is denoted as \(t_0^0 \). The body forces at the microscale are negligible due to the assumption of scale separation. The local form of the balance of angular momentum in the microscopic material configuration is

\[\mathbf{P} \cdot \mathbf{\Omega} = \mathbf{F} \cdot \mathbf{\Omega} \]

Finally, as pointed out earlier, the material response at the microscale is assumed to be hyperelastic with the microscopic free energy density \(\psi \) as a function of the microscopic deformation gradient \(\mathbf{F} \) as \(\psi = \psi(\mathbf{F}) \). From the Coleman–Noll procedure, the micro Piola stress \(\mathbf{P} \) derives from \(\psi \) as

\[\mathbf{P} := \frac{\partial \psi}{\partial \mathbf{F}} = \mathbf{P}(\mathbf{F}) \]

and, consequently, can only be a function of the microdeformation gradient \(\mathbf{F} \). The micro Piola tangent with respect to the microdeformation gradient is denoted by \(\Lambda \) and is a fourth-order tensor

\[\Lambda := \frac{\partial \mathbf{P}}{\partial \mathbf{F}} = \frac{\partial^2 \psi}{\partial \mathbf{F}^2} = \Lambda(\mathbf{F}) \]

As an example, the free energy density function \(\psi \) per unit volume in the material configuration for a compressible neo-Hookean material is chosen as

\[\psi(\mathbf{F}) = \frac{1}{2} \mu [\mathbf{F} : \mathbf{F} - 3 - 2 \log J] + \frac{1}{2} \lambda \log^2 J \]

with \(\mu \) and \(\lambda \) denoting the Lamé parameters. The microscopic free energy density \((10) \) results in the micro Piola stress and micro Piola tangent

\[\mathbf{P}(\mathbf{F}) = \mu [\mathbf{F} - \mathbf{F}^{-1}] + \lambda \log \mathbf{F}^{-1} \]

and

\[\Lambda(\mathbf{F}) = \mu [\mathbf{I} \otimes \mathbf{I} + \mathbf{F}^{-1} \otimes \mathbf{F}^{-1}] + \lambda [\mathbf{F}^{-1} \otimes \mathbf{F}^{-1} - \log \mathbf{F}^{-1} \otimes \mathbf{F}^{-1}] \]

Two nonstandard tensor products \(\otimes \) and \(\otimes \) of two second-order tensors \(\mathbf{A} \) and \(\mathbf{B} \) are the fourth-order tensors \(\mathbf{D} = \mathbf{A} \otimes \mathbf{B} \) with components \(D_{ijkl} = A_{ik}B_{jk} \) and \(\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \) with \(C_{ijkl} = A_{ij}B_{jk} \).

In general, the microstructure consists of various materials and each of them has its own material parameters. In this contribution, it is assumed that the microstructure consists of only two types of materials being inclusions distributed in a matrix. This assumption is only made for the sake of simplicity and in order to focus on the main features of this work. It is straightforward to introduce more materials into this study; nevertheless, it involves more notations and details without providing additional insight into the problem of interest here.

2.3 Micro-to-Macro Transition

Central idea of the first-order strain-driven computational homogenization is to prescribe the macroscopic deformation gradient \(\mathbf{M} \mathbf{F} \) onto the microproblem and to compute the overall response of the micropbroom, and in particular, the macro Piola stress \(\mathbf{M} \mathbf{P} \) and macro Piola tangent \(\mathbf{M} \Lambda \). In this section, microscopic quantities are related to their macroscopic counterparts through volume averaging over the RVE and fundamental reasoning. It proves convenient to define the averaging operator \(\langle \langle \cdot \rangle \rangle \) in the material configuration as the integral over the domain \(\mathcal{B}_0 \) divided by the volume \(\mathcal{V}_0 \) as

\[\langle \langle \cdot \rangle \rangle := \frac{1}{\mathcal{V}_0} \int_{\mathcal{B}_0} \cdot \mathcal{V} \quad \text{with} \quad \mathcal{V}_0 = \int_{\mathcal{B}_0} \mathcal{V} \]

Fig. 1 Graphical summary of computational homogenization. The macroscopic domain \(\mathcal{M}_{\mathcal{B}_0} \) is mapped to the spatial configuration \(\mathcal{M}_X \) via the nonlinear deformation map \(\mathcal{M}_\varphi \). The domain \(\mathcal{B}_0 \) corresponds to a microscopic RVE. The motion \(\varphi \) of the RVE is associated with a macroscopic point \(\mathcal{M}_X \) within the bulk. In view of the first-order strain-driven homogenization, the macroscopic deformation gradient is given, and the macro Piola stress and the macro Piola tangent are sought. These quantities are evaluated through solving boundary value problems at the microscale.
The volume \(V \) is the total volume surrounded by the (external) boundary \(\partial B_0 \). Note that in the case of porous materials, \(V \) takes also the pore’s volume into account.

2.3.1 Average Piola Stress Theorem, Theorem
Let \(P_c \) be a given constant stress tensor and \(\partial B_0 \) be the entire boundary of the domain \(B_0 \) with outward unit normal \(N \) as shown in Fig. 1. If \(N = n_0 = P_c \cdot N \) is prescribed on \(\partial B_0 \), then \(\langle P \rangle = P_c \).

Proof. In order to prove the average Piola stress theorem, we employ Lemma 1 given in Sec. A.1 of Appendix A which states

\[
\langle P \rangle = \frac{1}{V} \int_{\partial B_0} t_0 \otimes X \, dA
\]

(14)

Therefore, we have

\[
\langle P \rangle = \frac{1}{V} \int_{\partial B_0} t_0 \otimes X \, dA = \frac{1}{V} \int_{\partial B_0} P_c \cdot N \otimes X \, dA
\]

\[
= \frac{1}{V} \int_{\partial B_0} P_c \cdot N \otimes X \, dA
\]

(15)

Using the lemma \(\int_{\partial B_0} N \otimes X \, dA = \gamma V I \) proven in Sec. A.2 of Appendix A, the relation (15) can be written as

\[
\langle P \rangle = \frac{1}{V} P_c \cdot \gamma \, V I = P_c
\]

The average Piola stress theorem states that when a body is subject to the traction \(P_c \cdot N \), the Piola stress averaged over the entire body is the same as \(P_c \), regardless of the stress field within the RVE domain. In the context of the micro-to-macro transition, the average Piola stress theorem motivates the assumption of the macro Piola stress to be the average micro Piola stress as

\[
\langle P \rangle = \frac{1}{V} \int_{\partial B_0} P \cdot dV = \frac{1}{V} \int_{\partial B_0} t_0 \otimes X \, dA
\]

(16)

2.3.2 Average Deformation Gradient Theorem, Theorem
Let \(F_c \) be a given constant deformation gradient tensor and \(\partial B_0 \) be the entire boundary of the domain \(B_0 \) with outward unit normal \(N \) as shown in Fig. 1. If \(\varphi = F_c \cdot X \) is prescribed on \(\partial B_0 \), then \(\langle F \rangle = F_c \).

Proof. In order to prove the average deformation gradient theorem, we employ the gradient theorem as follows:

\[
\langle F \rangle = \frac{1}{V} \int_{B_0} F \, dV = \frac{1}{V} \int_{B_0} \text{Grad} \varphi \, dV = \frac{1}{V} \int_{\partial B_0} \varphi \otimes N \, dA
\]

\[
= \frac{1}{V} \int_{\partial B_0} F_c \cdot N \otimes X \, dA
\]

(17)

Using the lemma \(\int_{\partial B_0} N \otimes X \, dA = \gamma V I \) proven in Sec. A.2 of Appendix A, the relation (17) can be written as

\[
\langle F \rangle = \frac{1}{V} \int_{\partial B_0} F_c \cdot \gamma V I = F_c
\]

The average deformation gradient theorem states that when a body is subject to deformation \(F_c \cdot X \) on its boundary, the deformation gradient averaged over the entire body is the same as \(F_c \) regardless of the complexity of the deformation gradient field within the RVE domain. In the context of the micro-to-macro transition, the average deformation gradient theorem motivates the assumption of the macrodeformation gradient to be the average microdeformation gradient as

\[
M \langle F \rangle = \langle M F \rangle = \frac{1}{V} \int_{B_0} M F \, dV = \frac{1}{V} \int_{\partial B_0} \varphi \otimes N \, dA
\]

(18)

2.3.3 Hill–Mandel Condition
The celebrated Hill–Mandel condition stipulates incremental internal energy equivalence between the macro- and microscales as

\[
\langle P \rangle - \frac{\partial M \langle F \rangle}{\partial t} = 0
\]

\[
\int_{\partial B_0} \left[\frac{\partial M \langle F \rangle}{\partial t} - \left\langle P \right\rangle \right] \cdot N \, dA = 0
\]

(19)

In order to solve the microproblem, the boundary conditions on the RVE that satisfy the Hill–Mandel condition must be determined. These are obtained with the aid of Hill’s lemma

\[
\langle P \rangle = \frac{1}{V} \int_{\partial B_0} t_0 \otimes X \, dA
\]

(20)

\[
\varphi = \frac{\langle P \rangle}{N} \cdot X \quad \text{in} \ B_0
\]

\[
\varphi = \frac{\langle P \rangle}{N} \cdot X \quad \text{on} \ \partial B_0
\]

\[
\text{Note that, for the periodic boundary conditions, antiperiodic traction boundary conditions (PBC)}
\]

\[
\varphi = \frac{\langle P \rangle}{N} \cdot X \quad \text{on} \ \partial B_0
\]

\[
\varphi = \frac{\langle P \rangle}{N} \cdot X \quad \text{on} \ \partial B_0
\]

\[
\varphi = \frac{\langle P \rangle}{N} \cdot X \quad \text{on} \ \partial B_0
\]

\[
\varphi = \frac{\langle P \rangle}{N} \cdot X \quad \text{on} \ \partial B_0
\]

\[
\varphi = \frac{\langle P \rangle}{N} \cdot X \quad \text{on} \ \partial B_0
\]

\[
\varphi = \frac{\langle P \rangle}{N} \cdot X \quad \text{on} \ \partial B_0
\]
\[\delta P = (\delta P) = (A : \delta F) = (A : (\delta M F + \delta F)) = (A : \delta M F + A : \delta F) = (A : \delta F + \frac{\partial}{\partial A} : \delta M F) = (A + \frac{\partial}{\partial A}) : \delta F \]

Remark. The framework presented in this section is particularly suitable for purely elastic materials. If capturing inelastic behavior of the material, e.g., damage, is of interest, the Piola stress would not only be a function of the deformation gradient but also of an internal variable. Therefore, the variation of the Piola stress with respect to the internal variable has to be considered as well. Providing every detail about this issue would deviate us from the main objective of this contribution, and we refer the interested readers to the in-depth analysis provided by Temizer and Wriggers [463].

3 Computation

3.1 Finite Element Formulation of the Microproblem. In this section, we present a general finite element formulation for solving the boundary value problem at the microscale. We start with deriving the weak form of the balance of linear momentum and then discretize it in space. The resulting nonlinear system of equations is linearized and solved using the Newton–Raphson scheme.

3.1.1 Weak Form. In order to establish the weak form of the governing equation (6), both sides are contracted from the left by

\[X_{\text{be}} |_{\partial \Omega_{\text{in}}} \approx X(\xi) = \sum_{x=1}^{\#\text{be}} N^x(\xi) X^x \]

\[x_{\text{se}} |_{\partial \Omega_{\text{in}}} \approx x(\xi) = \sum_{x=1}^{\#\text{se}} N^x(\xi) x^x \]

\[\delta \varphi_{\text{be}} |_{\partial \Omega_{\text{in}}} \approx \delta \varphi(\xi) = \sum_{x=1}^{\#\text{be}} N^x(\xi) \delta \varphi^x \]

\[\delta \varphi_{\text{se}} |_{\partial \Omega_{\text{in}}} \approx \delta \varphi(\xi) = \sum_{x=1}^{\#\text{se}} N^x(\xi) \delta \varphi^x \]

where \(N \) denotes the shape functions. Note that we use the same notation for the shape functions of the bulk and surface elements. However, they shall not be mistaken as their domains are different. That is, \(N \) in Eq. (24)\text{in} denotes the shape functions of the bulk element defined on \(\xi \in [-1, 1]^\text{PD} \), and \(N \) in Eq. (24)\text{surf} denotes the shape functions of the boundary element defined on \(\xi \in [-1, 1]^\text{PD-1} \) with PD being the problem dimension. Number of nodes per bulk and surface elements are represented by \#be and \#se, respectively.

The fully discrete weak form of the balance of linear momentum is obtained by replacing the test functions in Eq. (23) with their spatial approximations defined in Eq. (24). The fully discrete form of residual vector associated with the global node \(I \) reads

\[\mathbf{R}^I := \frac{\#\text{be}}{\beta=1} \int_{\partial \Omega_{\text{be}}} P : \text{Grad} N^x \, dV - \frac{\#\text{se}}{\gamma=1} \int_{\partial \Omega_{\text{se}}} N^x \, dA = \mathbf{0} \]

where \(i \) is the local node corresponding to the global node \(I \). We denote the first and second terms of Eq. (25) as \(\mathbf{R}^\text{int} \) and \(\mathbf{R}^\text{ext} \) representing all the internal and external forces acting on node \(I \), respectively. The nodal residuals are arranged in a global residual vector \(\mathbf{R} \), and the fully discrete nonlinear system of governing equations becomes

\[\mathbf{R} = \mathbf{R}(\mathbf{d}) = 0, \quad \mathbf{R} = \mathbf{R}^\text{int} + \mathbf{R}^\text{ext} \]

where \(\mathbf{d} \) is the unknown global vector of deformations, and \(\mathbf{R}^\text{int} \) and \(\mathbf{R}^\text{ext} \) are the assembled vectors of \(\mathbf{R}^\text{int} \) and \(\mathbf{R}^\text{ext} \) respectively. Note that we use upright letters for assembled vectors in Eq. (26) to distinguish them from the global nodal vectors in Eq. (25). The same argument holds for the tangent stiffness in Sec. 3.1.3.

3.1.2 Discretization. Next, the material domain is discretized into sets of bulk and surface elements as

\[\frac{\#\text{be}}{\beta=1} \int_{\partial \Omega_{\text{be}}} P : \text{Grad} \delta \varphi \, dV - \frac{\#\text{se}}{\gamma=1} \int_{\partial \Omega_{\text{se}}} \delta \varphi : \mathbf{t}_b^0 \, dA = 0 \]

where \#be and \#se represent the number of bulk and surface elements, respectively. The domain of the bulk element \(\beta \) is denoted \(\Gamma_{\beta}^0 \), and \(\partial \Omega_{\text{be}} \) denotes the domain of the surface element \(\gamma \) upon which traction, and not deformation, is prescribed.

The geometries of the bulk and surface elements are approximated using the natural coordinates \(\xi \). The Bubnov–Galerkin finite element method and standard interpolations together with the isoparametric concept are employed as follows:

\[X_{\text{be}} |_{\partial \Omega_{\text{in}}} \approx X(\xi) = \sum_{x=1}^{\#\text{be}} N^x(\xi) X^x \]

\[x_{\text{se}} |_{\partial \Omega_{\text{in}}} \approx x(\xi) = \sum_{x=1}^{\#\text{se}} N^x(\xi) x^x \]

\[\delta \varphi_{\text{be}} |_{\partial \Omega_{\text{in}}} \approx \delta \varphi(\xi) = \sum_{x=1}^{\#\text{be}} N^x(\xi) \delta \varphi^x \]

\[\delta \varphi_{\text{se}} |_{\partial \Omega_{\text{in}}} \approx \delta \varphi(\xi) = \sum_{x=1}^{\#\text{se}} N^x(\xi) \delta \varphi^x \]

representing all the internal and external forces acting on node \(I \), respectively. The nodal residuals are arranged in a global residual vector \(\mathbf{R} \), and the fully discrete nonlinear system of governing equations becomes

\[\mathbf{R} = \mathbf{R}(\mathbf{d}) = 0, \quad \mathbf{R} = \mathbf{R}^\text{int} + \mathbf{R}^\text{ext} \]

where \(\mathbf{d} \) is the unknown global vector of deformations, and \(\mathbf{R}^\text{int} \) and \(\mathbf{R}^\text{ext} \) are the assembled vectors of \(\mathbf{R}^\text{int} \) and \(\mathbf{R}^\text{ext} \) respectively. Note that we use upright letters for assembled vectors in Eq. (26) to distinguish them from the global nodal vectors in Eq. (25). The same argument holds for the tangent stiffness in Sec. 3.1.3.

3.1.3 Linearization. In order to find the solution of the system (26), the Newton–Raphson scheme is utilized. The consistent linearization of the resulting system of equations yields

\[\mathbf{R}(\mathbf{d}_{n+1}) = \mathbf{R}(\mathbf{d}_n) + \mathbf{K} \cdot \Delta \mathbf{d}_n = 0 \quad \text{with} \quad \mathbf{K} = \frac{\partial \mathbf{R}}{\partial \mathbf{d}} \bigg|_{\mathbf{d}_n}, \]

\[\mathbf{d}_{n+1} = \mathbf{d}_n + \Delta \mathbf{d}_n \]
The nonstandard (double) contraction of a fourth-order tensor \(\Lambda \) and a second-order tensor \(B \) is a second-order tensor \(C = \Lambda : B \) with components \(C_{ik} = \Lambda_{ijkl}B_{jl} \). Here, we assume that the prescribed traction is constant and is not a follower force, thus \(\partial \mathbf{R}_{\text{ext}} / \partial \mathbf{d} = 0 \). Solving Eq. (27) yields the iterative increment \(\Delta \mathbf{d}_n \) and consequently \(\mathbf{d}_{n+1} \).

3.2 Microdeformation Implementation. While computational algorithms to implement DBC and PBC are well established and discussed by many authors [241,246,462,464,465], special care should be taken to deal with the stiffness matrix singularity due to prescribing a pure Neumann boundary condition on the RVE to implement TBC. Several authors have treated this problem using either mass-type diagonal perturbation to regularize the stiffness matrix [462], construction of a free-flexibility matrix to preserve the rigid body modes [466], adding very soft materials to the microstructure, or in the most extreme case, completely fixing enough degrees-of-freedom to make the problem well defined. Here, we present a geometrically independent yet computationally inexpensive and robust algorithm to implement TBC for finite deformation analysis. This section details on the computational algorithms to implement TBC and Sachs’ assumption. Furthermore, we briefly cover the computational algorithms to implement the Taylor’s assumption, DBC, and PBC for the sake of completeness and in order to demonstrate the similarities and differences among various boundary conditions. The input of all algorithms is the macrodeformation gradient, and the output is the macro Piola stress. The derivation of the macro Piola tangent will be discussed in detail in Sec. 3.4.

Throughout this section, we assume that the microstructure consists of two different materials: the matrix and the inclusion. The matrix is assumed to be a rectangular sample filling the two-dimensional space in \([0, 1]^2\) with inclusions of arbitrary shape and distribution. In the limit of extremely compliant inclusions, the microstructure represents porous media. We will also consider three-dimensional microstructures filling the space in \([0, 1]^3\).

Figure 2 illustrates three sample microstructures. In the following sections, we often show the material configuration of the RVE with a gray-border square and do not depict the microstructure details so as to avoid cluttered figures.

3.2.1 Taylor’s Assumption. Taylor’s assumption, also referred to as isostrain condition, assumes a linear homogeneous mapping of the entire RVE domain and is implemented by deforming both the inclusion and the matrix identically and according to the macrodeformation gradient. This is illustrated in Fig. 3. Note that the choice of rectangular inclusions in Fig. 3 is only to highlight the linear homogeneous deformation within the microstructure and shall not be understood as any kind of limitation on the generality of the presented framework.

Under the Taylor’s assumption, the stress equilibrium at the interface between the inclusion and the matrix is violated. The apparent property of the material obtained under this condition and the classical Voigt’s bound coincide in the linear regime. As depicted in Fig. 4, the Taylor’s assumption can be resembled by a set of parallel springs or a multiphase composite with parallel constituents aligned in the direction of the applied displacement such that they all share the same deformation.

This configuration furnishes the stiffest possible response from two or more springs or constituents. Consequently, the overall response of the microstructure under this condition is highly overestimated referred to as Voigt’s (Taylor’s) bound. The algorithm to implement the Taylor’s assumption is given as follows:

\[
K^{H} = \int_{\Omega} \frac{\partial P}{\partial \mathbf{F}} : \left(\text{Grad}N^{I} \otimes \text{Grad}N^{I} \right) dV
\]

(28)

where \(n \) is the iteration step and \(K \) is the assembled tangent stiffness matrix of nodal stiffness

\[
K^{H} = \left\{ \frac{\partial P}{\partial \mathbf{F}} : \left(\text{Grad}N^{I} \otimes \text{Grad}N^{I} \right) \right\} dV
\]
force is exerted on the bulk domain, i.e., \(R_{\text{main}} \). Following these notations, and considering that no external discrepancies as shown in Fig. 6:

Both the material and the spatial configuration is decomposed into two distinct fields: \(\mathbf{M} \mathbf{F} \cdot \mathbf{X} \) and \(\mathbf{F} \cdot \mathbf{X} \).

Algorithm 1: Taylor’s assumption

input: \(\mathbf{M} \mathbf{F} \), material parameters; \(f \) (inclusion volume fraction)
create two separate unit elements representing the inclusion and the matrix;
assign Dirichlet BC to the boundaries of the unit elements;
prescribe boundary nodes deformations according to \(\mathbf{M} \mathbf{F} \);
evaluate volume average of the Piola stress in the inclusion \(\langle \mathbf{P} \rangle \)
and in the matrix \(\langle \mathbf{P} \rangle^m \);
output: \(\mathbf{P} = \langle \mathbf{P} \rangle + [1-f] \langle \mathbf{P} \rangle^m \)

3.2.2 Linear Displacement Boundary Conditions. Implementation of DBC is carried out by prescribing the deformations on the boundary nodes according to the macrodeformation gradient while the inner nodes are free. The displacements of the inner nodes are updated accordingly such that the residual vector is minimized. This is in contrast to Taylor’s assumption where the deformations of all the nodes are prescribed (see Fig. 5). The algorithm to implement DBC is given as follows:

Algorithm 2: Linear displacement boundary conditions

input: \(\mathbf{M} \mathbf{F} \), material parameters
assign Dirichlet BC to the boundary nodes;
prescribe boundary nodes deformations through \(\mathbf{M} \mathbf{F} \) incrementally;
solve the system of equations (27);
update inner nodes positions;
output: \(\mathbf{P} = \langle \mathbf{P} \rangle \)

3.2.3 Periodic Displacement and Antiperiodic Traction Boundary Conditions. In order to implement PBC, the RVE boundary in both the material and the spatial configuration is decomposed into two disjoint sets as shown in Fig. 6: a minus part \(\mathcal{B}^- \), and a plus part \(\mathcal{B}^+ \), with \(\mathcal{B}^- \cup \mathcal{B}^+ = \mathcal{B} \).

Any quantity on minus and plus parts denoted as \(\{ \}^- \) and \(\{ \}^+ \), respectively, and \(\{ \}^\star \) denotes quantities within the bulk domain. Following these notations, and considering that no external force is exerted on the bulk domain, i.e., \(R_{\text{ext}} = 0 \), the system of equations (27) can be represented as

\[
\begin{bmatrix}
R_{\text{int}}^- + R_{\text{ext}}^- \\
R_{\text{int}}^+ + R_{\text{ext}}^+
\end{bmatrix}
+ \begin{bmatrix}
K^- & K^- \\
K^+ & K^+
\end{bmatrix}
\begin{bmatrix}
\Delta x^- \\
\Delta x^+
\end{bmatrix} = 0
\] \hspace{1cm} (29)

Based on the fact that the deformation gradient at the RVE level can be decomposed into a uniform part and a fluctuation part as \(\mathbf{F} = \mathbf{M} \mathbf{F} + \tilde{\mathbf{F}} \), two distinct fields contribute to the positions of the boundary nodes: a homogeneous field given by the linear mapping through the macroscopic deformation gradient \(\mathbf{M} \mathbf{F} \cdot \mathbf{X} \) and a non-homogeneous fluctuation field \(\tilde{\mathbf{F}} \cdot \mathbf{X} \) as

\[
\mathbf{x}^+ = \mathbf{M} \mathbf{F} \cdot \mathbf{X}^+ + \tilde{\mathbf{F}} \cdot \mathbf{X}^+ \quad \text{and} \quad \mathbf{x}^- = \mathbf{M} \mathbf{F} \cdot \mathbf{X}^- + \tilde{\mathbf{F}} \cdot \mathbf{X}^-
\] \hspace{1cm} (30)

The deformation fluctuation field on the opposite boundary nodes is assumed to be periodic in a PBC implementation. That is, \(\tilde{\mathbf{F}} \cdot \mathbf{X}^+ = \tilde{\mathbf{F}} \cdot \mathbf{X}^- \), and therefore, from Eq. (30) it follows that

\[
\mathbf{x}^+ - \mathbf{x}^- = \mathbf{M} \mathbf{F} \cdot [\mathbf{X}^+ - \mathbf{X}^-] + \mathbf{X}^-
\] \hspace{1cm} (31)

Hence, the displacements of the opposite boundary nodes are equal to each other, \(\Delta \mathbf{x}^+ = \Delta \mathbf{x}^- \), and one of them can be eliminated from the system of equations (29). Here, we omit \(\Delta \mathbf{x}^+ \) from the system by adding the columns of the stiffness matrix associated with the opposite boundary nodes as

\[
\begin{bmatrix}
R_{\text{int}}^- + R_{\text{ext}}^- \\
R_{\text{int}}^+ + R_{\text{ext}}^+
\end{bmatrix}
+ \begin{bmatrix}
K^- & K^- \\
K^+ & K^+
\end{bmatrix}
\begin{bmatrix}
\Delta \mathbf{x}^- \\
\Delta \mathbf{x}^+
\end{bmatrix} = 0
\] \hspace{1cm} (32)

The antiperiodicity of \(t_0 \) is enforced by assuming that the parallel boundary nodes have the same traction but in opposite directions. Under such assumption, the nodal external residual on the opposite boundary nodes satisfy \(R_{\text{ext}} = -R_{\text{ext}}^- \). So, the system of equations (32) can be further reduced by adding the first and the last rows corresponding to \(R^- \) and \(R^+ \), respectively, to each other as

\[
\begin{cases}
R_{\text{int}}^- + R_{\text{ext}}^- \\
R_{\text{int}}^- + R_{\text{ext}}^-
\end{cases}
+ \begin{bmatrix}
K^- & K^- \\
K^+ & K^+
\end{bmatrix}
\begin{bmatrix}
\Delta \mathbf{x}^- \\
\Delta \mathbf{x}^+
\end{bmatrix} = 0
\] \hspace{1cm} (33)

Once \(\Delta \mathbf{x}^- \) is evaluated, it is used to update the positions of all the boundary nodes.

In order to remove the rigid body motions, the motion of one of the corner nodes is prescribed and set to zero. This makes the deformation fluctuations associated to all other corners to vanish according to the deformation fluctuation periodicity assumption of PBC. Hence, the deformations of the corner nodes are determined only through the macroscopic deformation gradient. The algorithm to implement PBC is given as follows:

Algorithm 3: Periodic displacement and antiperiodic traction boundary conditions

input: \(\mathbf{M} \mathbf{F} \), material parameters
assign Dirichlet BC to the corner nodes;
prescribe corner nodes deformations through \(\mathbf{M} \mathbf{F} \) incrementally;
\(x^+ = \mathbf{M} \mathbf{F} \cdot [\mathbf{X}^+ - \mathbf{X}^-] + \mathbf{x}^+ \):
solve the reduced system of equations (33);
\(x^- = \mathbf{X}^- + \Delta \mathbf{x}^- \) and \(x^+ = \mathbf{X}^+ + \Delta \mathbf{x}^+ \);
output: \(\mathbf{P} = \langle \mathbf{P} \rangle \)

3.2.4 Constant Traction Boundary Conditions. Implementation of TBC is performed by prescribing \(\mathbf{M} \mathbf{P} \cdot \mathbf{N} \) uniformly on the boundary of the material configuration with \(\mathbf{M} \mathbf{P} \) being constant. At the beginning of the algorithm, \(\mathbf{M} \mathbf{P} \) is unknown. Therefore, an initial guess for the macro Piola stress is required to start the algorithm. We initialize \(\mathbf{M} \mathbf{P} \) with zero. It is then updated iteratively until the volume average of the deformation gradient reaches the macrodeformation gradient, that is, until \(\langle \mathbf{F} \rangle = \mathbf{M} \mathbf{F} \).

In order to cope with the singularity of the stiffness matrix due to prescribing purely Neumann boundary condition, sufficient constraints should be added to eliminate rigid body motions using
the direction that it is fixed, extra reaction forces (in addition to the contributions from $M P \cdot N$) and $t^B = M P \cdot N^B + \zeta^b$ with ζ^b being the spurious traction vector, $\zeta^A = 0$ and $\zeta^b = -\eta^b$. Accordingly, the volume average of the Piola stress reads

$$\langle P \rangle = \frac{1}{V_0} \int_{\partial B_0} t^A \otimes X \, dA + \frac{1}{V_0} \sum_{i=A,B} \zeta^i \otimes X_i \delta A^i = M P$$

assuming that the effective nodal areas of points A and B are identical and equal to δA. In order to ensure that the Dirichlet part is under the same traction as prescribed on the Neumann part, both ζ^A and ζ^B must always vanish.

Recall that the positions of points A and B on the material configuration are arbitrary. A simple concrete case is to assign point A to $[0,0]$ and point B to $[1,0]$, as illustrated in Fig. 8. Based on this setting, the volume average of the Piola stress reads

$$\langle P \rangle = M P + \frac{1}{V_0} \left[\begin{array}{c} 0 \\ \zeta_y^A \\ 0 \end{array} \right] \otimes \left[\begin{array}{c} 0 \\ \zeta_y^B \\ 0 \end{array} \right] \delta A$$

from which the required condition to suppress the spurious traction component ζ_y^B is derived as

$$\eta^B = 0 \iff \langle P_{xy} \rangle = -M P_{xy} = 0$$

In order to satisfy this condition, rather than fixing the point B in its initial position on the material configuration, we prescribe and successively update the position of this point in y-direction until it no longer introduces an extra traction.

Fig. 8 Graphical illustration of the TBC implementation setting. We prescribe and update $M P \cdot N$ and η iteratively until $\langle F \rangle = -M F = 0$ and $\eta^B = 0$ are satisfied.

Fig. 9 Graphical illustration of the TBC implementation setting in three-dimensional problems. We prescribe and update $M P \cdot N$, η^B, η^C, and η^D iteratively until $\langle F \rangle = -M F = 0$, $\zeta^A = 0$, $\zeta^B = 0$, and $\zeta^C = 0$ are satisfied. Note that point D is free to move in x- and y-directions.
On the other hand, to reach the macroscopic deformation gradient, the condition \(\{F\}_0 \cdot M \cdot F = 0 \) must be satisfied. These conditions are inserted into a vector denoted as error vector \(\Omega \) which is a nonlinear function of \(M \cdot P \) and \(\eta \):

\[
\begin{align*}
\Omega^M(P, \eta) &= \left[(F)_0 \cdot M \cdot F \right]_{\eta y}^{1} = 0 \\
\end{align*}
\]

with \(\eta \) being the displacement to be prescribed at point B in y-direction. The consistent linearization of this nonlinear vector function reads

\[
\begin{align*}
\Omega^{(M \cdot P, \eta_{n+1})} &= \Omega^{(M \cdot P, \eta_n)} + \frac{\partial \Omega}{\partial M \cdot P} \left|_{\eta_n} \right| \Delta M \cdot P_n \\
+ \frac{\partial \Omega}{\partial \eta} \left|_{\eta_n} \right| \Delta \eta_n = 0, \quad \eta_{n+1} = \eta_n + \Delta \eta_n \\
\end{align*}
\]

where \(n \) is the iteration step. Solving Eq. (37) yields the iterative increment \(\Delta M \cdot P_n, \Delta \eta_n \) and consequently \(M \cdot P_{n+1} \) and \(\eta_{n+1} \). The algorithm to implement TBC is given as follows:

Algorithm 4: Constant traction boundary conditions

input: \(M \cdot P, \) material parameters \\
input: \(\eta = 0, \) rigid body motion; \\
while \(M \cdot P \) and \(\eta \) are not correct do \\
apply \(M \cdot P \cdot N \) on the Neumann part and update semi-Dirichlet BC; \\
Solve the system of equations (27); \\
evaluate \((P) \) and \((F) \): \\
\(\Omega^{(M \cdot P, \eta)} = \left[(F)_0 \cdot M \cdot F \right]_{\eta y}^{1}; \\
\) if \(|\Omega| < \varepsilon \) then \\
\(M \cdot P_{n+1} = M \cdot P_n + \Delta M \cdot P_n; \) \\
\(\eta = \eta_n + \Delta \eta_n; \) \\
else \\
solve the system of equations (37); \\
end \\
output:** \(M \cdot P \)

In three-dimensional problems, six degrees-of-freedom need to be fixed to prevent rigid body motions. Figure 9 illustrates how to implement TBC in three-dimensional space. Similar to two-dimensional problem, it is performed through assigning Dirichlet boundary condition to point A in x-, y-, and z-directions to eliminate translational rigid body motions and semi-Dirichlet boundary conditions to the points B in x-direction, C in y-direction, and D in z-direction to remove rotational rigid body motions. That is, we first assign Dirichlet boundary conditions to these degrees-of-freedom and then update their locations until a uniform distribution of traction on the RVE is achieved. Prescribing any location on these degrees-of-freedom not identical to their final locations leads to the evolution of spurious forces on the Dirichlet part of the boundary. Taking the existence of spurious forces into account, the total nodal tractions on points A, B, C, D read

\[
\langle P \rangle = \frac{1}{V_0} \int_{\partial B_0} \langle F \rangle \cdot N \cdot X \, dA + \frac{1}{V_0} \sum_{A,B,C,D} \zeta \cdot X \cdot \delta A
\]

where \(\delta A = M \cdot P + \frac{1}{V_0} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \Delta \psi \). From which the required conditions to suppress the spurious forces are derived

\[
\begin{align*}
\psi^B & \Rightarrow 0 \iff \langle P \rangle^B = 0, \\
\psi^C & \Rightarrow 0 \iff \langle P \rangle^C = 0, \\
\psi^D & \Rightarrow 0 \iff \langle P \rangle^D = 0
\end{align*}
\]

In order to satisfy these conditions, we prescribe and successively update the positions of the points B, C, D in x-, y-, and z-directions, respectively. Hence, the error vector reads \(\Omega^{(M \cdot P, \eta^B, \eta^C, \eta^D)} = \left[(F)_0 \cdot M \cdot F \right]_{\eta y}^{1} \neq 0 \) with \(\eta^B, \eta^C, \) and \(\eta^D \) being the prescribed displacements on points B–D. The consistent linearization of this nonlinear vector function reads

\[
\begin{align*}
\Omega^{(M \cdot P_{n+1}, \eta^B_{n+1}, \eta^C_{n+1}, \eta^D_{n+1})} &= \Omega^{(M \cdot P_{n}, \eta^B_{n}, \eta^C_{n}, \eta^D_{n})} \\
+ \frac{\partial \Omega}{\partial M \cdot P} \left|_{\eta_{n+1}} \right| \Delta M \cdot P_n \\
+ \frac{\partial \Omega}{\partial \eta} \left|_{\eta_n} \right| \Delta \eta_n = 0, \quad \begin{bmatrix} M \cdot P_{n+1} \\ \eta_{n+1} \\ \end{bmatrix} = \begin{bmatrix} M \cdot P_n \\ \eta_n \\ \end{bmatrix} + \begin{bmatrix} \Delta M \cdot P_n \\ \Delta \eta_n \\ \end{bmatrix}
\end{align*}
\]

where \(\eta \) is the iteration step. Solving Eq. (38) yields the iterative increment \(\Delta M \cdot P_n, \Delta \eta_n \) and consequently \(M \cdot P_{n+1}, \eta_{n+1} \). Another well-known approach from the literature to implement constant traction boundary conditions in the context of the finite element analysis is given by Miehe and Koch [357], Miehe [462], Larsson and Runesson [232], and Fish and Fan [467]. This approach is based on employing a variational formulation and imposing the prescribed macrodeformation gradient via a Lagrange multiplier which is identified by the macro Piola stress. More precisely, the Lagrange multiplier is added as a new unknown to the problem and updated along with the unknown vector of displacements, see Appendix C for further details about this approach. We shall note (i) our proposed algorithm would become nearly identical to the algorithm given by Miehe if we insert the condition (36) into the residual vector in Eq. (26) and update the displacements, macro Piola stress, and the prescribed displacement at semi-Dirichlet boundary condition simultaneously, and (ii) the applicability of our proposed approach is not limited to the strain-driven computational homogenization but it is also capable of efficiently dealing with stress-driven

Fig. 10 The compatibility of the deformation field is violated under Sachs’ assumption
3.2.5 Sachs' Assumption. Sachs' assumption, also referred to as isostress condition, postulates that the entire domain of the RVE has the same stress \(\mathbf{M} \). In other words, both the inclusion and the matrix assume the same stress \(\mathbf{M} \), but not the same deformations. Clearly, this condition violates the compatibility of the deformation field. This is illustrated in Fig. 10. The apparent property of the material obtained under this condition and the classical Reuss' bound coincide in the linear regime.

Sachs' assumption allows to simplify the geometry of the RVE to two separate unit elements representing the inclusion and the matrix each possessing the same stress \(\mathbf{M} \). We begin the algorithm with \(\mathbf{M} = 0 \) and improve it iteratively until the volume average of the deformation gradient in the inclusion and the matrix reaches the macroscopic deformation gradient. That is, \((\mathbf{F})_{\text{tot}} = \mathbf{M} \) given \((\mathbf{F})_{\text{tot}} = f(\mathbf{F}) + (1 - f)(\mathbf{F})_{\text{m}} \) with \(\mathbf{F} \) and \(\mathbf{F}_{\text{m}} \) being the volume averages of the deformation gradient in the inclusion and in the matrix, respectively.

Similar to TBC implementation, translational rigid body motions are eliminated by assigning Dirichlet boundary condition to points \(A = [0,0] \) and \(C = [0,0] \) in both directions (see Fig. 11). In order to remove rotational rigid body motions and also to ensure uniform distribution of the traction on the boundaries of the matrix and the inclusion, the locations of points B and D are prescribed using semi-Dirichlet boundary conditions and updated iteratively until no spurious force develops. We should, however, highlight that the prescribed displacements at point \([1,0] \) in \(y \)-direction for the inclusion and the matrix are, in general, not identical.

The error vector takes the form

\[
\mathbf{\Omega}^{(\mathbf{M} \mathbf{P}, \eta^i, \eta^m)} = \{f(\mathbf{F})_D, (1 - f)(\mathbf{F})_B\} = 0,
\]

with \(\eta^i \) and \(\eta^m \) being the prescribed displacements on points B and D, respectively, in \(y \)-direction. Spurious tractions on points B and D are denoted \(\mathbf{\zeta}^B \) and \(\mathbf{\zeta}^D \), respectively. The consistent linearization of this vector function would be

\[
\begin{align*}
\mathbf{\Omega}^{(\mathbf{M} \mathbf{P}_{n+1}, \eta^i_{n+1}, \eta^m_{n+1})} &= \mathbf{\Omega}^{(\mathbf{M} \mathbf{P}_n, \eta^i_n, \eta^m_n)} + \frac{\partial \mathbf{\Omega}}{\partial \mathbf{M} \mathbf{P}} |_{\mathbf{M} \mathbf{P}_n} : \Delta \mathbf{M} \mathbf{P}_n \\
\eta^i_{n+1} &= \eta^i_n + \Delta \eta^i_n, \quad \eta^m_{n+1} = \eta^m_n + \Delta \eta^m_n.
\end{align*}
\]

Solving Eq. (39) yields the iterative increment \(\Delta \mathbf{M} \mathbf{P}_n \), \(\Delta \eta^i_n \), and \(\Delta \eta^m_n \) and consequently \(\mathbf{M} \mathbf{P}_{n+1}, \eta^i_{n+1}, \eta^m_{n+1} \).

In passing, we mention that the presentation of Sachs' assumption in three dimensions is formally identical to the two-dimensional case, and formulating this problem in two dimensions here was carried out for simplicity.

Sachs' assumption can be represented by a set of serial springs or a multiphase composite with parallel constituents which are aligned perpendicular to the direction of the applied force such that they carry the same force. This is illustrated in Fig. 12.

This system furnishes the most compliant possible response from two or more springs or constituents. Likewise, the overall response of the microstructure under this condition is always highly underestimated and referred to as Reuss' (Sachs') bound. The algorithm to implement Sachs' assumption is given as follows:

Algorithm 5: Sachs' assumption

\[\text{input: } \mathbf{M} \mathbf{F}, \text{ material parameters, } f \]
\[\mathbf{M} \mathbf{P} = 0, \eta^i = 0, \eta^m = 0; \]
\[\text{create two separate unit elements representing the inclusion and the matrix; } \]
\[\text{assign homogeneous Dirichlet and semi-Dirichlet BC to eliminate rigid body motion; } \]
\[\text{while } \mathbf{M} \mathbf{P}, \eta^i \text{ and } \eta^m \text{ are not correct do } \]
\[\text{apply } \mathbf{M} \mathbf{P} \cdot \mathbf{N} \text{ on Neumann part of the unit elements and update semi-Dirichlet BCs; } \]
\[\text{solve the system of equations (27); } \]
\[\text{evaluate } (\mathbf{F})^{(\mathbf{M} \mathbf{P}, \eta^i, \eta^m)} = (\mathbf{F})^{(\mathbf{M} \mathbf{P}, \eta^i = 0, \eta^m = 0)}; \]
\[\text{if } ||\mathbf{\Omega}|| < \text{tol then } \]
\[\mathbf{M} \mathbf{P}, \eta^i \text{ and } \eta^m \text{ are correct } \]
\[\text{else } \]
\[\text{Solve the system of equations (39); } \]
\[\mathbf{M} \mathbf{P} = \mathbf{M} \mathbf{P} + \Delta \mathbf{M} \mathbf{P}; \]
\[\eta^i = \eta^i + \Delta \eta^i; \]
\[\eta^m = \eta^m + \Delta \eta^m. \]
\[\text{end while} \]
\[\text{output: } \mathbf{M} \mathbf{P} \]

3.3 Numerical Examples of the Microproblem. The objective of this section is to illustrate the performance of the proposed scheme via a series of numerical examples. In doing so, a macrodeformation gradient is prescribed, and the algorithms in the previous sections are exploited to solve the microproblem. Both two-dimensional numerical examples corresponding to fiber-reinforced composites as well as three-dimensional microstructures representing particle-reinforced composites are studied.

First, the influence of the choice of the boundary conditions on the evolution of the macro Piola stress for various macrodeformation gradients is investigated. Both two- and three-dimensional microstructures are considered. This is then followed by studying the influence of different inclusion material parameters on the overall microresponse. Finally, the effects of number and distribution of the inclusions on the overall behavior of two microstructures are examined. More specifically, periodic and random microstructures are studied in detail.

The inclusion volume fraction is set to \(f = 25\% \) for all the sections. The samples are discretized by four- and eight-node bilinear finite elements in two- and three-dimensional problems, respectively. The samples and the associated finite element discretizations are shown in Fig. 13. The material parameters of the matrix are assumed as the shear modulus \(\mu^m = 8.0 \) and the Poisson’s ratio \(\nu^m = 0.3 \).
ratio $\nu^m = 0.3$. The same Poisson’s ratio is chosen for the inclusion material. Both inclusion and the matrix are assumed to behave according to the constitutive free energy density (10). The inclusion to matrix shear modulus ratio is denoted r. Perfect bonding between the matrix and the inclusion is assumed. All the examples are solved using our in-house finite element code in C++ syntax. The solution procedure is robust and for all examples shows asymptotically the quadratic rate of convergence associated with the Newton–Raphson scheme.

3.3.1 Illustration of Geometrically Nonlinear Overall Response of the Microstructure. The primary objective of this section is to illustrate the computational efficiency and robustness of the presented framework and to investigate the influence of the applied macrodeformation gradient on the average response of two- and three-dimensional microstructures under various conditions.

First, two macroscopic deformation gradients of uniaxial stretch in x-direction and simple-shear deformation in the xy-plane are imposed, and the influence of the choice of the boundary condition on the macroscopic Piola stress is examined. Next, the overall microstructural response with increasing the deformation for both deformation types is evaluated. The macrodeformation gradients for simple-shear and uniaxial stretch deformation types are of the form

$$M_F = \begin{bmatrix} 1 & M_{Fx} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

for two-dimensional problems and

$$M_F = \begin{bmatrix} 1 & M_{Fy} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

for three-dimensional problems, respectively, with M_{Fx} and M_{Fy} being the stretch and the shear. The stretch varies from the case of no stretch $M_{Fx} = 1.0$ up to $M_{Fx} = 3.5$ and the shear varies from the case of no shear $M_{Fy} = 0$ up to $M_{Fy} = 2.5$. Additionally, Taylor’s and Sachs’ assumptions are added to the remaining boundary conditions to solve the microproblem. For both sets of studies, inclusion material parameters of $r = 0.1$ and $r = 10$ are considered. Recall that $r = 0.1$ indicates that the inclusion is ten times more compliant to the matrix, and the extreme of $r \to 0$ leads to porous materials. Similarly, $r = 10$ indicates that the inclusion is ten times stiffer than the matrix and the limit of $r \to \infty$ recovers rigid inclusions in the matrix.
Figure 14 illustrates the numerical results for the micro Piola stress distribution normalized by the corresponding macro Piola stress. The numerical simulations indicate that when 100% simple-shear deformation is applied on the two-dimensional microstructure and \(r = 0.1 \), the overall response using DBC overestimates the results from PBC by 6.83%. On the contrary, the response obtained using TBC underestimates the PBC results by 3.46%. When the inclusion is stronger than the matrix, the overall response is dominated by the stronger component.

Figure 15 Three-dimensional microstructure analysis using DBC, PBC, and TBC for \(r = 0.1 \) and \(r = 10 \). Top: simple-shear deformation in \(xy \)-plane. Distribution of the micro Piola stress (\(xy \)-component) normalized by its macro counterpart. Bottom: Uniaxial stretch in \(x \)-direction: Distribution of the micro Piola stress (\(xx \)-component) normalized by its macro counterpart.

Figure 16 Evolution of the macro Piola stress due to the increase of simple-shear deformation (top) and uniaxial stretch (bottom) for \(r = 0.1 \) (left) and \(r = 10 \) (right) for the two-dimensional microstructure. The depicted deformation modes correspond to the results of the PBC for 100% deformation with \(r = 0.1 \).
response under DBC overestimates the one under PBC with 9.12% while TBC underestimation remains almost the same, and it gives 3.23% underestimated response compared to the PBC. In contrast, when the microstructure undergoes 100% uniaxial stretch, utilizing different boundary conditions leads to much more similar responses compared to simple-shear test, for both cases of $r = 0.1$ and $r = 10$.

The same study is conducted for a three-dimensional microstructure, as shown in Fig. 15. It is verified that the gaps between the results of different boundary conditions are wider in all the cases compared to the two-dimensional microstructure. The only exception is found to be the 100% simple-shear deformation type where the inclusion is more compliant to the matrix. In this case, the DBC overestimates the results of the PBC by 3.93%, which is lower than its counterpart in the two-dimensional microstructure. Moreover, it is observed that the macro Piola stresses obtained for three-dimensional microstructure overestimate the ones obtained for two-dimensional microstructures for all the cases. Clearly, the choice of the boundary condition does not affect the microresponse when the inclusion and the matrix are identical.

Figures 16 and 17 depict the evolution of the macro Piola stress versus the prescribed macrodeformation gradient obtained using Taylor’s assumption, DBC, PBC, TBC, and Sachs’ assumption for two deformation types and different inclusion material parameters for two-dimensional and three-dimensional microstructures, respectively.

Regardless of the applied deformation type and deformation value, the results of DBC, PBC, and TBC are bounded by the Taylor’s bound from the top and by the Sachs’ bound from the bottom with DBC and TBC overestimating and underestimating the results of the PBC, respectively. However, the results from different boundary conditions tend more toward the Taylor’s bound when the inclusion is more compliant to the matrix while they approach the results from the Sachs’ bound when the inclusion is stiffer than the matrix. Note that different boundary conditions render more similar results for uniaxial stretch compared to simple-shear deformation for all the prescribed deformation values.

3.3.2 Influence of Material Parameters. This section details on the impact of the inclusion to matrix shear modulus ratio r on the overall response of the two-dimensional microstructure. The value of r varies from 0.0001 with inclusions resembling voids up to 10,000 with inclusions resembling rigid particles distributed in

Fig. 16 Evolution of macro Piola stress due to the increase of simple-shear deformation (top) and uniaxial stretch (bottom) for $r = 0.1$ (left) and $r = 10$ (right) for the three-dimensional microstructure. The depicted deformation modes correspond to the results of the PBC for 100% deformation with $r = 0.1$.

Fig. 17 Evolution of macro Piola stress due to the increase of simple-shear deformation (top) and uniaxial stretch (bottom) for $r = 0.1$ (left) and $r = 10$ (right) for the three-dimensional microstructure. The depicted deformation modes correspond to the results of the PBC for 100% deformation with $r = 0.1$.

Fig. 18 Evolution of macro Piola stress due to the increase of f from 0.0001 to 10,000 when 100% simple-shear deformation (left) and uniaxial stretch (right) is imposed.
the matrix. The microstructure undergoes 100% simple-shear deformation in xy-plane and 100% uniaxial stretch in x-direction. Figure 18 shows that regardless of the deformation type, increasing r from 0.0001 to 0.01 does not have a significant impact on the overall behavior for DBC, PBC, and TBC. However, increasing this value from 0.01 to 100 gives a rapid rise in the macroresponse. Further increase of this value does not result in a substantial variation of the average microresponse. But the results from the Taylor’s bound increase indefinitely as the value of r increases, while, on the other hand, the results from the Sachs’ bound approach zero as the composite resembles porous materials. Both behaviors are nonphysical and can be well explained by considering the microstructure as systems of parallel and serial springs as explained in Secs. 3.2.1 and 3.2.5. Again, the gaps between the results of the different boundary conditions are wider for simple-shear deformation compared to uniaxial stretch for both $r = 0.1$ and $r = 10$. Moreover, the results from DBC, TBC, and PBC always lie between the two bounds where DBC overestimates and TBC underestimates the PBC. Numerical results also confirm that the results from different boundary conditions are closer to Taylor’s bound for $r < 1$ and tend more toward the Sachs’ bound for $r > 1$.

3.3.3 Influence of the Number of Inclusions. A common assumption in computational homogenization is that the inclusions are uniformly distributed in the material which is often a simplification of real composites. Heterogeneous materials usually have a nonperiodic or spatially random microstructural composition. Obviously, variation of the inclusion distribution in the microstructure considerably affects the overall response of the composite. This section aims to highlight the influence of different morphologies of the microstructures on the macroresponse of the material. The macro Piola stress for various microstructures with identical inclusion volume fraction of 25% but different number of inclusions for both periodic and random distributions is evaluated and compared. Periodic microstructures are modeled by circular inclusions of the same size distributed uniformly while random microstructures contain inclusions of different size spread nonuniformly such that inclusions do not overlap. Contacts of the inclusions with the borders of the microstructure are also avoided. The first level of the random microstructure is exactly the same as the first level of the periodic microstructure. That is, a unit cell with 25% inclusion volume fraction. Any higher level of random microstructure, for example, level n, is created such that it contains the information of all the lower level random microstructures, 1, ..., $n-1$, and the information associated to the level n itself. This is schematically shown for the first four levels of random microstructure in Fig. 19.

Both types of microstructures are discretized by four-node bilinear finite elements. As an example, Fig. 20 depicts the mesh resolutions for periodic and random microstructures of level 3. The algorithm employed to generate finite element meshes for microstructures considered in this section is not described as it is out of the scope of the current contribution. See, for instance, Refs. [468–481] for details on different approaches to generate and deal with complex microstructures.

Note that in spite of increasing the number of inclusions inside the microstructure, the physical size of all the microstructures remains identical. This study is conducted for 1% and 25% uniaxial stretch in x-direction with $r = 0.1$ and $r = 10$. Both periodic
and random microstructures from level 1 up to level 15 are considered (see Fig. 21).

Figures 22 and 23 show the evolution of the macro Piola stress with increasing number of inclusions both periodically and randomly for 1% (top) and 25% (bottom) of uniaxial stretch for $r = 0.1$ and $r = 10$, respectively. The numerical simulations illustrate that the results from the Taylor’s and Sachs’ assumptions are independent of the inclusion distribution pattern and solely depend on the inclusion volume fraction and provide a very rough estimate of the material response. In both types of the microstructures and deformations, the gap between the results from DBC, PBC, and TBC becomes smaller as the number of inclusions inside the matrix increases without exactly reaching each other. This trend is smoother for periodic microstructure compared to the case of random microstructure where minor fluctuations are observed. These fluctuations are however damped as the number of inclusions increases sufficiently.

3.4 Finite Element Formulation of the Macroproblem (FE2). Solving the full two-scale problem involves satisfying the linear momentum not only at the microscale but also at the macroscale. Deriving the finite element formulation of the macroscale problem is nearly identical to the microscale problem and is not presented here for the sake of brevity. The fully discrete form of residual vector associated with the global node I at the macroscale reads

$$
\mathbf{M}_F \mathbf{d} = \mathbf{A}_c \cdot \mathbf{M}_P \cdot \mathbf{N}^i \cdot \mathbf{d}^M \mathbf{V} - \mathbf{A}_b \cdot \mathbf{M}_B \cdot \mathbf{N}^i \cdot \mathbf{d}^M \mathbf{V} = 0
$$

(40)

Fig. 24 The ratio $\delta \mathbf{F} / \delta \mathbf{M}_F$ is evaluated through solving linear problems at the converged solution of the microproblem and random microstructures from level 1 up to level 15 are considered (see Fig. 21).

Figures 22 and 23 show the evolution of the macro Piola stress with increasing number of inclusions both periodically and randomly for 1% (top) and 25% (bottom) of uniaxial stretch for $r = 0.1$ and $r = 10$, respectively. The numerical simulations illustrate that the results from the Taylor’s and Sachs’ assumptions are independent of the inclusion distribution pattern and solely depend on the inclusion volume fraction and provide a very rough estimate of the material response. In both types of the microstructures and deformations, the gap between the results from DBC, PBC, and TBC becomes smaller as the number of inclusions inside the matrix increases without exactly reaching each other. This trend is smoother for periodic microstructure compared to the case of random microstructure where minor fluctuations are observed. These fluctuations are however damped as the number of inclusions increases sufficiently.

Fig. 25 Macro- and microscale samples and the associated finite element discretizations.
The nodal residuals are arranged in a global residual vector \(\mathbf{M} \mathbf{R} \), and the fully discrete nonlinear system of governing equations reads

\[
\mathbf{M} \mathbf{R} + \mathbf{M} \mathbf{K} \cdot \Delta \mathbf{d}_n = 0
\]

(41)

with \(\mathbf{M} \mathbf{d} \) being the unknown global vector of macroscopic deformations. Similar to the microproblem procedure, the Newton–Raphson scheme is utilized to solve this nonlinear problem. The consistent linearization of the system of equations (41) yields

\[
\mathbf{M} \mathbf{R} \mathbf{M} \mathbf{d}^{n+1} + \mathbf{M} \mathbf{K} \mathbf{M} \mathbf{d}^{n+1} = \mathbf{M} \mathbf{R} \mathbf{M} \mathbf{d}^n + \mathbf{M} \mathbf{K} \cdot \Delta \mathbf{d}_n
\]

(42)

where \(n \) is the iteration step and \(\mathbf{K} \) is the assembled macroscopic tangent stiffness matrix of nodal stiffness

\[
\mathbf{M} \mathbf{K}^{ij} = \left\{ \frac{\partial \mathbf{M}}{\partial \mathbf{M}} \right\}_{\mathbf{M} \mathbf{F}} \cdot \left[\mathbf{M} \text{Grad}^V \otimes \mathbf{M} \text{Grad}^V \right] d \mathbf{M}^V
\]

(43)

Solving Eq. (42) yields the iterative increment \(\Delta \mathbf{d}_n \) and consequently \(\mathbf{M} \mathbf{d}^{n+1} \).

As discussed in Sec. 2.3, the macro Piola stress is calculated as the volume average of its micro counterpart. However, the macro Piola tangent is not the volume average of the micro Piola tangents, but computed as \(\mathbf{M} \mathbf{A} = (\mathbf{A} + \mathbf{B}) \). Recall that \(\mathbf{B} \) is a fourth-order tensor that linearly maps the variation of the macrodeformation gradient \(\delta \mathbf{M} \mathbf{F} \) to the variation of the microdeformation gradient fluctuations \(\delta \mathbf{F} \) as \(\delta \mathbf{F} = \mathbf{B} \cdot \delta \mathbf{M} \mathbf{F} \). In this section, a systematic algorithm to calculate the tensor \(\mathbf{B} \) and accordingly \(\mathbf{M} \mathbf{A} \) is given.

We determine \(\mathbf{B} \) at the converged solution of the nonlinear microproblem and based on the linear relationship between \(\delta \mathbf{M} \mathbf{F} \) and \(\delta \mathbf{F} \). Therefore, regardless of \(\delta \mathbf{M} \mathbf{F} \), the ratio \(\delta \mathbf{F} / \delta \mathbf{M} \mathbf{F} \) remains constant. That is, \(\mathbf{B} \) is numerically evaluated by perturbing \(\mathbf{M} \mathbf{F} \) and calculating the resultant \(\delta \mathbf{F} \) through solving a system of linear problems. This is schematically shown in Fig. 24. Detailed algorithm to compute \(\mathbf{B} \) and \(\mathbf{M} \mathbf{A} \) is given as follows:

Algorithm 6: Macroscopic Piola tangent

input: \(\mathbf{M} \mathbf{F} \); material parameters

solve the non-linear problem using Alg. 1,2,3,4 or 5 and store \(\mathbf{A} \);

for \(r = 1 \rightarrow \mathbf{PD} \) **do**

for \(s = 1 \rightarrow \mathbf{PD} \) **do**

\[d \mathbf{M} \mathbf{F}^{ij} = d \mathbf{ir} d \mathbf{js} i, j = 1, \ldots, \mathbf{PD}; \]

solve the problem linearly for \(d \mathbf{M} \mathbf{F} \) **at the converged solution;**

\[\mathbf{B}_{ijrs} = \delta \mathbf{F}^{ij} i, j = 1, \ldots, \mathbf{PD}; \]

end

end

output: \(\mathbf{M} \mathbf{A} = (\mathbf{A} + \mathbf{B}) \)

Fig. 26 Distribution of the \(\mathbf{y} \mathbf{y} \)-component of the stress within the macrostructure and its microstructures. The microproblem is solved through different boundary conditions and \(r = 0.1 \).
In the above algorithm, \(\delta \) denotes the Kronecker delta. Note that prescribing \(\delta_{ij} F \) or \(\delta_{ij} \mathcal{F} \), with \(z \) being any real number, both render the same result. Here, we work with identities for simplicity. Otherwise, the coefficients should be properly normalized by \(z \). See Refs. [363] and [414] for further discussions about computation of macro Piola tangent in the discrete formulation.

Once \(\mathbb{M} \) is calculated, all the ingredients to perform the full FE² simulation are provided.

3.5 Numerical Examples of FE² for Various Microdeformation Assumptions

Equipped with the complete strain-driven computational homogenization framework for finite deformation analysis, full FE² simulations of a Cook’s membrane problem made of uniformly arranged fiber-reinforced composite are performed under varying conditions. As depicted in Fig. 25, the macrosample is fixed along the left side and is loaded by the force vector of \(f = [0, 5] \) along the right side.

The microstructure of the composite is a unit cell possessing the inclusion volume fraction of 25%. Similar to previous numerical examples, the material parameters of the matrix are assumed to be shear modulus \(\mu_m = 8.0 \) and Poisson’s ratio \(\nu_m = 0.3 \). The simulations are carried out for two different inclusion material types of \(r = 0.1 \) and \(r = 10 \), along with three different boundary conditions, DBC, PBC, and TBC, to solve the boundary value problem at the microscale. In addition to the response of the macroproblem, the responses of the microproblems at two different points corresponding to the Gauss points located at the bottom left corner of two macroelements are presented. These points are labeled A and B and illustrated in Fig. 25.

As anticipated, the highest macrostructural deformation is observed in the case that the microproblem is solved using TBC, and the inclusion is more compliant to the matrix. Obviously, the higher deformation of the composites under employing TBC leads to the evolution of slightly more stress concentrations within the macrostructure. The numerical results confirm that different boundary conditions render almost identical macrostructural deformations and stress distributions when the inclusion is stiffer than the matrix.

4 Summary

A comprehensive review of the first-order strain-driven computational homogenization scheme at finite deformations with primary focus on associated computational aspects is presented. First, the historical development of analytical and computational methods available in the literature to model heterogeneous materials is reviewed; their specific features are extensively discussed and in several cases compared. Next, the main emphasis is put on establishing a unifying first-order strain-driven computational homogenization framework based on the finite element method.

Fig. 27 Distribution of the \(yx \)-component of the stress within the macrostructure and its microstructures. The microproblem is solved through different boundary conditions and \(r = 10 \).
thereby the behavior of multiphase materials under large deforma-
tions is captured. More particularly, computational issues regarding
the finite element implementation of different boundary conditions
satisfying the Hill–Mandel condition to solve the microscale prob-
lem are introduced and explored. These conditions are linear DBCs,
periodic displacement and antiperiodic TBCs, and finally, constant
TBCs. Furthermore, the computational details to implement the non-
linear extensions of the Voigt’s and Reuss’ bounds known as the
Taylor’s and Sachs’ assumptions are given. The efficiency of the
proposed framework is demonstrated through presenting numerical
examples for two- and three-dimensional microproblems under vari-
ous conditions. In particular, the influence of the choice of the
boundary condition, mismatch between the phases, amount of defor-
mation, number of inclusions, and their distribution pattern on the
overall response of the material is investigated. Finally, a concise
and unified formulation to compute the macrotangent is given.

Acknowledgment

The support of this work by the Cluster of Excellence “Engineering of Advanced Materials” at the University of Erlangen–Nuremberg, which is funded by the DFG within the framework of its “Excellence Initiative,” is greatly appreciated.

Nomenclature

\[\begin{align*}
\boldsymbol{A} &= \text{Piola tangent} \\
A &= \text{assembly operator} \\
B_0 &= \text{material configuration} \\
d &= \text{global vector of deformation} \\
\text{DBC} &= \text{displacement boundary conditions} \\
\text{Det} &= \text{determinant operator} \\
\text{Div} &= \text{divergence operator} \\
\mathcal{E} &= \text{inclusion volume fraction} \\
\text{Grad} &= \text{gradient operator} \\
\mathcal{I} &= \text{identity tensor} \\
\mathcal{J} &= \text{Jacobian of the deformation gradient} \\
\mathcal{K} &= \text{nodal stiffness tensor} \\
\mathcal{M} &= \text{assembled tangent stiffness matrix} \\
\mathcal{N} &= \text{spatial unit normal to boundary} \\
\mathcal{N} &= \text{material unit normal to boundary} \\
\mathcal{P} &= \text{Piola stress} \\
\text{PD} &= \text{problem dimension} \\
\rho &= \text{inclusion to matrix stiffness ratio} \\
\mathcal{R} &= \text{nodal residual vector} \\
\mathcal{R} &= \text{assembled residual vector} \\
\mathcal{S} &= \text{prescribed traction on material configuration} \\
\text{TBC} &= \text{traction boundary conditions} \\
\mathcal{X} &= \text{material bounded volume} \\
\mathcal{X} &= \text{material coordinates} \\
\mathcal{X} &= \text{spatial coordinates} \\
\mu, \lambda &= \text{Lame parameters} \\
\psi &= \text{free energy density function} \\
\partial B_0 &= \text{boundary of spatial configuration} \\
\partial B_0 &= \text{boundary of material configuration} \\
\partial B_0,M &= \text{Dirichlet boundary of material configuration} \\
\partial B_0,N &= \text{Neumann boundary of material configuration} \\
\mathcal{V} &= \text{volume averaging operator} \\
\mathcal{V} &= \text{fluctuation part of} \\
\mathcal{V} &= \text{transpose of} \\
\mathcal{V} &= \text{transpose inverse of} \\
\mathcal{V} &= \text{macro counterpart of} \\
\mathcal{V} &= \text{inverse of} \\
\# &= \text{number of bulk elements} \\
\# &= \text{number of nodes per bulk element} \\
\# &= \text{number of nodes per surface element} \\
\# &= \text{number of surface elements} \\
\text{Note:} \\
\text{• The term} \mathcal{P} &= \text{Piola tangent} \text{refers to the derivative of the Piola} \\
\text{• The terms} \mathcal{M} &= \text{macro and micro} \text{are frequently used instead of} \\
\text{• The term} \mathcal{N} &= \text{inclusion} \text{is used to refer to fibers in two-} \\
\text{dimensional problems and to inclusions in three-dimensional} \\
\text{problems.}
\end{align*} \]

Appendix A: Useful Lemmas and Relations

In this section, some useful lemmas and relations which are
employed in this work are given. Furthermore, the intermediate
steps and technicalities of some proofs are detailed. The extension
of the relations and proofs presented in this section to account for
surface energies is given in Ref. [252].

A.1 Lemma 1

\[\langle \mathcal{P} \rangle = \frac{1}{\mathcal{V}} \int_{\partial \mathcal{B}_0} t_0 \otimes \mathcal{X} \, dA \]

Proof of the Lemma 1

\[\langle \mathcal{P} \rangle = \frac{1}{\mathcal{V}} \int_{\partial \mathcal{B}_0} \mathcal{P} \, dV = \frac{1}{\mathcal{V}} \int_{\partial \mathcal{B}_0} \mathcal{P} \cdot \mathcal{I} \, dV = \frac{1}{\mathcal{V}} \int_{\partial \mathcal{B}_0} \mathcal{P} \cdot \text{Grad} \mathcal{X} \, dV \]

using the relation \(\mathcal{P} \cdot \text{Grad} \mathcal{X} = \text{Div}(\mathcal{P} \otimes X) - \text{Div} \mathcal{P} \otimes X \) and the
fact that \(\text{Div} \mathcal{P} = 0 \) inside \(\mathcal{B}_0 \)

\[= \frac{1}{\mathcal{V}} \int_{\partial \mathcal{B}_0} \text{Div}(\mathcal{P} \otimes X) \, dV \]

with the aid of the divergence theorem

\[= \frac{1}{\mathcal{V}} \int_{\partial \mathcal{B}_0} \mathcal{P} \otimes X \, dA = \frac{1}{\mathcal{V}} \int_{\partial \mathcal{B}_0} \mathcal{P} \otimes N \, dA \]

from the balance equations (6)_2

\[= \frac{1}{\mathcal{V}} \int_{\partial \mathcal{B}_0} t_0 \otimes X \, dA \]

The nonstandard product \(\otimes \) between a second-order tensor \(\mathcal{A} \) and
a vector \(b \) renders a third-order tensor \(\mathcal{C} = \mathcal{A} \otimes b \) with its com-
ponents \(C_{ijk} = A_{ij} b_k \).

A.2 Lemma 2

\[\int_{\partial \mathcal{B}_0} N \otimes X \, dA = \mathcal{X} I \]
Proof of the Lemma 2. Using the gradient theorem
\[
\int_{\partial B_0} N \times X \, dA = \int_{B_0} \nabla X \cdot dV = \int_{B_0} I \, dV = \int_{B_0} \gamma_0 I
\]

A.3 Hill’s Lemma
\[
\langle P \cdot \delta F \rangle - M P \cdot \delta M F = \frac{1}{\gamma_0} \int_{\partial B_0} \left[\delta \varphi - \delta M F \cdot X \right] \cdot [t_0 - M P \cdot N] \, dA
\]
(A1)

In order to prove Hill’s lemma, the right-hand side is expanded and manipulated until it eventually results in the left-hand side. Since only the equality operator is used, all the steps are also valid in the reverse order. First, we use \(t_0 = P \cdot N \) on \(\partial B_0 \) and expand the right-hand side
\[
\int_{\partial B_0} \left[\delta \varphi - \delta M F \cdot X \right] \cdot [t_0 - M P \cdot N] \, dA = \int_{\partial B_0} \left[\delta \varphi - \delta M F \cdot X \right] \cdot [P \cdot N - M P \cdot N] \, dA
\]
\[
= \int_{\partial B_0} \delta \varphi \cdot [P \cdot N] \, dA - \int_{\partial B_0} \delta M F \cdot [P \cdot N] \, dA - \int_{\partial B_0} [\delta \varphi \otimes N] \cdot [P \cdot N] \, dA + \int_{\partial B_0} [\delta M F \otimes M P] \cdot [X \otimes N] \, dA
\]

Using the divergence theorem on the first integral and taking the constants out of the integral operators
\[
\int_{\partial B_0} \text{Div}(\delta \varphi \cdot P) \, dV - M P \cdot \delta M F = \int_{\partial B_0} \delta \varphi \otimes N \, dA - \int_{\partial B_0} \delta M F \cdot [P \cdot N] \, dA + \int_{\partial B_0} [\delta M F \otimes M P] \cdot [X \otimes N] \, dA
\]

The first integral is simplified with the relation \(\text{Div}(\delta \varphi \cdot P) = \delta \varphi \cdot \text{Div} P + P \cdot \text{Grad} \delta \varphi = P \cdot \delta F \) since \(\text{Div} P = 0 \) due to balance of linear momentum. The second integral is rewritten using the gradient theorem as \(\int_{\partial B_0} \delta \varphi \otimes N \, dA = \int_{\partial B_0} \text{Grad} \delta \varphi \cdot dV \). The third integral is indeed the first term on the right-hand side of Lemma 1 since \(t_0 = P \cdot N \), and therefore, it can be expressed as \(\int_{\partial B_0} [P \cdot N] \otimes X \, dA = \gamma_0 \langle P \rangle \).

The last integral simplifies using Lemma 2 in its transposed format as \(\int_{\partial B_0} X \otimes N \, dA = \gamma_0 I \)
\[
\int_{\partial B_0} P \cdot \delta F \, dV - M P \cdot \delta M F = \gamma_0 \langle P \rangle - \gamma_0 \langle \delta F \rangle - \gamma_0 \langle P \rangle - \gamma_0 \langle \delta M F \rangle - \gamma_0 \langle M P \cdot \delta M F \rangle
\]

From the definitions of the average Piola stress \((16) \) and the average deformation gradient \((18) \)
\[
= \gamma_0 \langle P \cdot \delta F \rangle - \gamma_0 \langle M P \cdot \delta M F \rangle + \gamma_0 \langle M P \cdot \delta M F \rangle
\]

A.4 Balance of Angular Momentum at the Macroscale. The global form of the balance of angular momentum at the microscale in the material configuration is
\[
\int_{\partial B_0} \varphi \times t \, dV = 0 \iff \int_{\partial B_0} t \otimes \varphi \, dA = \int_{\partial B_0} \varphi \otimes t \, dA
\]
(A2)

A.4.1 Linear DBCs. In case of linear DBCs, substituting the material configuration position vector \(\varphi=M F \cdot X \) into Eq. (A2) leads to
\[
\int_{\partial B_0} t \otimes \varphi \, dA = \int_{\partial B_0} \varphi \otimes t \, dA
\]
\[
\iff \int_{\partial B_0} t \otimes M F \cdot X \, dA = \int_{\partial B_0} M F \cdot X \otimes t \, dA
\]
\[
\iff \int_{\partial B_0} t \otimes X \, dA = \int_{\partial B_0} M F \cdot X \otimes t \, dA
\]
\[
\iff M P \cdot M F = M F \cdot M P
\]
A.4.2 Periodic Displacement and Antiperiodic TBCs. Taking into account the periodicity of the boundary displacement fluctuations leading to \(\phi^+ = \phi^- + M_0 F \cdot (X^+ - X^-) \) and antiperiodicity of the boundary tractions, that is, \(t^+ = -t^- \), Eq. (A2) can be formulated as

\[
\int_{\partial \Omega} (t \otimes \phi) dA = \int_{\partial \Omega} (t \otimes \phi^-) dA
\]

\[
\Leftrightarrow \left[\int_{\partial \Omega} (t \otimes \phi^+ - t \otimes \phi^-) dA = \int_{\partial \Omega} [\phi^+ \otimes t - \phi^- \otimes t] dA \right]
\]

\[
\Leftrightarrow \left[\int_{\partial \Omega} [\phi^+ \otimes [X^+ - X^-] - t \otimes \phi^-] dA \right]
\]

\[
= \int_{\partial \Omega} [\phi^+ \otimes M F \cdot [X^+ - X^-] - t \otimes \phi^-] dA
\]

\[
\Leftrightarrow \left[\int_{\partial \Omega} t \otimes M F \cdot [X^+ - X^-] dA = \int_{\partial \Omega} M F \cdot [X^+ - X^-] \otimes t dA \right]
\]

\[
\Leftrightarrow \left[\int_{\partial \Omega} X \otimes t dA = \int_{\partial \Omega} M F \cdot [X^+ - X^-] \otimes t dA \right]
\]

Appendix B: Stress-Driven Homogenization

Numerous problems which are of practical importance require the prescription of the macro Piola stress rather than the macrodeformation gradient \([339,460,482]\). In this section, we briefly present the computational algorithms to implement DBC, PBC, and TBC in the context of the stress-driven computational homogenization. Implementations of DBC and PBC in stress-driven homogenization are fairly similar to implementation of TBC in the strain-driven homogenization in the sense that iterations are required to reach the final solution. The algorithms start with an initial guess for the macrodeformation gradient. This guess is then iteratively updated until the volume average of the micro Piola stress reaches the macro Piola stress, that is, until \((P) = M_0 P \). Hence, the error vector takes the form

\[
\Omega(M_F) = [(P) - M_0 P]^\frac{1}{\gamma} = 0
\]

The consistent linearization of this nonlinear vector function reads

\[
\Omega(M_{F_{n+1}}) = \Omega(M_{F_n}) + \frac{\partial \Omega}{\partial M_{F_n}} \Delta M_{F_n} = 0 \quad \text{or} \quad M_{F_{n+1}} = M_{F_n} + \Delta M_{F_n}
\]

where \(n \) is the iteration step. Solving Eq. (B2) yields the iterative increment \(\Delta M_{F_n} \) and consequently \(M_{F_{n+1}} \). The algorithms to implement DBC and PBC in stress-driven homogenization are given as follows:

Algorithm 7: Linear displacement boundary conditions (stress-driven)

input: \(M_0 \) material parameters

\[
M_F = 0
\]

while \(M_F \) is not correct do

run Alg. 2;

if \(||[P] - M_0 P|| < \text{tol} \) then

\[
M_F \text{ is correct}
\]

else

solve the system of equations (B.2);

end

end

output: \(M_F \)

Algorithm 8: Periodic displacement and antiperiodic traction boundary conditions (stress-driven)

input: \(M_0 \) material parameters

\[
M_F = 0
\]

while \(M_F \) is not correct do

run Alg. 3;

if \(||[P] - M_0 P|| < \text{tol} \) then

\[
M_F \text{ is correct}
\]

else

solve the system of equations (B.2);

end

end

output: \(M_F \)

Implementation of TBC for stress-driven homogenization is performed by prescribing the tractions, \(M_0 P \cdot N \), uniformly over the boundary of the microstructure. In order to deal with the rigid body motions, the configuration illustrated in Fig. 8 is employed. Obviously, no iteration for updating the macro Piola stress is required as it is known as the input of the problem. However, the displacement to be prescribed on semi-DBCs has to be updated until uniform distribution of the traction over the boundary of the microstructure is guaranteed. Hence, the condition (36) and the system of equations (37) reduce to

\[
\Omega(\eta) = \left(\frac{\partial}{\partial \eta} \right) \eta^\frac{1}{\gamma} = 0
\]

and

\[
\Omega(\eta_{n+1}) = \Omega(\eta_n) + \frac{\partial \Omega}{\partial \eta} \Delta \eta_n = 0, \quad \eta_{n+1} = \eta_n + \Delta \eta_n
\]

respectively. The algorithm to implement TBC in stress-driven homogenization is given as follows:

Algorithm 9: Constant traction boundary conditions (stress-driven)

input: \(M_0 \) material parameters

\[
\eta = 0;
\]

assign homogeneous Dirichlet and semi-Dirichlet BC to eliminate rigid body motion;

while \(\eta \) is not correct do

apply \(M_0 P \cdot N \) on the Neumann part and update semi-Dirichlet BC;

solve the system of equations (27);

evaluate \([P]_N \);

\[
\Omega(\eta) = \left(\frac{\partial}{\partial \eta} \right) \eta^\frac{1}{\gamma} ;
\]

if \(||[\Omega]|| < \text{tol} \) then

\[
\eta \text{ is correct}
\]

else

solve the system of equation (B4);

end

end

output: \(M_F \)
Appendix C: Implementing TBC in a Strain-Driven Homogenization Via a Lagrange Multiplier

The main section of this is to briefly address the approach given by Miehe [462] to implement constant TBCs via the Lagrange multiplier method. This methodology is essentially based on solving the incremental minimization problem of homogenization

\[M(W(F)) = \inf_d M(W(d)) \quad \text{with} \quad M(W(d)) = \frac{1}{0} \int_{\Omega} W(F, X) \, dV \]

(C1)

with \(d \) being the unknown global vector of deformations, which minimizes the average incremental energy of the microstructure for a given macrodeformation gradient. In order to impose the constraint \(F = \mathbf{F} \), the Lagrange multiplier method is used which yields the Lagrangian

\[\Omega(d, \lambda; F) = M(W(d) - \lambda; [F] - M F) \]

(C2)

with \(\lambda \) being the Lagrange multiplier. It can be verified that

\[\frac{\partial \Omega(d, \lambda; M F)}{\partial F} = M P \quad \text{with} \quad M P = \lambda \]

(C3)

Next, the derivatives of the Lagrangian functional with respect to its variables are set to zero, and the following system of equations is obtained:

\[\begin{align*}
\frac{\partial \Omega(d, \lambda; M F)}{\partial d} &= 0 \quad \Rightarrow \quad \frac{\partial^2 W(d)}{\partial \lambda} - M P \frac{\partial [F]}{\partial \lambda} = 0 \\
\frac{\partial \Omega(d, \lambda; M F)}{\partial M P} &= 0 \quad \Rightarrow \quad \frac{\partial M F}{\partial \lambda} - [F] = 0
\end{align*} \]

(C4)

Linearization of this system of equation yields, in matrix format, the system of equations

\[\begin{bmatrix}
\frac{\partial R_{\text{int}}}{\partial \lambda} & -\frac{\partial R_{\text{ext}}}{\partial \lambda} \\
-\frac{\partial [F]}{\partial \lambda} & 0 \\
\end{bmatrix}
\begin{bmatrix}
\Delta d \\
\Delta M F \\
\end{bmatrix}
= \begin{bmatrix}
R_{\text{ext}} - R_{\text{int}} \\
[F] - M F \\
\end{bmatrix} \]

(C5)

The system of equations (C5) is not singular and can be solved without further modifications.

References

