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ABSTRACT

ENERGY OPERATIONS MANAGEMENT FOR
RENEWABLE POWER PRODUCERS IN

ELECTRICITY MARKETS

Ece Çiğdem Karakoyun

Ph.D. in Industrial Engineering

Advisor: Ayşe Selin Kocaman

Co-Advisor: Emre Nadar

May 2023

Renewable energy generation has grown dramatically around the world in re-

cent years, and policies targeted at reducing greenhouse gas emissions that cause

global warming are expected to ensure a consistent expansion of renewable power

generation in the electricity sector. With the increasing contribution of renew-

able sources to the overall energy supply, renewable power producers participate

in electricity markets where they are imposed to make advance commitment deci-

sions for energy delivery and purchase. Making advance commitments, however,

is a complex task due to the inherent intermittency of renewable sources, increas-

ingly volatile electricity prices, and penalties incurred for possible energy imbal-

ances in electricity markets. Integrating renewable sources with energy storage

units is among the most effective methods to address this challenging task.

Motivated by the recent trends of paired renewable energy generators and

storage units, we study the energy commitment, generation and storage problem

of a wind power producer who owns a battery and participates in a spot market

operating with hourly commitments and settlements. In each time period, the

producer decides how much energy to commit to selling to or purchasing from

the market in the next time period, how much energy to generate in the wind

power plant, and how much energy to charge into or discharge from the battery.

The existence of the battery not only helps smooth out imbalances caused by

the fluctuating wind output but also enables the producer to respond to price

changes in the market. We formulate the wind power producer’s problem as a

Markov decision process by taking into account the uncertainties in wind speed

and electricity price.

In the first part of this dissertation, we consider two different problem settings:

In the first setting, the producer may choose to deviate from her commitments
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based on the latest available information, using the battery to support such devi-

ations. In the second setting, the producer is required to fulfill her commitments,

using the battery as a back-up source. We numerically examine the effects of

system components, imbalance pricing parameters, and negative prices on the

producer’s profits, curtailment decisions, and imbalance tendencies in each prob-

lem setting. We provide managerial insights to renewable power producers in

their assessment of energy storage adoption decisions and to power system oper-

ators in their understanding of the producers’ behavior in the market with their

storage capabilities.

In the second part of this dissertation, we establish several multi-dimensional

structural properties of the optimal profit function such as supermodularity and

joint concavity. This enables us to prove the optimality of a state-dependent

threshold policy for the storage and commitment decisions under the assump-

tions of a perfectly efficient system and positive electricity prices. Leveraging

this policy structure, we construct two heuristic solution methods for solving the

more general problem in which the battery and transmission line can be imper-

fectly efficient and the price can also be negative. Numerical experiments with

data-calibrated instances have revealed the high efficiency and scalability of our

solution procedure. In the third part of this dissertation, we characterize the

optimal policy structure by taking into account the battery and transmission line

efficiency losses and showing the joint concavity of the optimal profit function.

In the last part of this dissertation, we consider an alternative problem setting

that allows for real-time trading without making any advance commitment. We

analytically compare the total cash flows of this setting to those of our origi-

nal problem setting. We conclude with a numerical investigation of the effect of

advance commitment decisions on the producer’s energy storage and generation

decisions.

Keywords: Renewable energy, energy storage, electricity markets, energy devia-

tion, imbalance pricing mechanism, negative electricity prices, Markov decision

processes.



ÖZET

ELEKTRİK PİYASALARINDA YENİLENEBİLİR
ENERJİ ÜRETİCİLERİ İÇİN ENERJİ

OPERASYONLARI YÖNETİMİ

Ece Çiğdem Karakoyun

Endüstri Mühendisliği, Doktora

Tez Danışmanı: Ayşe Selin Kocaman

İkinci Tez Danışmanı: Emre Nadar

Mayıs 2023

Yenilenebilir enerji üretimi son yıllarda dünya genelinde önemli ölçüde

artmıştır. Küresel ısınmaya neden olan sera gazı emisyonlarının azaltılması

amacıyla oluşturulan politikaların, elektrik sektöründe yenilenebilir enerji

üretiminin istikrarlı bir şekilde yaygınlaşmasını sağlaması beklenmektedir. Ye-

nilenebilir enerji kaynaklarının toplam enerji arzına olan katkısının artmasıyla

birlikte yenilenebilir enerji üreticileri, enerji dağıtımı ve satın alımı için belirli

bir zaman öncesinden taahhüt kararları vermeleri gereken elektrik piyasalarına

katılmaktadır. Ancak, belirli bir zaman öncesinden taahhüt vermek yenilenebilir

kaynakların doğasındaki aralıklı üretim, giderek artan değişken elektrik fiyat-

ları ve elektrik piyasalarındaki olası enerji dengesizlikleri kaynaklı ortaya çıkan

cezalar nedeniyle karmaşık bir görevdir. Yenilenebilir enerji kaynaklarını enerji

depolama üniteleri ile entegre etmek, bu zorlu görevi ele almak için bilinen en

etkili yöntemlerden biridir.

Son yıllarda yenilenebilir enerji santralleri ve enerji depolama ünitelerinin

birlikte kullanımının artmasından hareketle bu tezde, bataryaya sahip olan bir

rüzgâr enerjisi üreticisinin enerji taahhüdü, üretimi ve depolama problemi ele

alınmıştır. Bu üretici, saatlik taahhütler ve uzlaşmalar ile işleyen bir spot elektrik

piyasasına katılmaktadır. Her zaman diliminde, üretici, bir sonraki zaman dili-

minde piyasaya satmak veya piyasadan satın almak için ne kadar enerji taahhüt

edeceğine, rüzgâr enerjisi santralinde ne kadar enerji üreteceğine ve bataryada

ne kadar depolayacağına veya bataryadan ne kadar enerji kullanacağına karar

vermektedir. Bataryanın varlığı, değişken rüzgâr çıkışından kaynaklanan den-

gesizlikleri düzeltmeye yardımcı olmakta ve aynı zamanda üreticinin piyasadaki

fiyat değişikliklerine yanıt vermesini sağlamaktadır. Rüzgâr enerjisi üreticisinin

problemi, rüzgâr hızındaki belirsizlikler ve elektrik fiyatları da dikkate alınarak
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bir Markov karar süreci olarak formüle edilmiştir.

Tezin ilk bölümünde, iki farklı durum ele alınmıştır: İlk durumda, üretici, son

kullanılabilir bilgilere dayanarak taahhütlerinden sapmayı seçebilir ve bu sap-

maları desteklemek amacıyla bataryayı kullanabilir. İkinci durumda ise üretici,

bataryayı taahhütlerini yerine getirmek için yedek bir kaynak olarak kullanır.

Her durum için sistem bileşenlerinin, dengesizlik fiyatlandırma parametrelerinin

ve negatif fiyatların, üreticinin kârlılığı, rüzgâr enerjisi kesilme kararları ve

üreticinin dengesizlik eğilimleri üzerindeki etkileri sayısal olarak incelenmiştir.

Bu çalışma, yenilenebilir enerji üreticilerine, enerji depolama kullanım kararlarını

değerlendirmelerinde ve güç sistemi operatörlerine, üreticilerin depolama kapa-

siteleri ile piyasadaki davranışlarını anlamarında yönetimsel bir bakış açısı sun-

maktadır.

Tezin ikinci bölümünde, eniyi kâr fonksiyonunun süpermodülerlik ve ortak

içbükeylik gibi çok boyutlu yapısal özellikleri gösterilmiştir. Böylece, mükemmel

verimli sistem ve pozitif elektrik fiyatları varsayımları altında depolama ve

taahhüt kararları için duruma bağlı eşik politikasının eniyi olduğu kanıtlanmıştır.

Bu politika yapısı kullanılarak, batarya ve iletim hattının mükemmel verimli ol-

mayabileceği ve fiyatın negatif olabileceği daha genel bir problemi çözmek için

iki sezgisel çözüm yöntemi geliştirilmiştir. Veri kalibreli örneklerle yapılan sayısal

deneyler, geliştirilen çözüm yönteminin yüksek verimliliğini ve ölçeklenebilirliğini

ortaya koymaktadır. Tezin üçüncü bölümünde, eniyi kâr fonksiyonunun ortak

içbükeylik özelliği gösterilerek batarya ve iletim hattı verimlilik kayıplarını hesaba

katan eniyi enerji taahhüt, üretim ve depolama politika yapısı sunulmuştur.

Tezin son bölümünde, belirli bir zaman önceden taahhüt verilmeksizin gerçek

zamanlı elektrik ticaretine izin veren alternatif bir durum ele alınmıştır. Bu du-

rumun toplam nakit akışları ile orijinal problemin nakit akışları analitik olarak

karşılaştırılmıştır. Üreticinin önceden verdiği taahhüt kararlarının, enerji depo-

lama ve üretim kararları üzerindeki etkileri sayısal olarak incelenmiştir.

Anahtar sözcükler : Yenilenebilir enerji, enerji depolama, elektrik piyasaları, enerji

sapması, dengesizlik fiyatlandırma mekanizması, negatif elektrik fiyatları, Markov

karar süreci.
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Chapter 1

Introduction

Over the last few decades, renewable energy sources such as wind and solar have

received much attention in the development of power systems [2]. With the

ultimate goal of complete independence from fossil fuels by a certain deadline,

many countries have set ambitious target levels for renewable energy generation

[3]. For example, the United States (U.S.) Energy Information Administration

projects that wind and solar energy will account for 16% of the U.S. electricity

generation in 2023 and 18% in 2023, rising up from 14% in 2022 and 8% in 2018

[4]. Government incentives and improvements in the cost and performance of

renewable power technologies have sped up renewable energy capacity additions,

resulting in low-priced renewable energy [5]. Thanks to such initiatives in various

countries, renewable energy sources are anticipated to meet 60% of the world’s

total energy needs by 2050 [6].

While these sources contribute more to the overall energy supply, the renew-

able power producers participate in electricity markets where they are imposed to

make advance commitment decisions for energy delivery and purchase [7]. Making

advance commitments, however, is a complex task due to the inherent intermit-

tency of renewable sources, increasingly volatile electricity prices, and penalties

incurred for possible energy imbalances in electricity markets.
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Integrating renewable sources with energy storage units, particularly batteries,

is among the most well-known methods to effectively address this challenging

task. The batteries can be used as a back-up source that serves as a hedge

against the cost of imbalance due to fluctuating renewable outputs. They can

also help respond effectively to price changes in the electricity markets. The

producer can purchase energy from the market when the electricity price is low

(or sometimes even negative1) and can sell the stored energy to the market when

the electricity price is high. Moreover, the producer may choose to shift the

existing generation/storage capacities from one period to another by deviating

from her commitments when they are due. The latest available information may

reveal that the existing capacities can be better utilized in future periods with

high/low electricity prices. Consequently, the number of renewable generation

sites co-located with batteries has grown in the U.S. from 19 paired sites in

2016 to 53 paired sites in 2019 [10]. This trend will likely continue into the

foreseeable future thanks to reductions in installed costs and improvements in

battery storage technology [11]. One recent example is the Gemini solar project

in Nevada. Gemini is expected to contribute more than 1 GW of combined solar

and battery energy capacities [10].

Motivated by the recent trends of paired renewable energy generators and

storage units, in this thesis, we study the energy commitment, generation and

storage problem of a wind power producer who owns a battery and participates

in a spot market operating with hourly commitments and settlements. In each

time period, the producer answers the following questions:

(i) How much energy should be committed to selling to or purchasing from the

market in the next time period?

(ii) How much energy should be generated in the wind power plant?

(iii) How much energy should be charged into or discharged from the battery?

The existence of the battery not only helps smooth out imbalances caused by the

1Negative electricity prices were observed in the markets run by the New York Independent
System Operator, Electric Reliability Council of Texas, California Independent System Oper-
ator, and the European Energy Exchange [8]. For example, the proportion of negative-priced
hours in the zones of California Independent System Operator has grown from 1.7%-2.3% to
6.3%-8.3% over the period 2013/14-2016/17 [9].
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fluctuating wind output but also enables price arbitrage. The producer is penal-

ized for any positive (negative) imbalance, which arises when the actual amount

of energy provided in real-time is greater (less) than the committed amount.

This thesis formulates the wind power producer’s decision-making problem as

a Markov decision process (MDP) by taking into account the uncertainties associ-

ated with wind speed and electricity price. MDPs offer an elegant mathematical

framework to represent the decision-making process of dynamic systems when

the outcomes are either random or controlled by a decision-maker who makes

challenging, sequential decisions over time. MDPs determine the best course of

action for the decision-maker based on the current state and system environment.

While MDPs can capture complex systems, they still provide clean analytical for-

mulations that enable optimal policy characterization.

Our knowledge of the energy commitment problems of renewable power gen-

erators is largely based on stochastic optimization models that include such un-

certainties by building scenario trees and performing sensitivity analysis. MDPs

have not been widely used as a modeling approach in this research stream; their

use has become more popular only in recent years. From a general point of view,

this thesis aims to optimize the operations of renewable power producers with

energy storage systems in electricity markets and contribute to the literature in

the following ways. First, we develop an MDP framework to distinguish between

the following two roles of an energy storage unit: when it is used to support either

intentional deviations from commitments or fulfillment of commitments. We in-

vestigate the effects of system components and electricity market characteristics

on the system operations and profits in different environments. Second, we es-

tablish multi-dimensional structural properties of the optimal profit function and

leverage these properties to characterize optimal policy structures for renewable

power producers who jointly optimize their energy generation, storage, and com-

mitment decisions. Third, we employ our structural results to develop heuristic

solution procedures and assess their effectiveness against well-known alternative

solution methods. Finally, we establish a theoretical upper bound on the total

cash flow difference between two different market settings.
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The rest of the thesis is organized as follows. Chapter 2 provides a general

overview of electricity markets and summarizes the related literature. In Chap-

ter 3, we study the energy commitment, generation and storage problem for a

wind power producer who can own and operate a battery for different purposes.

We consider two main problem settings: In the first setting, the producer may

choose to deviate from her commitments based on the latest available informa-

tion, using the battery to support such deviations. In the second setting, the

producer is required to fulfill her commitments, using the battery as a back-up

source. We also consider the special cases of these settings with no battery. We

analytically compare the total profits of the two main settings. We then conduct

data-calibrated numerical experiments to examine the effects of system compo-

nents, imbalance pricing parameters, negative prices, and wind availability on the

system operations and profits.

In Chapter 4, we prove the optimality of a state-dependent threshold policy for

the wind power producer’s energy commitment, generation and storage problem.

This policy is valid under perfectly efficient battery and transmission line and

positive electricity prices. In our structural analysis, we first formulate the opti-

mal amount of wind energy that should be generated in any period as a function

of the state variables. We then partition the state space into two disjoint domains

that correspond to the optimal decisions of ‘positive imbalance’ and ‘negative im-

balance,’ respectively: it is optimal to bring the storage and commitment levels

to a different state-dependent threshold pair in each domain. We establish super-

modularity of the optimal profit function, revealing the complementarity effect

between the commitment and storage levels. We also prove that the optimal

target levels for the commitment and storage decisions are higher in the case of

positive imbalance than in the case of negative imbalance. We employ our struc-

tural results to develop a heuristic solution procedure in a more general problem

where the battery and transmission line need not be perfectly efficient. We also

consider the case where the price can be negative. Our numerical experiments

with data-calibrated instances have revealed the high efficiency and scalability

of our solution procedure. Our numerical experiments have also revealed the

poor performance of simpler heuristic approaches – purely myopic policies, fixed
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threshold policies, and a deterministic reoptimization heuristic – with respect to

objective value.

In Chapter 5, we extend the optimal policy characterization presented in Chap-

ter 4 in the more general case when the battery and transmission line can be

imperfectly efficient. The state space of the problem is partitioned into several

disjoint domains that correspond to the optimal decisions of ‘positive imbalance’

and ‘negative imbalance’ as well as to the optimal decisions of ‘charge and pur-

chase,’ ‘charge and sell,’ and ‘discharge and sell,’ respectively. We also prove

that the optimal target levels for the storage decisions are higher in the case of

discharge and sell and lower in the case of charge and purchase.

In Chapter 6, we consider an alternative problem setting that allows for real-

time trading without making any advance commitment. We analytically compare

the total cash flows of this setting to our original problem setting. After estab-

lishing a theoretical upper bound for the difference between total cash flows in

these two settings, we conducted numerical experiments to gain further insights

into the impact of commitment decisions.

We conclude the thesis with a summary of results and future research directions

in Chapter 7.
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Chapter 2

Electricity Markets and Related

Literature

2.1 General Overview of Electricity Markets

2.1.1 Evolution of electricity markets

The electricity supply chain involves multiple stages, from generation to consump-

tion by end-users. Firstly, electricity is generated by power plants. The generated

electricity is transmitted via grids to a distribution center. Then, the distribu-

tion center is required to send electricity to a retailer. The retailer is in charge of

transferring electricity to end-users. Historically, the electricity market structure

was built on vertically integrated utilities that were either government-owned or

privately owned. Each of the four main parts of the vertically integrated structure

(generation, transmission, distribution, and retailing) had its own management,

but they all depended on each other and were monitored by a central authority.

This monopolistic structure led to a central dispatch of generation which resulted

in low electricity quality and low economic efficiency.
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With technological and industrial developments, people consumed more elec-

tricity, and it became difficult for governments to manage power plants efficiently.

This situation encouraged the formation of a new market structure in which gen-

eration was carried out by Independent Power Producers (IPPs), private utilities

that owned power plants to generate electricity. The integration of IPPs into

the market structure facilitated privatization and competition while decreasing

central planning [12]. Nevertheless, the distribution center remained under gov-

ernment control as the sole buyer of generated electricity. This structure demon-

strates a primitive version of a liberalized market since there is competition among

generators; however, transmission still follows a monopolistic structure.

The aforementioned market structures led to a lack of competition among

companies, resulting in high operating costs, high retail prices, and low supply

security [13]. To overcome these inefficiencies, a liberalization process was ini-

tiated in the electricity sector during the late 1990s, featuring multiple buyers

(e.g., regional transmission, distribution, or retail companies) and multiple sell-

ers (i.e., IPPs). This new configuration fostered a deregulated, competitive, and

transparent market environment in generation, transmission, distribution, and

retailing.

2.1.2 Electricity markets

Electricity trading can be classified into two categories based on their transac-

tion periods: long-term transactions and short-term transactions. Power pur-

chase agreements (PPAs), also known as bilateral contracts, are typically used

for long-term transactions (though some may be made for short-term transac-

tions depending on the needs of the parties involved). These contracts are often

formed between two parties who agree that one will purchase (usually a utility or

a consumer) and the other will sell energy for a fixed price, a variable price, or a

combination of both. Merchant/quasi-merchant agreements, on the other hand,

are a type of PPA, but they differ in that generated energy is not sold directly to

a utility or a customer; instead, it is sold into the spot market at current market
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prices [14].

Short-term electricity markets, also known as spot markets, are markets where

electricity is traded for delivery, usually within a day or an hour time frame (i.e.,

trading on short-term horizons). Electricity trading is conducted through offers

and bids (i.e., commitments) made by market participants (i.e., producers/sellers

and consumers/buyers) for selling energy to the market and/or purchasing energy

from the market. Short-term electricity markets include the day-ahead market,

intraday market, balancing market, and ancillary services. Participants in the

day-ahead market submit their commitments to purchase and sell electricity for

each hour of the following day at the beginning of each day. Shortly after the

market closes, the market price for each hour of the following day is published,

and participants know which hours they are obligated to produce or consume.

Participants in the intraday market make transactions closer to the physical

delivery of electricity. Trading occurs after the day-ahead market gate closure ev-

ery day until one or a few hours before the real-time delivery. The main difference

between intraday and day-ahead markets is the method for price calculation. The

day-ahead market uses a uniform pricing method, with all market participants

selling and paying at the same price. The intraday market, on the other hand, is

generally run based on the continuous trading principle (although some countries,

such as Italy, Spain, and Portugal, operate with auction-based intraday trading

as in the day-ahead market) [15]. Prices in this market are determined on a first-

come, first-served basis in continuous trading; in other words, offers and bids are

continuously matched without any auction. The balancing market, also called

the real-time market, is the last market opportunity for market participants to

participate [7]. The gate closure of this market is typically half an hour before

actual energy delivery. This market, like the day-ahead market, adopts a uniform

pricing method, with the same price applied to all market participants.

During the transaction process, ancillary services may be required to balance

supply and demand instantly. Regulation services monitor variations in supply

and demand at all times, whereas reserve services control changes in load and

supply on an hourly basis. In cases where supply and demand cannot be matched
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in real-time or where there is an urgent need for energy, these services (frequency

and reserves) are utilized. In this market, producers (who operate very fast and

flexible generators such as small combined heat and power units or pumped-hydro

facilities) get paid by offering their availability to increase or decrease their power

output based on the system requirements [16].

In order to keep the electricity market operating without any disruption, there

should be a control mechanism. The market or system operators (Independent

System Operator and Regional Transmission Organizations (ISO/RTO) or Trans-

mission System Operator (TSO)) are important agents in the market that have

the responsibility to ensure that the market is operated effectively. These en-

tities are tasked with operating, monitoring, controlling, and coordinating the

operation of the power system, as well as providing open and non-discriminatory

transmission access to all market participants [17].

2.1.3 Deviations from commitments

The difference between the actual energy selling or purchasing amount and the

commitment amount in an electricity market is referred to as an energy imbalance

(i.e., an energy deviation). Energy deviations can occur for specific reasons.

For example, predictions made by a market participant committed to meeting

customers’ demands may not always be accurate, as they are often based on

seasonal conditions and system constraints. In addition, a market participant

may intentionally engage in uninstructed deviations from generation schedules by

strategically bidding at high prices or withholding their energy capacity [18, 19].

This situation may occur in markets controlled by the California Independent

System Operator (CAISO), New York Independent System Operator (NYISO),

Midcontinent Independent System Operator (MISO), and ISO New England [20].

Examples for the European-type markets include those in the Netherlands and

Belgium [21, 22].

Although producers may see financial benefits from deviations, they can neg-

atively impact the reliability of grid operations. To address this issue, although
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specifics vary from one country to another, various penalty schemes are imple-

mented to decrease deviations caused by excess or insufficient supply or consump-

tion of electricity [23]. This means that participants in the market who deviate

from their committed production or consumption levels are penalized through an

imbalance pricing mechanism.

The purpose of imbalance pricing mechanisms is to force market participants

to make accurate predictions about their generation or consumption and to re-

port their true forecast information, thereby reducing overall imbalance rates.

Depending on the market design, imbalance pricing mechanisms can be classified

into two main categories: single pricing and dual pricing [24]. In single pricing,

the imbalance price is often determined by the balancing (real-time) price and

the same price is applied to both negative imbalances (i.e., if her commitment

amount is greater than her real-time generation or consumption) and positive

imbalances (i.e., if her commitment amount is less than her real-time generation

or consumption). In dual pricing, the imbalance price depends on the outcome

of sequential markets and the direction of imbalance [25].

Imbalance pricing mechanisms may differ in Europe and the U.S. In European

electricity markets, imbalances are mostly settled according to the dual pricing

mechanism (e.g., the Nordic countries (for generation units), France, and the

U.K.) [26]. Single pricing mechanism is also applied in countries such as Ger-

many, the Netherlands, and Belgium [27]. On the other hand, U.S. electricity

markets typically rely on the single pricing mechanism to address imbalances

[28, 29, 30]. Although single pricing scheme is adopted in the U.S., the rules

regarding penalties can change according to the system operators. For example,

Electric Reliability Council of Texas (ERCOT) and NYISO penalizes only neg-

ative imbalances. However, in CAISO and MISO, a participant is penalized for

both her negative and positive imbalances [30, 31, 32, 33].
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2.2 Related Literature

This thesis focuses on joint optimization of the operations of renewable power

plants with energy storage systems in electricity markets; hence, it is closely

related to two streams of literature: (i) the energy commitment problem in elec-

tricity markets for renewable power generators and (ii) the joint operation of

a renewable power generation and energy storage. We present a review of the

related studies from each stream.

Several papers study the energy commitment problem of a renewable power

producer: Pinson et al. [34] introduce a trading strategy based on short-term

probabilistic forecasts of wind power and use a stochastic optimization model

to identify the optimal trading strategy for a wind power producer in the day-

ahead market. Morales et al. [35] propose a multi-stage stochastic optimization

model that incorporates risk control on profit variability to determine the optimal

trading strategy for a wind power producer in day-ahead and real-time markets.

Dent et al. [36] derive analytical wind power bidding strategies based on the as-

sumption that wind power has a continuous probability distribution. They also

investigate scenarios in which the real-time pricing is determined by wind genera-

tion and employ Conditional Value at Risk to reflect risk-averse trading behavior.

Botterud et al. [37] develop a stochastic optimization model and generate sce-

narios of wind power and prices to estimate the distribution of possible profits

for each potential trading strategy in the day-ahead market. Bitar et al. [38] ex-

plicitly derive the optimal contract size for a wind power producer participating

in the day-ahead market. Baringo et al. [39] consider the offering strategies of

wind power producers participating in day-ahead and balancing markets using a

multi-stage stochastic optimization model with risk constraints. They model the

uncertainty of wind, price, bids, and offers using a set of scenarios.

Several other papers study the energy commitment problem of an energy stor-

age operator: Löhndorf et al. [40] optimize the commitment and storage decisions

for a pumped hydro energy storage (PHES) facility participating in the day-ahead
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market. They formulate a multi-stage stochastic program for the intraday deci-

sions and an MDP for the interday decisions. They combine stochastic dual

dynamic programming and approximate dynamic programming (ADP) methods

to develop a solution approach. Boomsma et al. [25] formulate a multi-stage

stochastic programming model to optimize the commitment decision of a hy-

dropower plant with two serially connected reservoirs in the day-ahead market

and the balancing market sequentially.

Paine et al. [41] study the commitment and operational decisions for a PHES

facility under the regulations of two different system operators. The PHES op-

erator aims to determine how to participate in day-ahead and ancillary services

markets in order to maximize her profit. They develop a dynamic programming

formulation for their problem and examine the impact of market rules on optimal

policies. Jiang and Powell [33] consider a battery storage operator who makes

hourly commitments in a real-time market with five-minute settlements. This

means that a clearing price is set every five minutes based on the submitted bids

and offers. They formulate their problem as an MDP and establish a monotonic-

ity result for the optimal value function. They derive a suboptimal commitment

policy by employing a novel ADP technique.

Berrada et al. [42] formulate a mixed-integer linear programming model to

analyze the value of a storage unit operating in day-ahead, balancing, and ancil-

lary services markets simultaneously. In their analysis, the operator can charge

energy from or discharge it into the day-ahead market or the balancing market.

She can also sell capacity to the ancillary services market. Karhinen and Huuki

[43] propose an operating strategy for a PHES operator who participates in day-

ahead, intraday, and balancing markets. In their problem, the PHES operator

first commits to the day-ahead market and acts according to a price arbitrage

strategy. If she cannot fulfill her day-ahead commitment during the operation

time, she participates in the intraday market to adjust herself. The operator can

then sell her available capacity in the balancing market, with the bidding strategy

determined through a discrete-time dynamic programming model. Löhndorf and

Wozabal [44] develop a multi-stage stochastic optimization model for day-ahead

bidding and hourly intraday trading of a storage operator, assessing the value of
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a coordinated trading strategy.

There are also papers that study the energy commitment problem of a renew-

able power producer having an energy storage unit: Garcia-Gonzalez et al. [45]

develop a two-stage stochastic optimization model for the commitment decisions

in the day-ahead market for an energy system consisting of a wind farm and

a PHES facility. They build a scenario tree to incorporate the uncertainties in

wind speed and electricity price. Löhndorf and Minner [46] formulate the bidding

strategy of a renewable power producer with a storage option in the day-ahead

market as an MDP. They develop an ADP model that approximates the optimal

value function using a set of basis functions.

Kim and Powell [32] focus on optimizing commitments submitted by a wind

power producer that utilizes a storage unit in a balancing market with hour-ahead

adjustments. They formulate their problem as an MDP and derive a closed-form

solution of the optimal commitment amount of the producer. Mauch et al. [47]

investigate the profitability of committing in the day-ahead market for an energy

system consisting of a wind farm and a compressed air energy storage (CAES)

system. They assume that the producer can either sell the generated energy

directly or store it in the CAES system for later dispatch. They use Monte Carlo

simulation to calculate the expected profit by generating possible wind generation

scenarios from various empirical probability distributions. They formulate an

MDP to find the optimal dispatch amount with and without CAES.

Ding et al. [48] analyze the coordinated operation of a wind power pro-

ducer with a PHES facility in day-ahead and intraday markets. They propose a

chance-constrained formulation to consider the possibility of wind power genera-

tion within a given time interval and scenario while ensuring that the forecasted

wind power amount can only exceed the actual amount to a certain extent. Cas-

tronuovo et al. [49] consider three utilization of a wind-PHES energy system: (i)

PHES facility is used for price arbitrage purposes; (ii) PHES facility is used as

a back-up source to decrease any energy deviations in wind generation; and (iii)

PHES facility is not included in the commitment decisions; therefore, the wind
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power producer can only sell energy to the market. It is only included in the op-

erational phase to minimize imbalance costs. They formulate these problems as a

stochastic optimization model and incorporate a chance constraint in which the

wind power generated is greater than both the amount consumed by the PHES

facility and the amount sent to the power grid with a certain probability.

Ding et al. [50] consider the commitment decisions and operational strategies

for a wind farm with a storage unit in the day-ahead market. They develop a

mixed integer nonlinear programming model to determine the optimal commit-

ments and reserve capacity that should be available before the real-time operation.

Gönsch and Hassler [51] formulate the commitment problem of a wind power pro-

ducer having a storage unit in an intraday market and develop an ADP algorithm

that combines approximate policy iteration with classical backward induction to

solve the problem. Hassler [52] extends the work of [51] by constructing more

straightforward yet effective heuristic decision rules. Finnah and Gönsch [53] ex-

tend the work of [51] and [52] by allowing for two storage units (a battery and

a hydrogen-based storage unit) and solving the problem with a backward ADP

algorithm.

Gomes et al. [54] study the commitment decisions in the day-ahead electricity

market for a wind and photovoltaic power producer with battery storage. They

formulate a two-stage stochastic optimization model by generating scenarios to

include wind speed, solar radiation, and electricity price uncertainties. Al-Swaiti

et al. [55] consider a thermal power plant along with a PHES facility in day-ahead

and ancillary services markets. They develop a stochastic optimization model to

study the producers’ coordinated bidding problem by building scenario trees to

include the uncertainties in wind speed and electricity price. They perform their

analysis for different risk aversion attitudes of the producer. Considering the

uncertainties in wind speed and electricity prices, Diaz et al. [56] formulate the

energy commitment of a wind power producer operating a storage unit as an

MDP for the Spanish day-ahead, intraday, and balancing markets. They assume

that the producer can submit her commitments to various markets operating in

the same dispatch hour.
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Finally, several papers study the optimal operation of renewable power plants

together with energy storage systems without explicitly focusing on commitment

decisions: Castronuovo and Lopes [57] present a stochastic optimization model

for identifying the optimal daily operation schedule to be followed by a wind

power plant and a PHES facility. The wind uncertainty is incorporated into

the model with scenario generation. Brown et al. [58] optimize the pumping

and generation decisions of a PHES facility to fully exploit the wind potential

of an island using a linear programming method. The authors employ scenarios

generated through fuzzy clustering to account for the stochastic nature of load

and renewable production.

Duque et al. [59] propose a statistical method to find the optimal operation

schedule of a wind power plant and a PHES facility consisting of a single reservoir.

They generate scenarios to represent the uncertainty in wind speed. Vespucci et

al. [60] present a stochastic optimization model for daily operation scheduling

of an energy system consisting of a wind power plant and a PHES facility. The

hourly wind power production uncertainty is modeled using scenario trees. They

also evaluate the value of stochastic solution. Harsha and Dahleh [61] formulate

the energy storage and sizing problem for a wind power plant as an MDP. They

assume that any excess energy is lost or sold back into the grid at zero price.

They prove that the optimal storage policy is a price-dependent dual-threshold

policy.

Xi et al. [62] evaluate the use of battery storage for multiple applications, such

as arbitrage, back-up, and ancillary services. In each time period, the goal is to

find the amount of energy that should be charged/discharged and the amount

of energy that should be sold to the ancillary services market. They formulate

the problem as an MDP and provide a suboptimal operation policy with an

ADP technique. Tang et al. [63] present a comparative analysis of several types

of energy storage commonly used in real-world scenarios, including lead acid,

sodium sulphur, and fuel cell, in the context of an optimal operation problem

with stochastic wind power generation and electricity price. They formulate the

problem as an MDP and utilize a monotone adaptive dynamic programming

method to simulate the optimal policy.

15



Table 2.1: Classification based on the optimization techniques.

Research Topic Optimization Technique References

(i) Energy
commitment problem
for renewable power
generators

Stochastic Optimization [25], [34], [35], [36],
[37], [38], [39], [40],
[44], [45], [48], [49],
[54], [55]

Markov Decision Process [32], [33], [46], [47],
[51], [52], [53], [56]

Deterministic Optimization [41], [42], [43], [50]

(ii) Joint operation of
renewable power
generation and energy
storage

Stochastic Optimization [57], [59], [60]

Markov Decision Process [8], [61], [62], [63],
[64], [65]

Deterministic Optimization [58]

Zhou et al. [8] propose an MDP for the operations of a wind farm co-located

with an industrial battery. Avci et al. [64] propose an MDP for the operations

of a wind farm co-located with a pumped hydro energy storage facility having

two connected reservoirs at different altitudes. Both [8] and [64] establish the

optimality of state-dependent threshold generation and storage policies under

positive electricity prices and limited transmission capacity. They develop time-

series models for wind speed and electricity price and incorporate these models

into their MDP. They evaluate the use of several heuristic methods aimed at

reducing the computational burden of the problem.

Peng et al. [65] focus on optimizing the joint operations of three distinct com-

ponents within an energy system, namely a renewable source, a flexible source

(natural gas), and a storage unit. They identify the optimal structure for op-

erating policies, focusing on the storage control policy. They also examine the

investment costs associated with these resources and analyze their interrelation-

ships to identify the most efficient investment strategies.

Table 2.1 summarizes the optimization techniques used in the studies for both

research streams (i) and (ii). It can be seen that the majority of papers that

study energy commitment problems employ stochastic optimization models in
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(i)

[25], [33], [34], [35],

[36], [37], [38], [39],

[40], [41], [42], [43],

[44]

(ii)

[8], [57], [58], [59],

[60], [61], [62], [63],

[64], [65]

[32],

[45], [46],
[47], [48],
[49], [50],
[51], [52],
[53], [54],
[55], [56]

Figure 2.1: Classification based on the research topics: (i) Energy commitment
problem for renewable power generators and (ii) Joint operation of renewable
power generation and energy storage.

which they capture uncertainty with scenario generation. MDPs have rarely

been used as a modeling approach in this stream, but they have gained attention

in recent years due to their ability to resolve uncertainties as the decision-maker

advances in time and make adaptive decisions based on real-time realizations

of uncertainties. In addition, MDPs provide a precise mathematical framework

for deriving structural results analytically by capturing the multi-dimensional

dynamics and uncertainty inherent in the problem. Figure 2.1 shows papers that

present a Venn diagram of studies that fall into the two research streams described

in (i) and (ii). It can be seen from Figure 2.1 that out of the 36 reviewed studies,

13 of them examine the joint operation of renewable power plants with energy

storage systems while considering commitment decisions. Among these studies,

[32], [46], [47], [51], [52], [53], and [56] formulate their problem as an MDP.

This thesis makes several contributions to the research stream of joint opti-

mization of the operations of renewable power plants with energy storage systems

in electricity markets. These contributions are discussed as follows:

• Chapter 3 is the first attempt to develop an MDP framework to distinguish

between the following two roles of a battery: when it is used to support
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either intentional deviations from commitments or fulfillment of commit-

ments. We present and compare two different MDP formulations for these

different roles of the battery under uncertainty. We investigate the effects of

system components (battery and transmission line) and spot market char-

acteristics (negative electricity prices, two-way system-market transactions,

and asymmetric imbalance prices) on the system operations and profits in

different environments.

• Chapters 4 and 5 are the first attempts to provide multi-dimensional struc-

tural properties, including supermodularity and joint concavity, for the op-

timal profit function. These properties are leveraged to prove the optimality

of a state-dependent threshold policy for a renewable power producer who

jointly optimizes her energy commitment, generation, and storage decisions.

In Chapter 4, we employ the optimal policy structure to construct efficient

and scalable heuristic solution methods.

• Chapter 6 is the first attempt to establish a theoretical upper bound on

the total cash flow difference between two problem settings: selling energy

to or purchasing energy from the market in real-time (i) with making ad-

vance commitment decisions and (ii) without making advance commitment

decisions. We examine the impact of advance commitment decisions on the

producer’s storage and generation decisions.
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Chapter 3

Deviations from Commitments:

Markov Decision Process

Formulations for the Role of

Energy Storage

3.1 Introduction

Motivated by the increasing trend of renewable power generators co-located with

batteries, we study the operations of a wind power plant paired with a battery.

This energy system is connected via a transmission line to a spot market that

operates with hourly commitments and settlements. We focus on detailed repre-

sentations of the battery (e.g., energy and power capacities as well as asymmetric

and imperfect efficiencies for storing/generating energy) and the transmission

line (e.g., selling/purchasing capacity and imperfect efficiency). In this chapter,

we examine various roles of the batteries by considering two possible problem

settings. In the first setting, the producer may intentionally deviate from her

commitments for a better profit. In the second setting, however, the producer

This chapter is published in International Journal of Production Economics [66].
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needs to fulfill her commitments as much as possible, storing any excess wind en-

ergy as long as the battery capacity allows. We also consider two other settings

that are the special cases of the above settings with no battery. In these settings,

the producer decides how much energy to commit to the market, to generate in

the wind power plant, and to charge into or discharge from the battery. Since the

transmission line has a finite capacity and negative electricity prices may occur

in our model, the producer also decides how much energy to curtail in the wind

power plant.

Deviations from commitments can be desirable for the wind power producer

in our problem setting: If the generated wind energy falls short of meeting the

commitment, the producer is expected to discharge the battery to compensate

for the shortfall and pay the penalty for the remainder (if there is any). If the

generated wind energy exceeds the commitment, the producer is expected to

charge the battery and curtail the excess amount. However, if the future price is

anticipated to be very low (or high) based on the latest available information, the

opportunity cost of charging (or discharging) the battery to meet the commitment

may be higher than the corresponding penalty for not meeting the commitment.

Hence, the producer may choose to stay in a positive (or negative) imbalance,

observed when the committed amount is less (or greater) than the actual amount

provided in real-time, without charging (or discharging) the battery as per the

commitment, motivating us to study the first problem setting. Such use of the

battery to intentionally deviate from commitments is observed in some electricity

markets in the U.S. (e.g., markets controlled by CAISO, NYISO, and MISO) and

in Europe (e.g., the Netherlands and Belgium) [19, 20, 21, 22].

While the intentional deviations can be financially attractive for the producers,

they may lower the reliability of the grid operations. Therefore, some countries

explicitly implement some regulations to prevent this practice. For example, the

intentional deviations were allowed in the German electricity market from 2003

to 2009, but these deviations gradually disappeared after 2011 when this practice

was not allowed by the German system operator [22, 53, 67]. Strategically causing

an energy imbalance is also not allowed in Italy [68]. Under such regulations, the

producers must fulfill their commitments as much as possible even when it is
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financially unattractive to do so, motivating us to study the second problem

setting.

We formulate the real-time decision-making process of the wind power pro-

ducer as an MDP. The intentional deviations in our study can arise due to the

price and wind uncertainties that are resolved over time. (The intentional devia-

tions could also arise from any potential strategic behavior of the power producers

to manipulate the energy dispatch/demand amounts and electricity prices in the

market and/or to enter multiple markets to profit from the price differences be-

tween markets. This possibility is beyond the scope of this chapter.) Therefore,

investigating the different roles of the battery (i.e., a strategic tool to intention-

ally deviate from commitments in the first setting or a back-up source to fulfill

commitments in the second setting) becomes critical in the presence of price and

wind uncertainties. The two settings would be identical if there were no such un-

certainties (under a mild condition in the initial period of our MDP). Our MDP

framework enables us to effectively capture these uncertainties in the hour-ahead

market structure by allowing future uncertainties to be resolved only when the

producer moves forward in time. The producer can thus make adaptive decisions

based on the realizations of uncertainties in real-time. In addition, MDPs pro-

vide clean analytical formulations by capturing the complex dynamics inherent in

many real-life problems like ours. Focusing on the hour-ahead market structure

with our MDP framework, we are able to analytically compare the total profits

of the two settings and numerically solve the realistic-size problem instances to

optimality.

We conduct an extensive numerical study by focusing on the historical electric-

ity price and wind speed data from a market where negative prices were observed

in the past. We construct time series models that can represent the historical

data with acceptable accuracy levels. Our time series models capture the mean-

reversion, seasonality, and spike components of electricity prices, as well as the

significant seasonal patterns of wind speeds. We incorporate these models into our

MDP with the help of exogenous state variables. We then solve the problem with

a backward dynamic programming algorithm for various realistic configurations

of our energy system.
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In the literature on joint operation of renewable power generation and energy

storage in electricity markets, papers that study MDP representations of a similar

problem are those of Kim and Powell [32], Löhndorf et al. [40], Löhndorf and

Minner [46], Gönsch and Hassler [51], Hassler [52], Diaz et al. [56], and Finnah

and Gönsch [53]. See Chapter 2 for detailed discussions of these studies.

The above studies do not examine the potential supporting role of the storage

unit to intentionally deviate from commitments. Specifically, in these studies,

the renewable power producer can utilize the storage unit only to reduce the

energy imbalance as much as possible. Therefore, there are no generation and

storage decisions in their MDP formulations. In addition, none of these studies

investigate the effect of negative electricity prices. However, as the renewable

power generation grows in electricity markets, the negative prices are unavoidably

observed more frequently, increasing the need for this investigation [69, 70, 71].

These studies, except Finnah and Gönsch [53], also assume that electricity can

only be transmitted from the energy system to the market (i.e., the renewable

power producer can only sell energy to the market). However, when the electricity

price is too low or negative, the producer with a storage unit may want to benefit

from these prices by purchasing energy from the market. In Kim and Powell

[32] and Gönsch and Hassler [51], the imbalance price applies only to the case of

negative imbalance (i.e., when the committed amount exceeds the actual amount

provided). Löhndorf et al. [40] assume that when the producer cannot fulfill

her commitment in the day-ahead market, the imbalance can be cleared in the

intraday market. Therefore, they do not explicitly model the penalty costs that

can be observed in real-time. Lastly, Hassler [52] and Finnah and Gönsch [53]

assume that the imbalance prices are the same regardless of the direction of

imbalance (negative or positive). We relax all of the above assumptions in this

study.

To sum up, we contribute to the energy literature as follows: We present MDP

formulations for the energy commitment, generation, and storage problem of a

producer who uses the battery (i) as a strategic tool for supporting intentional

deviations from her commitments or (ii) as a back-up source for fulfilling her

commitments. We analytically show that the role of the battery in (i) brings
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an additional profit to the producer, while this role of the battery is likely to be

undesirable for the market. We numerically investigate the impacts of the system

components, imbalance pricing parameters, negative electricity prices, and wind

availability in these settings when the battery is available and when it is not.

We summarize below the key findings from our numerical study that may have

policy implications for both regulatory authorities and wind power producers in

electricity markets:

• If the producer cannot make intentional deviations, the existence of a bat-

tery reduces the energy imbalance. However, if she is allowed to make

intentional deviations, the existence of a battery has an opposite effect,

inducing the negative imbalance more than the positive imbalance.

• When the intentional deviations are allowed, the imbalance amounts can be

reduced by properly choosing the imbalance pricing parameters. However,

the imbalance amounts in the absence of a battery are not affected by the

symmetric imbalance pricing parameters.

• When the intentional deviations are not allowed, the imbalance pricing pa-

rameters substantially affect the imbalance amounts of the producer with no

battery. However, the existence of a battery makes the producer relatively

insensitive to the imbalance pricing parameters.

• When the intentional deviations are not allowed, a higher battery capacity

tends to induce a lower imbalance amount. When the intentional devia-

tions are allowed, a higher battery capacity may induce a lower imbalance

amount under a low transmission line capacity, whereas it induces a higher

imbalance amount under a high transmission line capacity.

• Although the existence of a battery provides the opportunity to purchase

energy when the electricity prices are negative, the total profits in all set-

tings suffer from an increment in the negative price occurrence frequency.

The supporting role of the battery for intentional deviations becomes more

valuable as this frequency grows.
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The remainder of this chapter is organized as follows. Chapter 3.2 formulates

the energy commitment, generation, and storage problem for each of the two

settings. Chapter 3.3 presents our time series models for the electricity price and

wind speed as well as their discrete-state representations that we require for our

numerical experiments. Chapter 3.4 presents our numerical results and Chapter

3.5 concludes. Additional numerical results for Chapter 3.4.4 are contained in

Appendix A.

3.2 Problem Formulation

We consider an energy system that consists of a wind power plant and a bat-

tery. See Figure 3.1 for an illustration of this system. The producer can gen-

erate energy from the wind power plant and the battery. The producer can

also store energy by charging the battery. The producer participates in a sin-

gle spot market that involves hour-ahead commitments and hourly settlements.

The single-market assumption has been made in many papers that focus on the

operations of renewable power producers in electricity markets; see, for exam-

ple, [32, 33, 46, 51, 52, 53] and [72]. Considering the uncertainties in electricity

price and wind speed, the producer should make several challenging decisions

in each time period: how much energy to generate in the wind power plant,

to charge/discharge into/from the battery, and to commit to selling/purchasing

to/from the market in the next period. The system makes only a very limited

contribution to the overall energy supply in the market; therefore, the producer

can be viewed as a price-taker. This assumption has also been made in many

papers that focus on the operations of renewable power producers in electricity

markets; see, for example, [32, 34, 46, 50, 51, 52] and [56].

The battery has finite energy and power capacities. The energy capacity of

the battery is the maximum amount of energy that can be stored in the battery.

The power capacity is the maximum amount of energy that can be generated

(by discharging the battery) or stored (by charging the battery) in a single time

period. We denote the energy capacity of the battery by CS. We denote the
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Figure 3.1: Illustration of the energy system.

generation and storage capacities by KD and KC , respectively, in power units.

The transmission line also has a finite power capacity. We denote this capac-

ity by KT in power units. For notational convenience, we define CC = KC∆t,

CD = KD∆t, and CT = KT∆t, where ∆t is the length of one time period. For

the battery, we denote by γ ∈ (0, 1] and θ ∈ (0, 1] the efficiency parameters in

the discharging and charging modes, respectively. For the transmission line, we

denote by τ ∈ (0, 1] the efficiency parameter in both the selling and purchasing

modes. These parameters represent the ratio of energy output to energy input.

We study the energy commitment, generation, and storage problem in this

system via a dynamic model over a finite planning horizon of T periods. Let

T := {1, 2, . . . , T} denote the set of periods. We define St ∈ [0, CS] as the

amount of energy accumulated in the battery at the beginning of period t. The

producer can either sell or purchase energy in any particular period. We define

Qt ∈ R as the amount of energy that the producer is obligated to sell if Qt ≥ 0

and to purchase if Qt < 0 in period t, in order to fulfill the commitment that

she has made in period t − 1. We include St and Qt in our state description.

We define Wt ∈ R+ as the wind speed in period t and f(Wt) as the maximum

amount of wind energy that can be generated in period t. We derive f(Wt) from

the multiplication of the power output of a wind turbine when the wind speed is

Wt, the number of turbines in the wind power plant, and the period length ∆t.

Lastly, we define Pt ∈ R as the electricity price in period t. We also include the
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periodt t+ 1

Pt, Qt, St,Wt

qt, et

R(Qt, It, et)
State variables:

Decision variables:

Figure 3.2: Sequence of events in each period.

tuple It := (Pκ,Wκ)κ≤t in our state description. The state tuple It evolves over

time according to an exogenous stochastic process.

In any period t ∈ T , the producer first observes the exogenous state variables

(Pt and Wt) as well as the endogenous state variables (Qt and St). The producer

then determines the amount of energy to be committed to selling or purchasing

in period t + 1 by signing the contract in period t, which we denote by qt ∈ R,

and the actual amount of energy to be sold or purchased in period t, which we

denote by et ∈ R. The transmission line capacity implies that et ≤ τCT if et ≥ 0

(the energy is sold) and −CT ≤ et if et < 0 (the energy is purchased). The

market pays the purchasing cost for the amount of energy it actually receives,

whereas the producer pays the purchasing cost for the amount of energy supplied

on the other end of the transmission line. Although the maximum amount of

energy that can be supplied to the transmission line (on either end) is CT , the

actual amount of energy received by the market (and thus sold by the producer)

cannot exceed τCT due to the efficiency loss during transmission. An alternative

interpretation of such market transactions is that the producer is obligated to

pay the grid usage fee per unit energy sold or purchased. Finally, we note that

the actual amount of energy sold or purchased in period t may be different from

the state variable Qt. See Figure 3.2 for an illustration of the sequence of events.

The producer faces the challenge of ensuring that the energy committed to

selling/purchasing is sold/purchased in real-time. If the producer does not fulfill

her contractual commitment in real-time (i.e., Qt 6= et), she pays a penalty cost

that varies with her deviation (i.e., the difference between the committed and

realized amounts). There are two possible cases: (i) The commitment is less than
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the amount that the producer indeed provides in real-time (i.e., Qt < et); the

producer experiences a ‘positive imbalance.’ (ii) The commitment is greater than

the amount that the producer indeed provides in real-time (i.e., Qt > et); the

producer experiences a ‘negative imbalance.’

In our study, we implement a market-based imbalance pricing mechanism that

is mostly related to the U.S. type markets. See Chapter 2.1.3 for detailed dis-

cussions on imbalance pricing mechanisms. Specifically, we take the imbalance

prices as linear functions of the market price: the imbalance price in the case of

positive imbalance is always K+
p (K−p ) times the market price and the imbalance

price in the case of negative imbalance is always K+
n (K−n ) times the market price.

This assumption is in line with the literature (e.g., [32, 33, 46, 51, 52, 53, 67]).

To approach the problem in a more general sense, we ensure that the producer

is settled with a penalized price in the cases of positive and negative imbalances.

This principle has been adopted in many related papers (e.g., [25, 34, 46]). The

payoff in period t is given by

R(Qt, It, et) =



QtPt +K+
p Pt(et −Qt) if Pt ≥ 0 and Qt < et,

QtPt −K+
n Pt(Qt − et) if Pt ≥ 0 and Qt ≥ et,

QtPt +K−p Pt(et −Qt) if Pt < 0 and Qt < et,

QtPt −K−n Pt(Qt − et) if Pt < 0 and Qt ≥ et,

where 0 ≤ K+
p < 1 < K+

n and 0 ≤ K−n < 1 < K−p . In this formulation, K+
p Pt

and K+
n Pt denote the imbalance prices when the electricity price is nonnegative

in the cases of positive and negative imbalances, respectively. Likewise, K−p Pt

and K−n Pt denote the imbalance prices when the electricity price is negative in

the cases of positive and negative imbalances, respectively. The first term of the

payoff function corresponds to the instant revenue QtPt in period t, which may

be negative due to negative electricity prices or negative commitment levels. The

second term of the payoff function captures the penalty payments in period t.

We consider two possible problem settings: In the first setting, the producer
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can intentionally deviate from her commitments in real-time transactions (Chap-

ter 3.2.1). In the second setting, the producer should always fulfill her commit-

ments as much as possible while keeping the curtailment at the minimum level

(Chapter 3.2.2).

3.2.1 The use of battery for intentional deviation

In this setting, the producer may choose to deviate from her commitments in real-

time transactions by jointly optimizing the available energy sources (wind power

plant and battery). Specifically, she determines the amount of wind energy that

will be generated in period t, which we denote by wt ∈ R+, and the amount of

energy that will be discharged or charged in period t, which we denote by st ∈ R.

The battery is discharged if st ≥ 0 and charged if st < 0. Let U(Qt, St, It) denote

the set of action triplets (qt, st, wt) that are admissible in state (Qt, St, It). For

any action triplet (qt, st, wt) ∈ U(Qt, St, It), the following conditions must hold:

The observed wind speed limits the amount of wind energy that can be generated

in the form of 0 ≤ wt ≤ f(Wt). The energy and power capacities of the battery

imply that −min{CS − St, CC} ≤ st ≤ min{St, CD}. The amount of energy that

can be charged/discharged into/from the battery and the amount of wind energy

that can be generated are restricted together by the transmission line capacity

(see [73] and [74]). Thus, the power capacity of the transmission line implies that

γst+wt ≤ CT if st ≥ 0 and −τCT ≤ st/θ+wt ≤ CT if st < 0. The state variables

St and Qt evolve over time as follows: St+1 = St − st and Qt = qt−1.

There are three different types of decisions that we need to consider in order

to formulate the amount of energy sold or purchased in any period t: (i) A

certain amount of energy is generated by discharging the battery (st ≥ 0). The

resulting energy together with the generated wind energy is sold in the market.

(ii) A certain amount of energy is stored by charging the battery (st < 0). If

the generated wind energy is sufficient to charge the battery (st/θ ≥ −wt), the

excess wind energy is sold to the market. (iii) If the generated wind energy is

not sufficient to charge the battery (st/θ < −wt), the required additional energy
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is purchased from the market. Hence, the amount of energy sold or purchased in

period t is defined as a function of actions st and wt:

et = E(st, wt) :=


(γst + wt)τ if st ≥ 0,

(st/θ + wt)τ if − wt ≤ st/θ < 0,

(st/θ + wt)/τ if st/θ < −wt ≤ 0.

Since the decision variable st is not constrained by the commitment level Qt,

the producer has the flexibility to use the battery as a strategic tool to intention-

ally deviate from her commitments. When the battery has sufficient energy to

fulfill the commitment, the producer may choose to stay in negative imbalance

in order to keep the battery full enough to benefit from high electricity prices in

the future. The producer may also choose to stay in positive imbalance in order

to keep the battery empty enough in anticipation of lower prices in the future.

Without loss of optimality, the amount of energy committed to selling (i.e., qt ≥
0) can be restricted to take values no larger than the maximum amount of energy

that can be sold (bounded by the transmission line capacity, i.e., qt ≤ τCT ).

In addition, the amount of energy committed to purchasing (i.e., qt < 0) can

be restricted to take values no larger than the maximum amount of energy that

can be stored (bounded by the available storage capacity CS−(St−st)
θτ

, the charging

capacity CC
θτ

, and the transmission line capacity CT ). Therefore, at optimality,

−min
{
CS−(St−st)

θτ
, CC
θτ
, CT

}
≤ qt ≤ τCT , ∀t ∈ T , and −min

{
CS−St
θτ

, CC
θτ
, CT

}
≤

Qt ≤ τCT , ∀t ∈ T \{1}.

A control policy π is the sequence of decision rules (ηπt (Qπ
t , S

π
t , It))t∈T , where

ηπt (Qπ
t , S

π
t , It) := (qπt (Qπ

t , S
π
t , It), s

π
t (Qπ

t , S
π
t , It), w

π
t (Qπ

t , S
π
t , It)), and Qπ

t and Sπt

denote the random state variables governed by policy π, ∀t ∈ T \{1}. We denote

the set of all admissible control policies by Π. For any initial state (Q1, S1, I1),

the optimal expected total cash flow over the finite horizon is given by

max
π∈Π

E

[∑
t∈T

R(Qπ
t , It, E(sπt (Qπ

t , S
π
t , It), w

π
t (Qπ

t , S
π
t , It)))

∣∣∣∣Q1, S1, I1

]
.
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For each period t ∈ T and each state (Qt, St, It), the optimal profit function

v∗t (Qt, St, It) can be calculated with the following dynamic programming recur-

sion:

v∗t (Qt, St, It) = max
(qt,st,wt)∈U(Qt,St,It)

{
R(Qt, It, E(st, wt)) + EIt+1|It

[
v∗t+1(qt, St+1, It+1)

]}
(3.1)

where v∗T (QT , ST , IT ) = 0. Note that v∗1(Q1, S1, I1) is the optimal expected total

cash flow for the initial state (Q1, S1, I1) over the finite horizon.

3.2.2 The use of battery for commitment fulfillment

In this setting, the producer is not allowed to intentionally deviate from her

commitments in real-time transactions. The producer must utilize the available

energy sources to fulfill her commitments as much as possible, storing any excess

wind energy as long as the battery capacity allows. In other words, the amount

of energy to be sold/purchased in period t should be as close to the state variable

Qt as possible with the minimum curtailment level. Therefore, we choose the

actions st and wt in this setting as follows:

ŝt =


min {St, CD, (Qt/τ − f(Wt))/γ} if Qt/τ ≥ f(Wt) ≥ 0,

−min {CS − St, CC , (f(Wt)−Qt/τ)θ} if f(Wt) > Qt/τ ≥ 0,

−min {CS − St, CC , (f(Wt)− τQt)θ} if f(Wt) ≥ 0 > τQt,

and

ŵt =


f(Wt) if Qt/τ ≥ f(Wt) ≥ 0,

Qt/τ + min {(CS − St)/θ, CC/θ, f(Wt)−Qt/τ} if f(Wt) > Qt/τ ≥ 0,

τQt + min {(CS − St)/θ, CC/θ, f(Wt)− τQt} if f(Wt) ≥ 0 > τQt.

Note that in this setting the producer determines only the commitment amount

qt ∈ R.
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The above formulation implies that the battery is charged only when the wind

energy potential exceeds the commitment, and it is discharged only when the

wind energy potential falls short of the commitment. More specifically, if the

commitment exceeds the maximum amount of wind energy that can be generated,

the required energy (Qt/τ −f(Wt)) is discharged from the battery with efficiency

factor γ to meet the commitment. However, the amount of energy discharged

is restricted by the storage level St and the discharging capacity CD. If the

producer committed to selling energy to the market and the maximum amount

of wind energy that can be generated exceeds the commitment, the excess energy

(f(Wt)−Qt/τ) is charged into the battery with efficiency factor θ. If the producer

committed to purchasing energy from the market, the maximum amount of wind

energy that can be generated along with the energy purchased from the market

(f(Wt)− τQt) is charged into the battery with efficiency factor θ. In both cases,

the amount of energy charged must respect the battery’s energy capacity CS

and charging capacity CC ; these capacity constraints induce curtailment of some

wind energy if the wind energy potential is too high. Since the producer makes

her commitment decisions in any period by taking into account the state of the

battery in the next period, the amount of energy committed to purchasing from

the market can indeed be purchased and stored in real-time at optimality.

The amount of energy sold/purchased in real-time can be formulated as a

function of Qt, St, and It:

êt = E(Qt, St, It) :=



(
min {γSt, γCD, Qt/τ − f(Wt)}

+f(Wt)
)
τ if Qt/τ ≥ f(Wt) ≥ 0,

Qt if f(Wt) > Qt/τ ≥ 0,

Qt if f(Wt) ≥ 0 > τQt.

If the maximum amount of wind energy that can be generated is greater than

the commitment level, then E(Qt, St, It) = Qt. Therefore, the only possible di-

rection of imbalance that the producer can experience is the negative imbalance

in which the producer sells energy to the market in real-time less than her com-

mitment. This scenario may arise due to the limited discharging capacity and
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the wind energy potential less than expected. The shortfall in this case is com-

pensated at a penalized price.

Let Û(Qt, St, It) denote the set of actions qt that are admissible in state

(Qt, St, It). Recall that, at optimality, −min
{
CS−(St−ŝt)

θτ
, CC
θτ
, CT

}
≤ qt ≤ τCT ,

∀t ∈ T , and −min
{
CS−St
θτ

, CC
θτ
, CT

}
≤ Qt ≤ τCT , ∀t ∈ T \{1}. A control policy π

is the sequence of decision rules (qπt (Qπ
t , S

π
t , It))t∈T , where Qπ

t and Sπt denote the

random state variables governed by policy π, ∀t ∈ T \{1}. We denote the set of

all admissible control policies by Π̂. For any initial state (Q1, S1, I1), the optimal

expected total cash flow over the finite horizon is given by

max
π∈Π̂

E

[∑
t∈T

R(Qπ
t , It, E(Qπ

t , S
π
t , It))

∣∣∣∣Q1, S1, I1

]
.

For each period t ∈ T and each state (Qt, St, It), the optimal profit function

v̂∗t (Qt, St, It) can be calculated with the following dynamic programming recur-

sion:

v̂∗t (Qt, St, It) = max
qt∈Û(Qt,St,It)

{
R(Qt, It, E(Qt, St, It)) + EIt+1|It

[
v̂∗t+1(qt, St+1, It+1)

]}
(3.2)

where v̂∗T (QT , ST , IT ) = 0. Note that v̂∗1(Q1, S1, I1) is the optimal expected total

cash flow for the initial state (Q1, S1, I1) over the finite horizon.

The following proposition compares the total cash flows of the two problem

settings above.

Proposition 3.2.1. v∗1(Q1, S1, I1) ≥ v̂∗1(Q1, S1, I1).

Proof. Note that v∗T (QT , ST , IT ) = v̂∗T (QT , ST , IT ) = 0. Assuming

v∗t+1(Qt+1, St+1, It+1) ≥ v̂∗t+1(Qt+1, St+1, It+1), we show v∗t (Qt, St, It) ≥
v̂∗t (Qt, St, It). Let ÛF (Qt, St, It) = {(qt, st, wt) ∈ U(Qt, St, It) : st = ŝt, wt =

ŵt, and qt ∈ Û(Qt, St, It)}. Since v∗t+1(Qt+1, St+1, It+1) ≥ v̂∗t+1(Qt+1, St+1, It+1)
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and ÛF (Qt, St, It) ⊆ U(Qt, St, It),

v∗t (Qt, St, It)

= max
(qt,st,wt)∈U(Qt,St,It)

{
R(Qt, It, E(st, wt)) + EIt+1|It

[
v∗t+1(qt, St+1, It+1)

]}
≥ max

(qt,st,wt)∈U(Qt,St,It)

{
R(Qt, It, E(st, wt)) + EIt+1|It

[
v̂∗t+1(qt, St+1, It+1)

]}
≥ max

(qt,st,wt)∈ÛF (Qt,St,It)

{
R(Qt, It, E(st, wt)) + EIt+1|It

[
v̂∗t+1(qt, St+1, It+1)

]}
= max

qt∈Û(Qt,St,It)

{
R(Qt, It, E(Qt, St, It)) + EIt+1|It

[
v̂∗t+1(qt, St+1, It+1)

]}
= v̂∗t (Qt, St, It).

Hence v∗t (Qt, St, It) ≥ v̂∗t (Qt, St, It), ∀t, implying that v∗1(Q1, S1, I1) ≥
v̂∗1(Q1, S1, I1).

Proposition 3.2.1 implies that the option of deviating from the commitments

brings an additional profit to the producer. In Chapter 3.4, we will numerically

compare the total cash flows of the two problem settings with data-calibrated

instances.

3.3 Experimental Setup for the Numerical

Study

As mentioned in the Introduction, the hour-ahead market structure allows for a

computationally tractable MDP formulation that enables us to solve the realistic-

size problem instances to optimality under uncertainty. This market structure

can be arguably viewed as a real-time market structure in the U.S. [32, 33]. Also,

recall that the intentional deviations in our study may be financially attractive

thanks to the price and wind uncertainties that can only be resolved over time.

Since the hour-ahead uncertainties can be thought of as less significant than

the uncertainties over longer time frames, the day-ahead and intraday market

structures would likely amplify the numerical insights derived in this study. In
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our numerical study, we use the real-time electricity prices obtained from NYISO,

which is one of the largest and most liquid electricity markets where negative

prices are observed [8].

In this section, using the historical data available from the State of New York,

we develop two distinct time series models for the electricity price and wind speed,

respectively (Chapters 3.3.1–3.3.2). We incorporate these parametric models into

our MDP by utilizing the exogenous state variables. We then discretize the

continuous space of the exogenous state variables for our numerical calculations

(Chapter 3.3.3). We conduct numerical experiments for various configurations of

our energy system in Chapter 3.4. We set the period length to be one hour in

our experiments.

3.3.1 Time series model for the electricity price

We consider the real-time market electricity price data available for Albany, in

the State of New York, between the years 2007 and 2019 in which the price is set

every five minutes. Since the real-time transactions in Albany are regulated by

the NYISO, we retrieve the price data from NYISO [75]. The average, median,

minimum, and maximum values of the price are $45.14, $34.09, –$3678.02, and

$3393.33, respectively. As we assume hourly periods, we include the price value

of every hour of the day in our time series model. Our time series model consists

of the components of seasonality (ψ′t), mean reversion (ρt), and spike (Jt). We

model the seasonality component via linear regression, the mean-reversion com-

ponent via an autoregressive of order one process, and the spike component via

an empirical distribution. The spike component of the price represents sudden

and large moves in the price that are independent across periods.

We take the following steps to construct our time series model: We first desea-

sonalize the price data to eliminate the effect of seasonal variation on our spike

identification. Following Zhou et al. [8], we fit a linear regression to the price

data to obtain a seasonality model {ψ̂t}t∈T :
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ψt = γ
(p)
1 +

11∑
i=1

γ
(p)
2i D

2i
t +

6∑
j=1

γ
(p)
3j D

3j
t

where γ
(p)
1 is a constant, and γ

(p)
2i and γ

(p)
3j are the coefficients of the dummy

variables D2i
t and D3j

t , that are equal to one if period t is in month i and week

day j, respectively. We calculate the deseasonalized prices {dt}t∈T by removing

the seasonal effect from the observed prices {Pt}t∈T (i.e., dt = Pt − ψ̂t). We

model the spikes {Jt}t∈T as a compound Bernoulli process; a spike occurs with

probability λ and its size follows an empirical distribution. In order to identify

the spikes, we consider the highest five percent and the lowest five percent of the

deseasonalized prices as outliers (see Janczura et al. [76] for a detailed discussion

on spike identification). The spikes {Jt}t∈T are determined by the differences

between these outliers and the mean of the remaining deseasonalized prices after

these outliers are removed. We take Jt = 0 if the price in period t is not an

outlier. We then calculate the despiked prices {P ′t}t∈T by subtracting the spikes

from the observed prices (i.e., P ′t = Pt − Jt). Since the seasonal variation can be

identified more accurately after elimination of the spikes, we now fit the above

linear regression to the despiked prices and obtain a more refined seasonality

model {ψ̂
′
t}t∈T . We calculate the despiked and deseasonalized prices {ρt}t∈T

by removing the refined seasonal effect from the despiked prices {P ′t}t∈T (i.e.,

ρt = P ′t − ψ̂
′
t).

Following Lucia and Schwartz [77], we model the despiked and deseasonalized

price as a stochastic mean-reverting process. We capture the mean-reverting

behavior via an autoregressive of order one, AR(1), model. Assuming that error

terms {εt}t∈T are independent standard normal random variables, we formulate

the AR(1) process as follows:

ρt =
(
1− κ(p)

)
ρt−1 + σ(p)εt, ∀t,

where κ(p) is the speed of mean-reversion and σ(p) is the volatility of white

noise. We have found that the mean absolute error (MAE) of this calibration

is $10.02 for the despiked prices. The parameter estimates of the AR(1) process
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are κ̂(p) = 0.357 and σ̂(p) = 15.281. Table 3.1 exhibits the parameter estimates

of the seasonality model. Figure 3.3 illustrates the empirical distribution of the

spikes. The estimate λ̂ of the spike occurrence probability is ten percent.

Table 3.1: Parameter estimates of the despiked price seasonality model.

γ̂
(p)
1 39.7689

i 1 2 3 4 5 6 7 8 9 10 11

γ̂
(p)
2i 19.12 11.37 -2.17 -6.50 -9.76 -10.10 -5.27 -6.00 -8.85 -9.83 -7.11

j 1 2 3 4 5 6

γ̂
(p)
3j 3.74 3.82 4.05 3.87 3.55 1.54
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Figure 3.3: Empirical distribution of the spikes. The spike range is indeed [-
2600, 2500]; the spikes outside the displayed range are omitted due to their low
frequencies.

3.3.2 Time series model for the wind speed

We consider the wind speed data available for Albany, in the State of New York,

between the years 2007 and 2012 in which the wind speed is recorded every five

minutes. We retrieve this data from NOAA [78]. The average, median, minimum,

and maximum values of the wind speed are 8.52, 8.21, 0.05, and 28.67, in m/s,

respectively. As we assume hourly periods, we include the wind speed value of

every hour of the day in our time series model. Our spectral analysis of the time

series indicates the existence of two significant seasonal factors: hourly and daily

patterns.
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We calibrate our hourly wind speed model via the dynamic harmonic regression

with autoregressive integrated moving average (DHR+ARIMA) model [8, 79]: We

first fit a linear regression with Fourier terms to our wind speed data to obtain a

seasonality model {f̂t}t∈T :

ft = γ
(w)
0 + γ

(w)
1 cos

2π
(
t+ ω

(w)
1

)
24

+ γ
(w)
2 cos

2π
(
dt/24e+ ω

(w)
2

)
365



where d.e is the ceiling function, γ
(w)
0 is a constant, γ

(w)
1 and ω

(w)
1 are the hourly

magnitude and phase-shift parameters, and γ
(w)
2 and ω

(w)
2 are the daily magnitude

and phase-shift parameters, respectively. We calculate the deseasonalized wind

speeds {ξt}t∈T by removing the seasonal effect from the observed wind speeds

{wt}t∈T (i.e., ξt = wt − f̂t). We then model the deseasonalized wind speed as an

AR(1) process as follows:

ξt = φ(w)ξt−1 + σ(w)εt, ∀t,

where φ(w) is the autoregressive coefficient and σ(w) is the volatility of white noise.

We have found that the MAE of our DHR+AR(1) model is only 1.08 m/s. The

parameter estimates of the DHR+AR(1) model are γ̂
(w)
0 = 8.519, γ̂

(w)
1 = 1.126,

γ̂
(w)
2 = 1.74, ω̂

(w)
1 = 0.002, ω̂

(w)
2 = −32.431, φ̂(w) = 0.931, and σ̂(w) = 1.558.

Finally, we investigate whether there exists any significant correlation between

the data sets that we use to model the electricity price and wind speed. We have

found that the Pearson correlation coefficient is only 0.031. Hence, constructing

independent time series models seems to be benign.

3.3.3 Discretization for the numerical study

Our time series models in Chapters 3.3.1–3.3.2 formulate the random component

of each exogenous state variable in our MDP as an AR(1) process. This allows us
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to reduce the computational burden of our MDP: we can redefine the exogenous

state tuple in each period t as It = (ρt, Jt, ξt), without requiring the entire histori-

cal data in this tuple. We include the spike component of the price in the tuple It

for calculation of the effective price in period t. For our numerical study, we now

provide discrete-state approximations for the continuous-state AR(1) processes

embedded in the tuple It.

For the electricity price, we characterize the AR(1) process of the random

component (i.e., the despiked and deseasonalized price) as a finite-state Markov

chain by transforming it into a lattice. A lattice can be defined as a tree with

discrete time steps that specifies attainable price levels and their probabilities

for each time step. With the estimated parameters κ̂(p) and σ̂(p), we employ the

trinomial lattice method of Hull and White [80]. Specifically, assuming hourly

time steps, the price levels can only be multiples of
√

3σ̂(p) and each price level

in each period transitions into three possible price levels in the next period.

The transition probabilities are chosen to match the first two moments of the

continuous distribution of the original AR(1) process (i.e., normal distribution

with a mean of zero and a variance of σ̂(p)). Regarding the number of time steps

that should be iterated, we follow the suggestions of Hull and White [80] and

Jaillet et al. [81], and construct a three-hour trinomial lattice for our AR(1)

process. The Markov chain obtained from this lattice has the state space P :=

{−52.93,−26.47, 0, 26.47, 52.93}. The transition matrix of this Markov chain is

P (p) =



-52.93 -26.47 0.0 26.47 52.93

-52.93 .351 .585 .065 0 0

-26.47 .052 .539 .409 0 0

0.0 0 .167 .667 .167 0

26.47 0 0 .409 .539 .052

52.93 0 0 .065 .585 .351


.

For the electricity price, we also restrict the spikes to take values from the set

J := {−350,−300, . . . , 550, 600}. We compute the probability mass function

by approximating the spikes with the closest values in J and using the empir-

ical distribution of these approximate values. Recall that the spike occurrence
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probability is ten percent in each period.

Since the maximum wind speed observed between 2007 and 2012 is 28.67

m/s, we characterize the AR(1) process of the random component of the wind

speed as a Markov chain with the state space {0, 1, . . . , 28}. For this state space,

we calculate the transition probabilities by following the procedure in Tauchen

[82]. In this procedure, we first partition the state space into the evenly spaced

intervals {(−∞, 0.5), [0.5, 1.5), . . . , [26.5, 27.5), (27.5,∞)} (except the initial and

last intervals). We then take the transition probability from one specific state

to another state as the probability that the original AR(1) process moves from

this specific state to a point in the corresponding next-state interval. In our

experiments, we consider a wind power plant with General Electric (GE) 1.5–77

turbines; the power output of each such turbine is determined by the power curve

depicted in Figure 3.4. The values of the random component greater than nine,

combined with the seasonality component that we have found to be always larger

than five for our data, yield the same power output. Hence, for computational

purposes, we reformulate our Markov chain by reducing its state space to the

set W := {0, 1, . . . , 10} via the state reduction algorithm of Sheskin [83]. The

transition matrix of this Markov chain is

P (w) =



0 1 2 3 4 5 6 7 8 9 10

0 .626 .206 .114 .042 .010 .002 0 0 0 0 0

1 .391 .252 .201 .107 .039 .009 .002 0 0 0 0

2 .191 .217 .251 .195 .101 .035 .008 .001 0 0 0

3 .071 .133 .222 .250 .188 .095 .032 .007 .001 0 0

4 .019 .057 .139 .227 .248 .182 .090 .030 .007 .001 0

5 .004 .018 .062 .146 .231 .246 .176 .084 .027 .006 .001

6 .001 .004 .019 .067 .153 .235 .243 .169 .079 .025 .006

7 0 .001 .004 .021 .071 .159 .239 .241 .163 .075 .025

8 0 0 .001 .005 .024 .076 .166 .243 .241 .164 .081

9 0 0 0 .001 .006 .026 .083 .177 .257 .260 .191

10 0 0 0 0 .001 .007 .031 .097 .210 .317 .338



.

With the above modifications, we obtain It = (ρt, Jt, ξt) ∈ I := P × J ×W .
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Figure 3.4: Power curve of a single GE 1.5-77 turbine [1].

In addition, we restrict the amount of energy accumulated in the battery and

the amount of energy committed to selling/purchasing to take values from the

sets S := {nζa ∈ [0, CS] : n ∈ Z} and Q := {kζa ∈ [−min{CC/(θτ), CT}, τCT ] :

k ∈ Z}, respectively, where ζa is a prespecified constant. For the discrete-state

version of our MDP in Chapter 3.2.1, let UD(Qt, St, It) denote the set of action

triplets (qt, st, wt) that are admissible in state (Qt, St, It) ∈ Q × S × I. The

set UD(Qt, St, It) consists of the set {(kζa, nζa,mζa) ∈ U(Qt, St, It) : k ∈ Z, n ∈
Z,m ∈ Z+}, as well as the extreme points of U(Qt, St, It). Similarly, for our

MDP in Chapter 3.2.2, let ÛD(Qt, St, It) denote the set of actions qt that are

admissible in state (Qt, St, It) ∈ Q×S ×I. The set ÛD(Qt, St, It) consists of the

set {kζa ∈ Û(Qt, St, It) : k ∈ Z}, as well as the extreme points of Û(Qt, St, It).

3.4 Discussion of the Numerical Results

We consider instances in which the planning horizon spans the first week

of August (T = 168 hours), the number of GE 1.5-77 turbines is 100,

the roundtrip efficiency is 0.85, and the transmission line efficiency is 0.97

[8]. The negative price occurrence frequency (NPF) takes values from the

set {0%, 4.02%, 7.66%, 10.96%, 13.98%}, CC = CD ∈ {50, 75, 100} MWh,

CS ∈ {200, 400, 600, 800} MWh, CT ∈ {100, 200} MWh, K+
p = K−n ∈

{0.6, 0.7, 0.8, 0.9}, and K+
n = K−p ∈ {1.1, 1.2, 1.3, 1.4}. The observed NPF is

4.02% in our time series model for the price. We obtain the other four values
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of NPF by multiplying the numbers of negative spike occurrences with certain

constants. In all instances, the discretization parameter ζa is 25 MWh, the initial

storage level S1 is the closest state to CS/2, the initial commitment level Q1 is

zero, and the initial exogenous state I1 = (ρ1, J1, ξ1) is (0,0,5). We solved the

recursion of our MDP to optimality in each instance, calculating the following

metrics:

• The expected total cash flow in million dollars (TCF),

• The expected total amount of wind energy curtailed in MWh (WEC),

• The expected total negative imbalance in MWh (NI),

• The expected total positive imbalance in MWh (PI), and

• The expected total imbalance (deviation) in MWh (ED).

We label the problem setting in Chapter 3.2.1 as ‘ID’ (the initials of ‘intentional

deviation’) and the problem setting in Chapter 3.2.2 as ‘UD’ (the initials of

‘unintentional deviation’). We also consider two other settings that are the special

cases of ID and UD with no battery. We label the problem setting in Chapter 3.2.1

with CS = 0 as ‘ID-NB’ (ID and the initials of ‘no battery’) and the problem

setting in Chapter 3.2.2 with CS = 0 as ‘UD-NB’ (UD and the initials of ‘no

battery’). In this section, we examine the effects of system components and

market characteristics on TCF, WEC, NI, PI, and ED. In Chapter 3.4.1, we vary

only the values of CC = CD, CS, and CT . In Chapter 3.4.2, we vary only the

values of K+
p = K−n and K+

n = K−p . In Chapter 3.4.3, we vary only the value of

NPF.

3.4.1 The impact of the size of system components

In this section, we examine the effects of the battery’s energy capacity (CS) and

charging/discharging capacity (CC = CD), and the transmission line capacity
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(CT ) on the values of TCF, WEC, NI, PI, and ED when K+
p = K−n = 0.9,

K+
n = K−p = 1.1, and NPF= 4.02%. See Table 3.2 and Figure 3.5.

We observe from Table 3.2 that TCF increases with CS, CC = CD, and CT

for both ID and UD. The benefit of an additional battery capacity diminishes as

the battery becomes larger in capacity and thus the transmission line capacity

becomes more binding. We also observe that TCFs are higher in ID than in UD,

as expected from Proposition 3.2.1. The capacity levels have a greater impact

on TCF in ID than in UD because the battery in ID can be used strategically

to make more profit. In addition, we note from Table 3.2 that NIs are higher

than PIs for ID. When the producer committed to selling energy to the market,

selling less than her commitment in real-time may provide a greater return than

selling more than her commitment, since selling more is likely to reduce the

battery level more. When the producer committed to purchasing energy from

the market to benefit from the negative/low prices, purchasing more than her

commitment in real-time provides a greater return than purchasing less than her

commitment. Therefore, the producer tends to experience negative imbalances

more than positive imbalances. Finally, both NIs and PIs increase with the

transmission line capacity.

Table 3.2 also shows for ID that an increase in CS may lead to a slight de-

crease in ED when CT and CC = CD are low, whereas it leads to an increase in

ED when CT or CC = CD is high. The maximum amount of energy committed to

selling or purchasing is constrained by the transmission line and battery charg-

ing/discharging capacities. Having a large storage capacity gives the flexibility to

better meet commitments and also deviate from commitments more substantially.

When CT and CC = CD are low, the producer better meets her commitments

with an increase in CS, thanks to the constrained commitment levels. On the

other hand, when CT or CC = CD is high, the producer can deviate from her com-

mitments more substantially with an increase in CS, due to the unconstrained

commitment levels. For UD, however, increasing CS reduces ED in many cases

and only slightly raises ED in the other cases. This is because the producer in

UD should meet her commitments as much as possible; she may only experience
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Table 3.2: Numerical results when K+
p = K−n = 0.9, K+

n = K−p = 1.1, and NPF
= 4.02%.

Setting CT CC = CD CS TCF WEC NI PI ED

ID

50

200 0.605 2460 2643 395 3038
400 0.631 2077 2797 313 3109
600 0.643 1847 2784 279 3062
800 0.651 1670 2709 261 2970

75

200 0.616 2520 2931 359 3290

100
400 0.648 2162 3220 242 3462
600 0.665 1949 3304 189 3493
800 0.676 1777 3283 160 3443

100

200 0.619 2495 2995 350 3345
400 0.653 2134 3303 232 3535
600 0.671 1937 3388 179 3567
800 0.682 1786 3363 150 3514

50

200 0.746 613 4365 1201 5566
400 0.774 614 4585 1183 5768
600 0.788 614 4742 1244 5986
800 0.797 614 4743 1252 5995

75

200 0.775 614 5263 951 6214

200
400 0.817 616 5906 1234 7140
600 0.840 619 6113 1304 7418
800 0.855 618 6290 1339 7628

100

200 0.795 615 6231 1070 7301
400 0.848 616 7204 1235 8439
600 0.879 619 7469 1327 8796
800 0.899 620 7653 1380 9033

UD

50

200 0.540 1769 844 0 844
400 0.562 1318 611 0 611
600 0.575 1034 535 0 535
800 0.584 836 512 0 512

75

200 0.542 1777 660 0 660

100
400 0.567 1313 386 0 386
600 0.582 1017 275 0 275
800 0.592 811 224 0 224

200 0.543 1779 646 0 646

100
400 0.569 1312 357 0 357
600 0.584 1011 237 0 237
800 0.595 799 175 0 175

50

200 0.623 258 683 0 683
400 0.637 300 611 0 611
600 0.646 320 634 0 634
800 0.653 328 665 0 665

75

200 0.630 156 502 0 502

200
400 0.651 181 446 0 446
600 0.664 204 465 0 465
800 0.673 220 493 0 493

100

200 0.633 113 496 0 496
400 0.658 120 374 0 374
600 0.675 135 366 0 366
800 0.687 150 378 0 378
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negative imbalances, possibly due to the battery’s capacity constraints. The de-

crease in ED is more significant when the transmission line capacity is low, that

is, when the commitment decisions are more restricted.

We observe from Figure 3.5 that when the transmission line capacity is low

(the left plots in Figure 3.5), an increase in CS leads to a decrease in WEC in both

ID and UD. Since the low transmission line capacity limits the amount of energy

that can be sold in real-time, a battery with larger energy capacity helps the

producer store more of the excess wind energy, reducing the curtailment amount.

When the transmission line capacity is high (the right plots in Figure 3.5), on

the other hand, WECs in ID and UD are not affected much by an increase in

CS. Since the high transmission line capacity allows the producer to sell a large

amount of the available wind energy, increasing the battery’s energy capacity has

no significant impact on the curtailment amounts.

3.4.2 The impact of imbalance pricing parameters

In this section, we examine the effects of the imbalance pricing parameters on the

values of TCF, WEC, NI, PI, and ED when CS = 400 MWh (for ID and UD),

CC = CD = 50 MWh (for ID and UD), CT = 200 MWh, and NPF = 4.02%. See

Tables 3.3-3.4 and Figures 3.6-3.7.

We first note that a decrease in K+
p (K−n ) and an increase in K+

n (K−p ) improve

the effectiveness of the imbalance pricing mechanism, while draining the pro-

ducer’s profit. We observe from Tables 3.3 and 3.4 that having a battery brings a

financial benefit to the producer and this benefit is lower under smaller penalties

(e.g., K+
p = 0.9 and K+

n = 1.1). We also observe that TCF decreases in ID and

ID-NB, but only slightly in UD and UD-NB, as K+
p (K−n ) decreases. The impact

of K+
p in UD and UD-NB is not significant since the positive imbalance is not

observed in UD and UD-NB. Another observation is that TCF decreases in ID,

ID-NB, and UD-NB, yet only slightly in UD, as K+
n (K−p ) increases. Since the

producers in ID and ID-NB intentionally cause an energy imbalance, their profits

are affected by the changes in the imbalance pricing parameters. The producers
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Figure 3.5: WEC, NI, PI, and ED vs. CS when K+
p = K−n = 0.9, K+

n = K−p = 1.1,
CC = CD = 50 MWh, and NPF = 4.02%.
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Table 3.3: Numerical results for ID and ID-NB when CS = 400 MWh, CC =
CD = 50 MWh, CT = 200 MWh, and NPF = 4.02%.

Setting K+
p = K−n K+

n = K−p TCF WEC NI PI ED

ID

0.6

1.1 0.747 612 7934 199 8133
1.2 0.734 612 5202 328 5529
1.3 0.727 612 3966 414 4380
1.4 0.723 613 3436 472 3908

0.7

1.1 0.754 612 7345 256 7601
1.2 0.743 612 4718 434 5152
1.3 0.737 613 3647 562 4209
1.4 0.734 613 3239 647 3886

0.8

1.1 0.763 612 6407 479 6886
1.2 0.754 613 4051 843 4895
1.3 0.750 613 3221 1044 4265
1.4 0.747 614 2926 1196 4121

0.9

1.1 0.774 614 4585 1183 5768
1.2 0.769 615 3126 1755 4881
1.3 0.766 616 2612 2085 4697
1.4 0.764 616 2327 2370 4697

ID-NB

0.6

1.1 0.600 612 4161 617 4779
1.2 0.588 612 2874 1121 3996
1.3 0.578 612 2399 1428 3827
1.4 0.571 612 1973 1807 3780

0.7

1.1 0.606 612 3687 778 4465
1.2 0.595 612 2551 1317 3869
1.3 0.588 612 1973 1807 3780
1.4 0.582 612 1644 2177 3821

0.8

1.1 0.612 612 2874 1121 3996
1.2 0.604 612 1973 1807 3780
1.3 0.599 612 1511 2359 3870
1.4 0.595 612 1299 2715 4013

0.9

1.1 0.621 612 1973 1807 3780
1.2 0.616 612 1299 2715 4013
1.3 0.613 612 938 3531 4469
1.4 0.612 612 750 4113 4862
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in UD and UD-NB are vulnerable to negative imbalances, but the profit of the

producer in UD is quite robust to the changes in K+
n (K−p ) as she uses the battery

to minimize deviations from her commitments.

We observe from Figure 3.6 that WEC remains similar in UD, but increases

in UD-NB, as K+
n (K−p ) increases. When K+

n (K−p ) is large, the producer in UD-

NB prefers to commit to selling small amounts of energy to avoid any negative

imbalance, leading to large curtailment amounts. However, the producer in UD

can still commit to selling significant amounts of energy as she uses the battery

as a back-up source. We also observe that WECs in ID and ID-NB are not

affected by the change in the imbalance pricing parameters. This is because the

producers in ID and ID-NB can always sell the excess wind energy as long as the

transmission line capacity allows.

The effect of imbalance pricing parameters on ED in ID and ID-NB changes

according to the producer’s imbalance tendency. First, we note from Table 3.3

that ED in ID decreases as K+
n increases, while it may increase for small values

of K+
n as K+

p decreases. A higher penalty for negative (positive) imbalance en-

courages the producer in ID to stay in positive (negative) imbalance more than

in negative (positive) imbalance. Since the producer in ID is more inclined to

cause negative imbalances, an increase in K+
n leads to a more significant drop

in NI (compared to the increase in PI), and thus her total deviation decreases.

However, for small values of K+
n , she experiences a greater increase in NI than a

decrease in PI as K+
p decreases, leading to an increase in ED. Second, we note

from Table 3.3 that ED in ID-NB tends to decrease for small values of K+
p , while

it tends to increase for large values of K+
p , as K+

n increases. The producer in

ID-NB is more conservative in her commitment decisions, causing positive im-

balances more as she can still make a profit if the available wind energy is large

enough. A higher penalty for negative imbalance makes the producer much more

conservative in her commitment decisions. The decrease in NI dominates the

increase in PI for small values of K+
p , while the reverse is true for large values of

K+
p .
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Table 3.4: Numerical results for UD and UD-NB when CS = 400 MWh, CC =
CD = 50 MWh, CT = 200 MWh, and NPF = 4.02%.

Setting K+
p = K−n K+

n = K−p TCF WEC NI PI ED

UD

0.6

1.1 0.637 300 590 0 590
1.2 0.635 294 387 0 387
1.3 0.633 288 302 0 302
1.4 0.631 283 254 0 254

0.7

1.1 0.637 300 596 0 596
1.2 0.635 294 389 0 389
1.3 0.633 288 303 0 303
1.4 0.631 283 255 0 255

0.8

1.1 0.637 300 604 0 604
1.2 0.635 294 392 0 392
1.3 0.633 288 305 0 305
1.4 0.631 283 257 0 257

0.9

1.1 0.637 300 611 0 611
1.2 0.635 294 394 0 394
1.3 0.633 288 306 0 306
1.4 0.631 283 258 0 258

UD-NB

0.6

1.1 0.576 300 5485 0 5485
1.2 0.556 557 3976 0 3976
1.3 0.540 698 3486 0 3486
1.4 0.526 975 2796 0 2796

0.7

1.1 0.577 291 5552 0 5552
1.2 0.557 546 4022 0 4022
1.3 0.540 689 3512 0 3512
1.4 0.526 962 2825 0 2825

0.8

1.1 0.578 284 5611 0 5611
1.2 0.557 542 4039 0 4039
1.3 0.541 682 3531 0 3531
1.4 0.527 948 2857 0 2857

0.9

1.1 0.579 277 5664 0 5664
1.2 0.558 539 4050 0 4050
1.3 0.541 678 3543 0 3543
1.4 0.527 938 2878 0 2878
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We observe from Tables 3.3 and 3.4 that ED in ID is greater than in UD, UD-

NB, and ID-NB. Having a battery reduces the energy imbalance in the market

if the producer uses it to better fulfill her commitments (from UD-NB to UD).

Having a battery increases the energy imbalance if the producer uses it to sup-

port her intentional deviations (from UD to ID or from ID-NB to ID). Since the

producer in UD aims to fulfill her commitments, ED in UD is not affected much

by the changes in the imbalance pricing parameters, compared to ID and UD-

NB. Finally, we observe from Figure 3.7 that ED in ID-NB is not affected by the

changes in the imbalance pricing parameters as long as they are symmetric, while

TCF in ID-NB is affected significantly by these changes. The setting in ID-NB

under symmetric imbalance pricing parameters can be viewed as a newsvendor-

type inventory problem where the unit costs of overstocking and understocking

are equal to each other so that the critical fractile is always 0.5.

3.4.3 The impact of negative electricity prices

In this section, we examine the effects of NPF on the values of TCF, WEC, NI,

PI, and ED when CS = 400 MWh (for ID and UD), CC = CD = 50 MWh (for

ID and UD), CT = 200 MWh, K+
p = K−n = 0.9, and K+

n = K−p = 1.1. See Figure

3.8.

We observe that TCF decreases as NPF grows. This is because the average

electricity price is lower when NPF is larger. An important observation is that

having a battery for intentional deviations becomes much more valuable as NPF

grows. We also note that for small NPF values, TCF in UD is larger than

TCF in ID-NB. For large NPF values, however, TCF in UD is smaller than

TCF in ID-NB. Under nonnegative electricity prices, the producers in ID and

ID-NB do not curtail the excess wind energy (as long as the transmission line

capacity allows) since there is still a positive economic return when they sell the

excess energy to the market at a lower price than the market price. Although

the producers in UD and UD-NB could be better off by selling the excess energy

under nonnegative prices, they curtail the excess wind energy to reduce deviations
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Figure 3.6: WEC, NI, PI, and ED vs. K+
p = K−n and K+

n = K−p when CS = 400
MWh, CC = CD = 50 MWh, CT = 200 MWh, and NPF = 4.02%.

50



(0.6,1.4)(0.7,1.3)(0.8,1.2)(0.9,1.1)
0.5

0.6

0.7

0.8

(K+
p , K

+
n ) = (K−n , K

−
p )

T
C

F
(m

$)

(0.6,1.4)(0.7,1.3)(0.8,1.2)(0.9,1.1)
0

2,000

4,000

6,000

8,000

(K+
p , K

+
n ) = (K−n , K

−
p )

E
D

(M
W

h
)

ID UD ID-NB UD-NB
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4.02%.

from their commitments, as imposed by the problem setting in Chapter 3.2.2. As

NPF grows, WEC increases in ID and ID-NB more significantly than in UD and

UD-NB. For the producer in ID, the incentive to keep the battery level low to

benefit from the negative prices dominates the incentive to store the excess wind

energy in the battery. The producer in ID-NB can benefit from the negative

prices by selling energy less than her commitment, leading to large curtailment

amounts. This also explains why ID-NB can be more profitable than UD when

NPF is large.

We observe that ED increases in ID and ID-NB, decreases in UD-NB, and

remains similar in UD, as NPF grows. The producer in ID has an incentive to

purchase energy at negative prices to sell it in future periods with high prices

by deviating from her commitments (leading to greater NIs). She also has an

incentive to discharge the battery by selling energy more than her commitment

at nonnegative prices to purchase energy in future periods with negative prices

(leading to greater PIs). The producer in ID-NB has an incentive to sell energy

less than her commitment at negative prices (leading to greater NIs). She also

has an incentive to commit to selling less energy when NPF is larger so that the

positive imbalances are larger in periods with positive prices (leading to greater
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PIs). The producer in UD-NB becomes more conservative in her commitment de-

cisions to suffer less from a large NPF, thereby meeting her commitments better.

Finally, although the producer in UD wants to take advantage of the negative

prices by committing to purchasing more energy, the increase in NPF does not

have a significant effect on her deviations since her primary goal is to fulfill her

commitments as much as possible with the help of the battery.

3.4.4 The impact of wind availability

Finally, we examine the effects of season and location on our key observations in

Chapters 3.4.1-3.4.3, by extending all of our experiments in Chapters 3.4.1-3.4.3

to the month of January in the city of Albany and to the city of Buffalo in the

month of August. Recall that we performed our earlier experiments for the month

of August in the city of Albany.

Our time series model for the city of Albany implies that the months of Au-

gust and January exhibit distinct features in terms of wind speed. The average,

median, minimum, and maximum values of the wind speed in August are 6.76,

6.54, 0.06, and 27.97, in m/s, respectively. The average, median, minimum, and

maximum values of the wind speed in January are 9.98, 9.94, 0.05, and 27.01, in

m/s, respectively. We have found that our key insights related to the impacts

of imbalance pricing parameters and negative electricity prices remain valid in

January (see Tables A.1-A.6 and Figures A.1-A.8 in Appendix A). While our

key insights related to the impact of the size of system components remain valid

when transmission line capacity is high (CT = 200), we observe a few notable

differences when transmission line capacity is low (CT = 100), as can be seen

from Figure 3.9. Since there is a better wind availability in January than in Au-

gust, the transmission line capacity becomes even more binding in January when

CT = 100 so that TCF and ED are unaffected by changes in the storage capacity

for ID and UD. For the same reason, WEC declines more slowly in January than

in August as CS grows. We also note that the producer in UD can always fulfill

her commitments. This is because the producer always commits to selling the
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maximum amount of energy that the transmission line capacity allows and is able

to supply this amount of energy in real-time thanks to high wind availability.

We next consider the wind speed data available for Buffalo, in the State of New

York, between the years 2007 and 2012 in which the wind speed is recorded every

five minutes. We retrieve this data from [78]. The average, median, minimum,

and maximum values of the wind speed in August are 6.01, 5.65, 0.08, and 20.10,

in m/s, respectively. We have found that the MAE of our DHR+AR(1) model is

only 0.86 m/s. The parameter estimates of the DHR+AR(1) model are γ̂
(w)
0 =

7.587, γ̂
(w)
1 = 0.917, γ̂

(w)
2 = 1.485, ω̂

(w)
1 = −0.832, ω̂

(w)
2 = −20.627, φ̂(w) = 0.938,

and σ̂(w) = 1.200. Our key insights related to the impacts of imbalance pricing

parameters and negative electricity prices continue to hold in Buffalo. Since

there is a lower wind availability in Buffalo than in Albany, the transmission

line capacity becomes less binding in Buffalo when CT = 100 so that our key

observations for Buffalo when CT = 100 are similar to those for Albany when

CT = 200.

3.5 Concluding Remarks

In this chapter, we study the energy commitment, generation, and storage prob-

lem for an energy system that consists of a wind power plant and a battery.

We consider the following two possible settings: (i) The battery can be used

to support intentional deviations from commitments or (ii) it should be used to

minimize such deviations. We model these problems as an MDP by taking into

account the electricity price and wind uncertainties. We construct data-calibrated

time series models for the electricity price and wind speed, which we incorporate

into our MDP formulations. We numerically examine the effects of system com-

ponents, imbalance pricing parameters, and negative prices on the producer’s

profits, curtailment decisions, and imbalance tendencies for each problem setting.

Our numerical results for Albany in August show that behaving strategically

in commitment fulfillment decisions improves the wind power producer’s profit by
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9.5%, while increasing the imbalance amount by 7.3%, on average, in the absence

of a battery (UD-NB vs. ID-NB). Using the battery as a strategic tool to inten-

tionally deviate from commitments rather than restricting its use to fulfillment

of commitments improves the producer’s profit by 20.1%, while increasing the

imbalance amount by ten times (UD vs. ID). The existence of a battery increases

the profit and imbalance amount of the producer making intentional deviations

by 26.1% and 24.3%, respectively (ID vs. ID-NB). Although the existence of a

battery increases the profit of the producer aiming to fulfill her commitments by

14.4%, it reduces her imbalance amount by 90.0% (UD vs. UD-NB). Our results

may guide the wind power producers in their assessment of the battery adoption

decisions as well as the system operators in their understanding of the producers’

behavior in different environments.

Future research may extend our analysis by examining the roles of different

balancing rules, such as dual-pricing and imbalance subsidies, in the producer’s

profits and operations. In the next chapter, we evaluate the general problem

stated in Chapter 3.2.1 and characterize the optimal operating policy for the

wind power producer.
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Chapter 4

Commitment and Storage

Problem of Wind Power

Producers: Optimal Policy

Characterization under Perfect

Efficiency

4.1 Introduction

In Chapter 3, we provide managerial insights into the market participants’ be-

havior by studying the energy commitment problem for a wind power producer

in two different market settings. Taking a different route in this chapter, we char-

acterize the optimal policy structure and develop heuristic solution methods for

the more general problem setting presented in Chapter 3.2.1. Focusing on struc-

tural results and their use for algorithmic efficiency, this chapter complements

the insightful discussions in Chapter 3.

Several papers dealing with joint optimization of renewable power generation
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and energy storage in electricity markets have characterized the optimal policy

structure. See Kim and Powell [32], Zhou et al. [8], and Avci et al. [64]. See

Chapter 2 for detailed discussions of these studies.

Kim and Powell [32] derive the optimal hour-ahead commitment of a wind

power producer in closed form when the wind speed is uniformly distributed.

The only decision variable in their setting is the amount of energy committed to

selling to the market. We depart from Kim and Powell [32] by considering a more

general setting that is flexible enough to allow for energy storage and generation

decisions (in addition to commitment decisions). In their setting, Kim and Powell

[32] also assume that there is no power capacity constraint, the transmission line

is perfectly efficient, the producer can only commit to selling, and the producer

never induces any positive imbalance. We relax all these assumptions and re-

quire no specific probability distribution for the wind speed in our optimal policy

characterization.

Zhou et al. [8] and Avci et al. [64] establish the optimality of state-dependent

threshold policies. Zhou et al. [8] include the battery storage level as the only

endogenous state variable in their MDP while Avci et al. [64] include the water

levels in the upper and lower reservoirs as the two endogenous state variables.

These papers present the optimal policy structure in electricity markets that

are free of advance commitment decisions. However, the existence of advance

commitment decisions makes the problem more challenging.

In this study, unlike Zhou et al. [8], we include not only the storage level

of the battery but also the commitment decision of the previous period as our

endogenous state variables. Therefore, we characterize the optimal policy struc-

ture by establishing several multi-dimensional properties of the optimal profit

function (supermodularity and joint concavity in two dimensions) that are not

available in [8]. The endogenous state variables in [64] display different interac-

tions than ours in this study. Avci et al. [64] establish submodularity of their

profit function, revealing the substitutability effect between the water levels in

their pumped hydro energy storage facility (i.e., the gain from having more water

in the upper reservoir is smaller if there is more water in the lower reservoir, and
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vice versa). However, we establish supermodularity of our profit function under

perfect efficiency, revealing the complementarity effect between the commitment

and storage levels (i.e., the gain from a higher commitment level is larger if the

storage level is higher, and vice versa). While Avci et al. [64] show concavity in

single dimension, we prove joint concavity in two dimensions. Consequently, the

optimal policy structure in [64] involves only one target level for the water level

in the upper reservoir, whereas ours involves two target levels for the storage and

commitment decisions that should be jointly optimized.

In our structural analysis, assuming positive electricity prices, we first prove

that the system becomes more profitable as the battery storage level grows for a

fixed commitment level. We then formulate the optimal amount of wind energy

that should be generated in any period as a function of the state variables in

that period. When the battery and transmission line are perfectly efficient, we

characterize the optimal policy structure by partitioning the state space of the

problem into two disjoint domains that correspond to the optimal decisions of

‘positive imbalance’ and ‘negative imbalance,’ respectively: it is optimal to bring

the storage and commitment levels to a different state-dependent threshold pair

in each domain. The optimal threshold levels are higher in the case of positive

imbalance than in the case of negative imbalance.

Our structural results can be usefully employed to develop an efficient heuristic

solution procedure in a more general problem where the electricity price can

also be negative. In this procedure, we implement the optimal policy structure

that we found into a backward induction algorithm, in order to calculate the

state-dependent threshold pairs for the storage and commitment levels in each

period. The storage and commitment actions in states with positive prices are

determined by taking into account the computed threshold pairs as well as the

system inefficiencies. The storage and commitment actions in states with negative

prices are determined by the myopically optimal storage decisions. We call this

solution method HC (Heuristic via Complete state space). We also consider a

variant of the method HC that uses the output of the method HC executed in a

simpler problem, which we obtain by ignoring the spike component of the price

and thus reducing the state space drastically. We call this variant HR (Heuristic
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via Reduced state space). The method HR adopts the storage and commitment

decisions found via the method HC executed in the reduced state-space problem

if the spike is zero and the price is positive in the current state, and takes a

myopic approach to determine these decisions otherwise.

The experimental setup used in this chapter (time series models for the elec-

tricity market and wind speed and their discretization procedures) is based on

the one presented in Chapter 3.3. We have compiled realistic instances with

imperfectly efficient battery and transmission line. Our method HC provides

near-optimal solutions in these instances (with an average distance of 0.58% and

a maximum distance of 1.63% from the optimal profit), outperforming the stan-

dard dynamic programming (DP) algorithm with respect to computation times

by two orders of magnitude. Our method HR yields high-quality solutions (with

an average distance of 0.84% and a maximum distance of 2.31% from the optimal

profit) ten times faster than our method HC. The solution time of our method

HR is less than one minute in each instance, while the standard DP algorithm

has an average solution time of 237.6 minutes. Finally, when the battery and

transmission line are perfectly efficient, our method HC yields the optimal solu-

tion in each instance. All these findings highlight the practical importance of our

structural results.

The rest of this chapter is organized as follows. Chapter 4.2 briefly restates the

energy commitment, generation and storage problem presented in Chapter 3.2.1.

Chapter 4.3 establishes the optimal policy structure. Chapter 4.4 constructs the

heuristic solution methods based on our structural results. Chapter 4.5 presents

numerical results for our heuristic methods. Chapter 4.6 concludes. Proofs of the

analytical results are contained in Appendix B.

4.2 Problem Formulation

We briefly restate the problem formulation in Chapter 3.2.1:
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Parameters

• CS: Energy capacity of the battery.

• CC , CD: Charging and discharging capacities of the battery, respectively.

• CT : Transmission line capacity.

• γ, θ: Discharging and charging efficiencies of the battery, respectively.

• τ : Transmission line efficiency.

State Variables

• St: Storage level at the beginning of period t; St ∈ [0, CS].

• Qt: Commitment level in period t; Qt ∈ R. The producer is obliged to sell

if Qt ≥ 0 and she is obligated to purchase if Qt < 0.

• Wt: Wind speed in period t; Wt ∈ R+. This is limited by f(Wt), the

maximum amount of wind energy that can be generated in period t.

• Pt: Electricity price in period t; Pt ∈ R.

We include the tuple It := (Pκ,Wκ)κ≤t in our state description. The state tuple

It evolves over time according to an exogenous stochastic process.

Decision Variables

• qt: Amount of energy to be committed to selling or purchasing in period

t+ 1 by signing the contract in period t; qt ∈ R.

• st: Amount of energy to be generated or stored in the battery in period t;

st ∈ R. The battery is discharged if st ≥ 0 and charged if st < 0.

• wt: Amount of wind energy to be generated in period t; wt ∈ R+.
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In any period t ∈ T , the producer first observes Pt and Wt, as well as Qt and

St. She then determines the commitment, storage, and wind generation triplet

(qt, st, wt). U(Qt, St, It) is the set of action triplets (qt, wt, st) that are admissible

in state (Qt, St, It). For any action triplet (qt, wt, st) ∈ U(Qt, St, It), the following

conditions must hold:

0 ≤ wt ≤ f(Wt),

−min{CS − St, CC} ≤ st ≤ min{St, CD},

γst + wt ≤ CT if st ≥ 0,

−τCT ≤ st/θ + wt ≤ CT if st < 0.

The state variables St and Qt evolve over time as follows: St+1 = St − st and

Qt = qt−1.

The amount of energy sold or purchased in period t can be defined as a function

of actions st and wt:

E(st, wt) :=


(γst + wt)τ if st ≥ 0,

(st/θ + wt)τ if − wt ≤ st/θ < 0,

(st/θ + wt)/τ if st/θ < −wt ≤ 0.

Note that E(st, wt) = min{(γst + wt)τ, (st/θ + wt)τ, (st/θ + wt)/τ}. Since

the minimum of affine functions is concave, E(·, ·) is jointly concave. For

any action triplet (qt, st, wt) ∈ U(Qt, St, It), the transmission line capacity im-

plies that E(st, wt) ≤ τCT if E(st, wt) ≥ 0 (the energy is sold) and −CT ≤
E(st, wt) if E(st, wt) < 0 (the energy is purchased). In addition, the energy and

power capacities of the battery imply that −min{CS −St, CC}/(θτ) ≤ E(st, wt).

Hence −min{(CS − St)/(θτ), CC/(θτ), CT} ≤ E(st, wt) ≤ τCT .

If the producer does not fulfill her contractual commitment in real-time, she

pays a penalty cost that varies with her deviation. There are two decision types

that we need to consider in our payoff formulation in any period t: (i) ‘positive

imbalance;’ we call this decision type pi. (ii) ‘negative imbalance;’ we call this

decision type ni.
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The payoff in period t:

R(Qt, It, st, wt) =



QtPt +K+
p Pt(E(st, wt)−Qt) if Pt ≥ 0 and

Qt < E(st, wt) (pi),

QtPt −K+
n Pt(Qt − E(st, wt)) if Pt ≥ 0 and

Qt ≥ E(st, wt) (ni),

QtPt +K−p Pt(E(st, wt)−Qt) if Pt < 0 and

Qt < E(st, wt) (pi),

QtPt −K−n Pt(Qt − E(st, wt)) if Pt < 0 and

Qt ≥ E(st, wt) (ni),

where 0 ≤ K+
p < 1 < K+

n and 0 ≤ K−n < 1 < K−p .

A control policy π is the sequence of decision rules (ηπt (Qπ
t , S

π
t , It))t∈T , where

ηπt (Qπ
t , S

π
t , It) := (qπt (Qπ

t , S
π
t , It), s

π
t (Qπ

t , S
π
t , It), w

π
t (Qπ

t , S
π
t , It)), and Qπ

t and Sπt

denote the random state variables governed by policy π, ∀t ∈ T \{1}. We denote

the set of all admissible control policies by Π. For any initial state (Q1, S1, I1),

the optimal expected total cash flow over the finite horizon can be written as

max
π∈Π

E

[∑
t∈T

R(Qπ
t , It, s

π
t (Qπ

t , S
π
t , It), w

π
t (Qπ

t , S
π
t , It))

∣∣∣∣Q1, S1, I1

]
.

For each period t ∈ T and each state (Qt, St, It), the optimal profit function

v∗t (Qt, St, It) can be calculated with the following DP recursion:

v∗t (Qt, St, It) = max
(qt,st,wt)∈U(Qt,St,It)

{
R(Qt, It, st, wt) + EIt+1|It

[
v∗t+1(qt, St − st, It+1)

]}
(4.1)

where vT (QT , ST , IT ) = 0. Note that v∗1(Q1, S1, I1) is the optimal expected total

cash flow for the initial state (Q1, S1, I1) over the finite horizon.
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4.3 Characterization of the Optimal Policy

In this section, we first establish several structural properties of our optimal profit

function. We then use these properties to characterize the structure of the optimal

energy commitment, generation and storage policy.

4.3.1 Structural results

We first introduce several bounds on the optimal energy commitment decision.

Lemma 4.3.1. Without loss of optimality, the commitment levels can be

constrained as −min
{
CS−(St−st)

θτ
, CC
θτ
, CT

}
≤ qt ≤ τCT , ∀t ≥ 1, and

−min
{
CS−St
θτ

, CC
θτ
, CT

}
≤ Qt ≤ τCT , ∀t > 1.

Proof. See Appendix B.

Lemma 4.3.1 states that the optimal amount of energy that the producer

commits to selling must be no larger than the maximum amount of energy that

can be sold (bounded by the transmission line capacity), and the optimal amount

of energy that the producer commits to purchasing must be no larger than the

maximum amount of energy that can be stored (bounded by the available storage

capacity, charging capacity, and transmission line capacity).

For our structural analysis, we assume that the electricity price is always non-

negative:

Assumption 4.3.1. Pt ≥ 0, ∀t ∈ T .

Under Assumption 4.3.1, note that R(Qt, It, st, wt) = min{QtPt +

K+
p Pt(E(st, wt) − Qt), QtPt + K+

n Pt(E(st, wt) − Qt)}. Since the minimum of

affine functions is concave, R(Qt, It, st, wt) is jointly concave in Qt and E(st, wt).

Furthermore, since E(st, wt) is jointly concave and increasing in st and wt,
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R(Qt, It, st, wt) is jointly concave and increasing in st and wt as well. We now

establish the following structural property of our optimal profit function.

Lemma 4.3.2. Under Assumption 4.3.1, v∗t (Qt, St, It) ≤ v∗t (Qt, St+α, It), where

α > 0, ∀t ∈ T .

Proof. See Appendix B.

Lemma 4.3.2 states that the system becomes more profitable as the amount

of energy accumulated in the battery grows. This is because if the stored energy

is higher, the producer can sell more energy from the battery by charging it less

in the long run. Using Lemma 4.3.2, we formulate the optimal amount of wind

energy that should be generated in any period.

Lemma 4.3.3. Under Assumption 4.3.1, w∗t (Qt, St, It) = min{f(Wt), CT +

min{CS − St, CC}/θ}. Moreover, if w∗t (Qt, St, It) = CT + min{CS − St, CC}/θ,
then s∗t (Qt, St, It) = −min{CS − St, CC}.

Proof. See Appendix B.

Lemma 4.3.3 states that it is optimal to generate as much wind energy as

possible. If the wind energy potential is large enough, it is optimal to sell and

store as much energy as possible. The curtailed amount of wind energy is given by

f(Wt)− (CT + min{CS−St, CC}/θ) if w∗t (Qt, St, It) < f(Wt). This lemma allows

us to restrict our optimal policy characterization to the energy commitment and

storage decisions.

For the rest of our structural analysis, we assume that the battery and trans-

mission line are perfectly efficient. We will relax this assumption in subsequent

sections for heuristic solution development and in Chapter 5 for optimal policy

characterization.

Assumption 4.3.2. γ = θ = τ = 1.
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Under Assumptions 4.3.1 and 4.3.2, using Lemmas 4.3.2 and 4.3.3, we establish

several second-order properties of our optimal profit function.

Proposition 4.3.1. Under Assumptions 4.3.1 and 4.3.2, the following properties

hold for α > 0 and β > 0:

(a) v∗t (Qt+α, St, It)−v∗t (Qt, St, It) ≤ v∗t (Qt+α, St+β, It)−v∗t (Qt, St+β, It), ∀t.

(b) v∗t (Qt + α, St + α + β, It) − v∗t (Qt + α, St + α, It) ≤ v∗t (Qt, St + β, It) −
v∗t (Qt, St, It), ∀t.

(c) v∗t (Qt + α + β, St + α, It) − v∗t (Qt + α, St + α, It) ≤ v∗t (Qt + β, St, It) −
v∗t (Qt, St, It), ∀t.

Proof. See Appendix B.

Proposition 4.3.1 says that a larger commitment level is more profitable or

less costly when the storage level is larger (point a) or when the commitment

and storage levels are smaller by an equal amount (point c). It also says that a

larger storage level is more profitable when the commitment level is larger (point

a) or when the commitment and storage levels are smaller by an equal amount

(point b). The property in point (a) can be viewed as Topkis’ [84] supermodu-

larity property in Qt and St, indicating the complementarity effect between the

commitment and storage levels.

The summation of properties in points (a) and (c) implies the concavity of

v∗t (·, St, It), i.e., v∗t (Qt, St, It)− v∗t (Qt +α, St, It) ≤ v∗t (Qt +β, St, It)− v∗t (Qt +α+

β, St, It). Hence, increasing the commitment level exhibits diminishing returns:

A larger commitment level increases the risk of paying the penalty cost since

it is more difficult to meet. It may also induce the producer to consume more

of the available energy in the current period and thus suffer from the limited

energy availability in the future. A smaller commitment level, on the other hand,

increases the risk of missing the opportunity to sell more energy at the market

price. Likewise, the summation of properties in points (a) and (b) implies the
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concavity of v∗t (Qt, ·, It), i.e., v∗t (Qt, St, It)−vt(Qt, St+α, It) ≤ v∗t (Qt, St+β, It)−
vt(Qt, St+α+β, It). Hence, increasing the storage level also exhibits diminishing

returns: Holding some amount of energy in the battery allows the producer to

sell energy in future periods with high prices. On the other hand, holding a large

amount of energy in the battery curbs the capability of purchasing energy in

future periods with low prices.

More critically, the summation of properties in points (b) and (c) implies that

v∗t (Qt, St, It) is jointly concave in (Qt, St), i.e., v∗t (Qt + α + β, St + α + β, It) −
v∗t (Qt+α, St+α, It) ≤ v∗t (Qt+β, St+β, It)−v∗t (Qt, St, It). This property can be

interpreted as follows: Increasing the commitment and storage levels by an equal

amount allows the operator to raise the energy delivered to the market with an

amount that incurs no additional penalty payment. Such an improvement in the

energy delivery exhibits diminishing returns.

4.3.2 Optimal commitment and storage policy

An important implication of Proposition 4.3.1 is that the optimal energy commit-

ment and storage policy can be characterized as following a threshold policy. The

joint concavity of the optimal profit function enables us to introduce the optimal

state-dependent target levels for the commitment and storage decisions, which

we respectively denote by Y
(ν)
t (It) and Z

(ν)
t (It), in an unconstrained problem free

of certain capacity limits and implement these target levels into the optimal pol-

icy structure in the original constrained problem. These target levels are also

dependent on the decision type. Specifically, for ν ∈ {pi, ni},

(
Y

(ν)
t (It), Z

(ν)
t (It)

)
:= arg max

(qt,zt)∈[−min{CC ,CT },CT ]×[0,CS ]

{
E
[
v∗t+1(qt, zt, It+1)

]
+R(ν)(zt, It)

}
(4.2)

where
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R(ν)(zt, It) =

−K+
p Ptzt if ν = pi,

−K+
n Ptzt if ν = ni,

and zt := St − st is the storage level at the end of period t if the action st is

taken in period t. Since Z
(ν)
t (It) may be inaccessible when the omitted capacity

limits are reconsidered, the optimal storage level at the end of period t may be

different from Z
(ν)
t (It) so that Y

(ν)
t (It) may no longer be optimal at this storage

level. Therefore, we also introduce the optimal state-dependent target level for

the commitment decision after the storage decision is made in the constrained

problem:

Yt(St+1, It) := arg max
qt∈[−min{CC ,CT },CT ]

{
E
[
v∗t+1(qt, St+1, It+1)

]}
. (4.3)

Note that Yt(Z
(ν)
t , It) = Y

(ν)
t (It) for each ν ∈ {pi, ni}. Finally, we introduce an

auxiliary state-dependent target level for the storage decision, which we denote

by Zt(Qt, St, It), that can take the values of Z
(pi)
t (It) and Z

(ni)
t (It) depending on

the system state; see Theorem 4.3.1.

Let Ω denote the domain of (Qt, St,Wt), i.e., Ω := [−min{CC , CT}, CT ] ×
[0, CS]× [0,∞). For the optimal storage policy characterization, we partition this

domain into four disjoint subdomains: We define the set Ψ0 := {(Qt, St,Wt) ∈
Ω : f(Wt) ≥ CT + min{CS − St, CC}} as the subdomain where the maximum

amount of wind energy that can be generated in period t is greater than the

maximum total amount of energy that can be used for selling and storing in

period t. We define the set Ψ1 := {(Qt, St,Wt) ∈ Ω : CT + min{CS − St, CC} >
f(Wt) ≥ Qt + min{CS−St, CC}} as the subdomain where the maximum amount

of wind energy that can be generated in period t is less than the maximum total

amount of energy that can be used for selling and storing in period t, but greater

than the maximum total amount of energy that can be used for meeting the

commitment and storing in period t. We define the set Ψ2 := {(Qt, St,Wt) ∈ Ω :

Qt+min{CS−St, CC} > f(Wt) ≥ Qt−min{St, CD}} as the subdomain where the

maximum amount of wind energy that can be generated in period t is less than the
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maximum total amount of energy that can be used for meeting the commitment

and storing in period t, but greater than the amount of energy required to meet

the commitment after the battery is discharged as much as possible in period t.

We define the set Ψ3 := {(Qt, St,Wt) ∈ Ω : Qt − min{St, CD} > f(Wt)} as the

last subdomain.

The type of imbalance induced by the producer is likely to change from positive

to negative as the wind power potential decreases. Hence, the target storage level

Zt(Qt, St, It) is likely to switch from Z
(pi)
t (It) to Z

(ni)
t (It) as the system moves

from Ψ0 to Ψ3. Incorporating these subdomains and leveraging the results of

Lemmas 4.3.2-4.3.3 and Proposition 4.3.1, we are now ready to formally state the

main result of this section:

Theorem 4.3.1. Under Assumptions 4.3.1 and 4.3.2, the optimal policy struc-

ture follows a state-dependent threshold policy with state-dependent target levels

for the storage and commitment decisions. The optimal state-dependent target

storage levels can be calculated as follows.

(i) If (Qt, St,Wt) ∈ Ψ0, Zt(Qt, St, It) = CS.

(ii) If (Qt, St,Wt) ∈ Ψ1, Zt(Qt, St, It) = Z
(pi)
t (It).

(iii) If (Qt, St,Wt) ∈ Ψ2,

Zt(Qt, St, It) =



Z
(ni)
t (It) if St ≤ Z

(ni)
t (It)− f(Wt) +Qt,

St + f(Wt)−Qt if Z
(ni)
t (It)− f(Wt) +Qt < St

and St ≤ Z
(pi)
t (It)− f(Wt) +Qt,

Z
(pi)
t (It) if Z

(pi)
t (It)− f(Wt) +Qt < St.

(iv) If (Qt, St,Wt) ∈ Ψ3, Zt(Qt, St, It) = Z
(ni)
t (It).

The optimal state-dependent target storage levels obey Z
(ni)
t (It) ≤ Z

(pi)
t (It). Letting

w = w∗t (Qt, St, It), the optimal energy storage action is
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s∗t (Qt, St, It) =



−min{Zt(Qt, St, It)− St, if CT ≤ w

CT + w,CC} and St + w − CT < Zt(Qt, St, It),

CT − w if CT ≤ w

and Zt(Qt, St, It) ≤ St + w − CT ,

−min{Zt(Qt, St, It)− St, if CT > w

CT + w,CC} and St < Zt(Qt, St, It),

min{St − Zt(Qt, St, It), if CT > w

CT − w,CD} and Zt(Qt, St, It) ≤ St.

The optimal energy commitment action is q∗t (Qt, St, It) = Yt(St−s∗t (Qt, St, It), It).

Furthermore, the optimal state-dependent target commitment levels obey

Y
(ni)
t (It) ≤ Y

(pi)
t (It).

Proof. See Appendix B.

Theorem 4.3.1 explicitly formulates the optimal target storage level

Zt(Qt, St, It) in terms of Z
(pi)
t (It) and Z

(ni)
t (It), conditional on the subdomains

defined earlier. Figure 4.1 provides an illustration of this formulation:

(i) Suppose that the maximum amount of wind energy that can be generated

in period t is extremely large (i.e., (Qt, St,Wt) ∈ Ψ0). See the top region in

Figure 4.1. Then it is optimal to increase the storage level of the battery

as much as possible.

(ii) Suppose that the maximum amount of wind energy that can be generated

in period t is large enough to only meet the commitment and charge the

battery as much as possible (i.e., (Qt, St,Wt) ∈ Ψ1). See the second top

region in Figure 4.1.

(iii) Suppose that the maximum amount of wind energy that can be generated

in period t is not large enough to meet the commitment and charge the
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Figure 4.1: Illustration of Zt(Qt, St, It) for a fixed Qt. Regions separated by
dashed lines correspond to different subdomains of Ω (Ψ0 to Ψ3 from top to
bottom). Different colors indicate different target levels.
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battery as much as possible (i.e., (Qt, St,Wt) ∈ Ψ2). See the third top

region in Figure 4.1. If the storage level of the battery is low (i.e., St ≤
Z

(ni)
t (It)−f(Wt)+Qt), it is optimal to bring it as close to Z

(ni)
t (It) as possible.

If the storage level is in a medium range (i.e., Z
(ni)
t (It)− f(Wt) +Qt < St ≤

Z
(pi)
t (It) − f(Wt) + Qt), it is optimal to meet the commitment as much as

possible. If the storage level is high (i.e., Z
(pi)
t (It)− f(Wt) +Qt < St), it is

optimal to bring it as close to Z
(pi)
t (It) as possible.

(iv) Suppose that the maximum amount of wind energy that can be generated

in period t is extremely small (i.e., (Qt, St,Wt) ∈ Ψ3). See the bottom

region in Figure 4.1. Then it is optimal to bring the storage level as close

to Z
(ni)
t (It) as possible.

After providing the above formulation of Zt(Qt, St, It), Theorem 4.3.1 derives

the optimal action for wind power generation from Lemma 4.3.3, the optimal

action for energy storage from the target level Zt(Qt, St, It) by taking into account

the charging/discharging capacity levels CC and CD, and the optimal action for

energy commitment from equation 4.3. Theorem 4.3.1 also states that the optimal

target storage level is higher when the optimal storage action leads to a positive
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imbalance than when it leads to a negative imbalance (i.e., Z
(ni)
t (It) ≤ Z

(pi)
t (It)).

This result is expected because the optimality of positive (negative) imbalance is

a consequence of excess (limited) energy availability. Consequently, the optimal

target storage level either increases or stays the same as the current storage

level grows for a fixed wind power potential; see Figure 4.1. Notice that the

optimal commitment action is based on the optimal target storage level. A larger

target storage level in period t provides a better energy availability in period

t + 1, making it optimal to choose a larger commitment level in period t (i.e.,

Y
(ni)
t (It) ≤ Y

(pi)
t (It)). This result is an indication of the complementarity effect

revealed in Proposition 4.3.1.

4.4 Heuristic Solution Approach

The structural knowledge in the problem domain can be used to construct ef-

fective heuristic solution methods [8, 64, 85]. Theorem 4.3.1 characterizes the

optimal policy structure under positive electricity prices and perfect efficiency.

We now implement this policy structure into a heuristic solution procedure for

the more general problem where the price can also be negative and the system can

be imperfectly efficient (γ ≤ 1, θ ≤ 1, τ ≤ 1). Our heuristic procedure calculates

the state-dependent target levels for the storage and commitment decisions in

each period with a backward induction algorithm. The storage and commitment

actions in states with positive prices are determined by the computed target levels

adjusted for the system inefficiencies, while those in states with negative prices

are determined by the myopically optimal storage decisions again adjusted for the

system inefficiencies. We present below two variants of this heuristic procedure

for the discrete-state and discrete-action version of our MDP. Time series models

and discretization approach employed here are based on the ones presented in

Chapter 3. We define Q as the discrete space of the commitment level, S as

the discrete space of the storage level, and I as the discrete space of the exoge-

nous state variables (electricity price and wind speed). See Chapter 3.3.3 for our

discretization procedure.
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4.4.1 Solution approach via complete state space

Our time series models in Chapter 3.3 imply that it is sufficient to include the

mean-reverting component of the price ρt, the spike component of the price Jt,

and the deseasonalized wind speed ξt as our exogenous state variables. The spike

component of the price represents sudden and large moves in the price that are

independent across periods. These jumps may arise for several reasons such as

unexpected power plant or transmission line outages and extreme weather events

[86]. We thus redefine It = (ρt, Jt, ξt) ∈ I as the exogenous state tuple in period

t. We define I t = (ρt, ξt) as the exogenous state tuple when the spike component

is omitted in period t, and I as the discrete space of the exogenous state variables

without the spike. We require this notation for our heuristic construction. See

Chapter 3.3 for details on the notation.

For each period t ∈ T and each state (Qt, St, It), we define vHCt (Qt, St, It) as

the profit function of our heuristic method, and Z
(ν),HC
t (It) and Y

(ν),HC
t (It) as the

state-dependent target levels under our heuristic method. Following the proce-

dure in Theorem 4.3.1, we compute these profit functions and target levels, as

well as the corresponding action triplets (qHCt , sHCt , wHC
t ), by backward induction.

See Algorithm 1. We call this method HC. We consider two main scenarios in

this method:

• Suppose that the price is positive in the current state. We first calculate wHC
t

from Lemma 4.3.3. We then incorporate the battery and transmission line

inefficiencies by introducing upper and lower bounds on sHCt . Specifically,

sHCt ≤ sHCt ≤ sHCt where sHCt := −min{CS − St, CC , (τCT + wHC
t )θ} and

sHCt := min{St, CD,max{(CT −wHC
t )θ, (CT −wHC

t )/γ}}. We slightly modify

the optimal storage action formula in Theorem 4.3.1 by taking into account

these bounds. We compute sHCt from the modified formula:

sHCt =


sHCt if St − ZHC

t (Qt, St, It) < sHCt ,

St − ZHC
t (Qt, St, It) if sHCt ≤ St − ZHC

t (Qt, St, It) ≤ sHCt ,

sHCt if sHCt < St − ZHC
t (Qt, St, It).

(4.4)
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If Z
(ν),HC
t (It) is accessible, qHCt = Y

(ν),HC
t (It). Otherwise, we calculate qHC

t

from equation (4.3).

• Suppose that the price is negative in the current state. We obtain wHC
t = 0

(i.e., generate no wind energy) and sHCt = −min{CS − St, CC , θτCT} (i.e.,

purchase as much energy as possible) from the myopically optimal solution,

but we calculate qHCt again from equation (4.3).

The number of states in which we need to compute the target levels in each

period is of order O(|I|) and the number of feasible action triplets that we need to

consider for target level computation in each state is of order O(|Q||S|): the total

number of operations required to exhaustively search the action triplets is of or-

der O(T |Q||S||I|). To speed up computation and save memory, we calculate first

the profit function v̄HCt+1(St+1, Qt+1, I t+1) := EJt+1

[
vHCt+1(Qt+1, St+1, It+1)

]
in state

(St+1, Qt+1, I t+1) in period t + 1 and then the action triplet in state (Qt, St, It)

in period t, using the target levels calculated with v̄HCt+1(St+1, Qt+1, I t+1) and the

expectation taken with respect to I t+1|I t. This heuristic method accelerates the

standard DP algorithm of our problem, leading to no loss of optimality for per-

fectly efficient systems with positive prices.

4.4.2 Solution approach via reduced state space

Our method HC calculates the target levels in period t for each exogenous state

tuple It in the set I; see step 3 of Algorithm 1. If the spike component of the

price is assumed to be zero, the set I can be reduced to the set I in Algorithm 1.

Since |I| = |I|/|J | where J is the discrete set of the spike component, the

zero-spike assumption significantly reduces the computations of Algorithm 1. We

thus consider a reduced state-space version of our method HC that calculates the

target levels, which we denote by ZHR
t (Qt, St, I t) and Y HR

t (St+1, I t), by executing

Algorithm 1 with J replaced by J HR := {0}. This variant of our method HC

determines the storage action in each state with a zero spike value and a positive

price via the target level ZHR
t (Qt, St, I t), but takes a myopic approach in other

states. It also myopically determines the wind power generation action in each
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Algorithm 1 Solution approach via complete state space.

1: v̄HCT (QT , ST , IT )← 0, ∀(QT , ST , IT ) ∈ Q× S × I.
2: for t = T − 1, . . . , 1 do
3: for It ∈ I such that Pt ≥ 0 do
4: for ν ∈ {pi, ni} do
5:

(
Y

(ν),HC
t (It), Z

(ν),HC
t (It)

)
← arg max(qt,zt)∈Q×S

{
EIt+1|It

[
v̄HCt+1(qt, zt, It+1)

]
+

R(ν)(zt, It)
}
.

6: end for
7: end for
8: for (Qt, St, It) ∈ Q× S × I do
9: if Pt ≥ 0 then

10: Compute wHC
t from Lemma 4.3.3.

11: Compute ZHC
t (Qt, St, It) from Theorem 4.3.1 with Z

(ν)
t (It) replaced by

Z
(ν),HC
t (It), ∀ν.

12: Compute sHCt from equation (4.4).
13: else
14: sHCt ← −min{CS − St, CC , θτCT } and wHC

t ← 0.
15: end if
16: if Pt ≥ 0 and St − sHCt = Z

(ν),HC
t (It) for some ν ∈ {pi, ni} then

17: Y HC
t (St − sHCt , It)← Y

(ν),HC
t (It)

18: else
19: Y HC

t (St − sHCt , It)← arg maxqt∈Q

{
EIt+1|It

[
v̄HCt+1(qt, St − sHCt , It+1)

]}
.

20: end if
21: qHCt ← Y HC

t (St − sHC
t , It)

22: vHCt (Qt, St, It)← R(Qt, It, s
HC
t , wHC

t ) + EIt+1|It
[
v̄HCt+1(qHCt , St − sHCt , It+1)

]
.

23: end for
24: for (Qt, St, It) ∈ Q× S × I do
25: v̄HCt (Qt, St, It)← EJt

[
vHCt (Qt, St, It)

]
.

26: end for
27: end for

state. Finally, it determines the commitment action in each state via the target

level Y HR
t (St+1, I t). We call this method HR. We construct Algorithm 2 to cal-

culate the expected total cash flow of the resulting heuristic policy with action

triplets (qHRt , sHRt , wHR
t ).

In methods HC and HR, we choose to impose the myopic actions in negative-

price states since the optimal policy structure is not available under negative

prices, and the myopic actions are immediately obtained and are expected to be
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Algorithm 2 Cash flow calculation for the solution approach via reduced state
space.

1: v̄HRT (QT , ST , IT )← 0, ∀(QT , ST , IT ) ∈ Q× S × I.
2: for t = T − 1, . . . , 1 do
3: for (Qt, St, It) ∈ Q× S × I do
4: if Pt ≥ 0 then
5: Compute wHR

t from Lemma 4.3.3.
6: Compute

Zt ←


ZHR
t (Qt, St, It) if Jt = 0,

0 if Jt > 0,

CS if Jt < 0.

7: Compute sHRt from equation (4.4) with ZHC
t (Qt, St, It) and wHC

t replaced
by Zt and wHR

t .
8: Compute

qHRt ←


Y HR
t (St − sHRt , It) if Jt = 0,

Y HR
t (St − sHRt , It) if Jt > 0,

Y HR
t (St − sHRt , It) if Jt < 0.

9: else
10: sHRt ← −min{CS − St, CC , θτCT }, wHR

t ← 0, and qHRt ← Y HR
t (St +

min{CS − St, CC , θτCT }, It).
11: end if
12: vHRt (Qt, St, It)← R(Qt, It, s

HR
t , wHR

t ) + EIt+1|It
[
v̄HRt+1(qHRt , St − sHRt , It+1)

]
.

13: end for
14: for (Qt, St, It) ∈ Q× S × I do
15: v̄HRt (Qt, St, It)← EJt

[
vHRt (Qt, St, It)

]
.

16: end for
17: end for

often optimal in negative-price states for our data-calibrated instances in Chap-

ter 3.3. The number of positive-price states is much greater than the number of

negative-price states in each of our instances. This has two implications: First,

the myopic action in a negative-price state – charging the battery as much as pos-

sible – is also sensible from a forward-looking perspective since the price will very

likely be positive in the next period. Second, the myopic actions in negative-price

states, if suboptimal, can only slightly drain the total profit since the negative-

price states have only a limited contribution to the total profit. In method HR,

we choose to impose the myopic actions in nonzero-spike states since the existence
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of a spike in any period leads to an extremely high or extremely low price so that

the forward-looking perspective is less critical and the myopic action is likely to

be optimal. We provide below detailed numerical experiments that verify our

intuition and justify our use of myopic actions.

4.4.3 Numerical investigation of the impact of myopic ac-

tions

Our method HC takes a myopic approach when the price is negative. Our method

HR takes a myopic approach when the price is positive and the spike is nonzero,

or when the price is negative. On our experimental test bed in Chapter 4.5,

on average, 5.7% of the positive-price states have nonzero spikes, 91.9% of the

positive-price nonzero-spike states have positive spikes, and all of the negative-

price states have negative spikes. In our experiments, since the negative prices

can only arise due to negative spikes, our method HR indeed imposes the myopic

actions in all nonzero-spike states, while taking the forward-looking actions in all

zero-spike states. We intuitively expect the myopic actions of HR to be often

optimal. We performed numerical experiments to test our intuition: We define

MD as the percentage of the nonzero-spike states in which the myopic action

is indeed optimal according to the exact solution algorithm (i.e., the percentage

of the myopic actions of HR that are indeed optimal). We also define FS-TCF

as the percentage of the total cash flow that comes from the revenues collected

in the nonzero-spike states in which the optimal decision is forward-looking (as

opposed to myopic in HR). See Tables 4.1 and 4.2 for our results. We have found

that MD is 92.55% and FS-TCF is only 3.49% on average. These results verify

our intuition and show that the myopic decisions of HR, if not optimal, can only

slightly drain the profits.

We also numerically examined the contribution of the nonzero-spike states to

the total cash flow according to the exact solution algorithm: We define MS-TCF

as the percentage of the total cash flow that comes from the revenues collected

in the nonzero-spike states in which the optimal decision is myopic. We define
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Table 4.1: Numerical results when K+
p = K−n = 0.9, K+

n = K−p = 1.1, CS = 500,
and CT = 200.

CC = CD NPF τ r MD MS-TCF FS-TCF NS-TCF

0.7 100.00% 26.99% 0.00% 73.01%

0.95
0.8 100.00% 27.08% 0.00% 72.92%
0.9 100.00% 27.09% 0.00% 72.91%

0
1 100.00% 27.06% 0.00% 72.94%

0.7 100.00% 26.99% 0.00% 73.01%

1
0.8 100.00% 27.08% 0.00% 72.92%
0.9 100.00% 27.08% 0.00% 72.92%

40
1 100.00% 27.05% 0.00% 72.95%

0.7 99.30% 27.48% 0.04% 72.48%

0.95
0.8 99.40% 27.45% 0.04% 72.51%
0.9 99.49% 27.42% 0.03% 72.55%

4.02%
1 99.57% 27.36% 0.02% 72.61%

0.7 99.33% 27.37% 0.04% 72.58%

1
0.8 99.43% 27.35% 0.04% 72.62%
0.9 99.51% 27.33% 0.03% 72.64%
1 99.60% 27.27% 0.02% 72.70%

0.7 69.80% 16.55% 11.93% 71.52%

0.95
0.8 71.53% 17.26% 11.19% 71.55%
0.9 74.91% 18.67% 9.68% 71.65%

0
1 78.14% 19.84% 8.40% 71.76%

0.7 69.67% 16.88% 12.27% 70.86%

1
0.8 71.40% 17.67% 11.53% 70.80%
0.9 73.18% 18.99% 10.09% 70.92%

60
1 79.83% 20.27% 8.65% 71.08%

0.7 81.42% 17.82% 11.93% 70.25%

0.95
0.8 82.60% 18.41% 11.19% 70.40%
0.9 84.48% 19.56% 9.88% 70.56%

4.02%
1 86.81% 20.86% 8.39% 70.75%

0.7 81.43% 17.62% 11.99% 70.39%

1
0.8 82.60% 18.18% 11.24% 70.58%
0.9 83.77% 18.85% 10.45% 70.70%
1 87.63% 21.30% 7.82% 70.87%
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Table 4.2: Numerical results when CS = 500, CC = CD = 40, CT = 200, NPF
= 4.07%, τ = 0.95, and r = 0.8.

K+
p = K−

n K+
n = K−

p MD MS-TCF FS-TCF NS-TCF

1.1 99.37% 25.95% 0.04% 74.01%

0.6
1.2 99.23% 25.81% 0.05% 74.14%
1.3 99.12% 25.68% 0.06% 74.26%
1.4 99.05% 25.61% 0.07% 74.32%

1.1 99.38% 26.50% 0.04% 73.46%

0.7
1.2 99.24% 26.41% 0.05% 73.54%
1.3 99.13% 26.34% 0.06% 73.60%
1.4 99.06% 26.33% 0.07% 73.60%

1.1 99.39% 27.01% 0.04% 72.95%

0.8
1.2 99.26% 26.96% 0.05% 72.99%
1.3 99.17% 26.94% 0.05% 73.01%
1.4 99.09% 26.95% 0.06% 72.99%

1.1 99.40% 27.45% 0.04% 72.51%

0.9
1.2 99.28% 27.47% 0.04% 72.49%
1.3 99.20% 27.49% 0.05% 72.46%
1.4 99.12% 27.49% 0.06% 72.45%

NS-TCF as the percentage of the total cash flow that comes from the revenues

collected in the zero-spike states (in which HR takes the forward-looking per-

spective). Note that the sum of MS-TCF, FS-TCF, and NS-TCF equals one in

each instance. See again Tables 4.2 and 4.1 for our results. We observe that the

percentage of the total cash flow that comes from the revenues collected in the

nonzero-spike states (MS-TCF plus FS-TCF) is 27.40% on average: the zero-spike

states have a much greater impact on the total cash flow than the nonzero-spike

states so that the forward-looking perspective is critical in our experiments. The

myopic decisions of HR (in the nonzero-spike states) alone cannot guarantee a

near-optimal performance. The higher level of sophistication that HR involves

via forward-looking decisions (in the zero-spike states) is clearly useful.

Finally, we extended our experiments to instances in which CS ∈ {0, 250, 500}
(in MWh) to examine the impact of storage capacity. See Table 4.3 for our

results. We observe that the myopic decisions are optimal in all nonzero-spike

states when there is no battery in the system. The myopic decisions are indeed

optimal in all states (with or without spikes) in the absence of battery, because
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Table 4.3: Numerical results when CC = CD = 40, CT = 200, NPF = 4.07%,
τ = 0.95, and r = 0.8.

CS K+
p = K−n K+

n = K−p MD MS-TCF FS-TCF NS-TCF

1.1 100.00% 21.55% 0.00% 78.45%

0.6
1.2 100.00% 21.64% 0.00% 78.36%
1.3 100.00% 21.71% 0.00% 78.29%
1.4 100.00% 21.74% 0.00% 78.26%

1.1 100.00% 21.94% 0.00% 78.06%

0.7
1.2 100.00% 22.01% 0.00% 77.99%
1.3 100.00% 22.05% 0.00% 77.95%

0
1.4 100.00% 22.08% 0.00% 77.92%

1.1 100.00% 22.30% 0.00% 77.70%

0.8
1.2 100.00% 22.35% 0.00% 77.65%
1.3 100.00% 22.38% 0.00% 77.62%
1.4 100.00% 22.40% 0.00% 77.60%

1.1 100.00% 22.63% 0.00% 77.37%

0.9
1.2 100.00% 22.66% 0.00% 77.34%
1.3 100.00% 22.67% 0.00% 77.33%
1.4 100.00% 22.68% 0.00% 77.32%

1.1 99.69% 26.03% 0.02% 73.95%

0.6
1.2 99.49% 26.00% 0.03% 73.97%
1.3 99.33% 25.81% 0.04% 74.14%
1.4 99.20% 25.79% 0.06% 74.16%

1.1 99.69% 26.61% 0.02% 73.37%

0.7
1.2 99.49% 26.63% 0.03% 73.33%
1.3 99.31% 26.54% 0.04% 73.42%

250
1.4 99.19% 26.55% 0.05% 73.39%

1.1 99.69% 27.20% 0.02% 72.78%

0.8
1.2 99.52% 27.25% 0.03% 72.72%
1.3 99.35% 27.21% 0.04% 72.76%
1.4 99.22% 27.26% 0.05% 72.69%

1.1 99.72% 27.71% 0.01% 72.27%

0.9
1.2 99.59% 27.75% 0.02% 72.23%
1.3 99.50% 27.75% 0.02% 72.22%
1.4 99.27% 27.79% 0.04% 72.17%

1.1 99.37% 25.95% 0.04% 74.01%

0.6
1.2 99.23% 25.81% 0.05% 74.14%
1.3 99.12% 25.68% 0.06% 74.26%
1.4 99.05% 25.61% 0.07% 74.32%

1.1 99.38% 26.50% 0.04% 73.46%

0.7
1.2 99.24% 26.41% 0.05% 73.54%
1.3 99.13% 26.34% 0.06% 73.60%

500
1.4 99.06% 26.33% 0.07% 73.60%

1.1 99.39% 27.01% 0.04% 72.95%

0.8
1.2 99.26% 26.96% 0.05% 72.99%
1.3 99.17% 26.94% 0.05% 73.01%
1.4 99.09% 26.95% 0.06% 72.99%

1.1 99.40% 27.45% 0.04% 72.51%

0.9
1.2 99.28% 27.47% 0.04% 72.49%
1.3 99.20% 27.49% 0.05% 72.46%
1.4 99.12% 27.49% 0.06% 72.45%
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our commitment problem in this case can be shown to reduce to a newsvendor

model where the unit costs of overstocking and understocking are determined by

the imbalance pricing parameters. We observe that MD tends to decrease as the

size of the battery grows: The forward-looking approach is more critical in the

presence of a larger battery that enables a better arbitrage opportunity in the long

run. We also note that MD tends to decrease as the imbalance penalty grows:

The forward-looking approach is more critical when the intentional deviations

from commitments are less profitable in the current period. However, MS-TCF

may increase as MD decreases.

4.5 Numerical Results

We now conduct numerical experiments to evaluate the use of our heuristic meth-

ods HC and HR, comparing them to the standard DP algorithm (yielding the

optimal solution), with respect to objective value and computation time. We

consider instances in which the planning horizon spans the first week of August

(T = 168 hours). The number of GE 1.5–77 wind turbines (N) is 100. Since

each such turbine has a power capacity of 1.5 MW, the wind power plant has a

power capacity of 150 MW. The energy capacity of the battery (CS) is 500 MWh.

We restrict the charging and discharging capacities (CC and CD) to be 40 or 60

MWh; the battery can be fully charged or discharged in about ten hours [8, 87].

The battery round-trip efficiency (r = θγ) varies between 0.60 and 0.70 for a

nickel-based battery, 0.70 and 0.80 for a lead-acid battery, between 0.75 and 0.85

for a flow battery (such as zinc-bromine), between 0.75 and 0.90 for a sodium-

based battery, and between 0.90 and 0.95 for a lithium-ion battery [88]. The

earliest large-scale battery storage installations in the U.S. used nickel-based and

sodium-based batteries [89]. However, since 2011, most installations have opted

for lithium-ion batteries. For example, Duke Energy added 36 MW of lead-acid

battery storage to its Notrees wind power facility in West Texas in 2012, but they

replaced the original lead-acid batteries with better performing lithium-ion bat-

teries in 2016 [89]. We thus restrict r to take values from the set {0.7, 0.8, 0.9, 1}
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(including the perfect efficiency).

The charging and discharging efficiencies of the battery are the same and equal

to the square-root of the round-trip efficiency. This assumption is common in the

literature [88, 90, 91, 92]. The energy capacity of the transmission line (CT ) is

200 MWh. According to the U.S. Energy Information Administration (EIA), the

electricity transmission and distribution losses are about 5% of the electricity

transmitted and distributed in the U.S. [93]. Therefore, we take transmission line

efficiency (τ) as 0.95 or 1. NPF is 4.02% in our time series model. We consider

this original setting as well as a hypothetical one where the price is assumed to be

always nonnegative. We restrict the imbalance pricing parameters to take values

from the set {0.6, 0.7, ..., 1.4}; our range choice is consistent with many values

observed in practice and in the literature [46, 52, 94, 95, 96].

In all instances, the discretization level ζa is 20 MWh, the initial storage level

S1 is the closest state to CS/2, the initial commitment level Q1 is the maximum

amount of energy that can be committed to selling, and the initial exogenous

state I1 = (ρ1, J1, ξ1) is (0, 0, 5). We evaluate the performance of our solution

approaches in a total of 48 instances with the above specifications. All compu-

tations were executed on a dual 3.7 GHz Intel Xeon W-2255 CPU server with

96 GB of RAM. Tables 4.4 and 4.5 exhibit the optimality gaps and computation

times of our solution approaches.

Our method HC yields the optimal solution when the battery and transmission

line are perfectly efficient and the price is always positive (as shown in Theorem

4.3.1). We also observe that its optimal performance extends to instances where

the price can also be negative. When the battery and transmission line are not

perfectly efficient, our method HC provides near-optimal solutions with a maxi-

mum distance of 1.63% and an average distance of 0.58% from the optimal profit.

Our method HC reduces the computation time of the standard DP algorithm by

two orders of magnitude.

Our method HR performs only slightly worse than our method HC with respect

to objective value: it yields solutions with a maximum distance of 2.31% and an
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Table 4.4: Numerical results when K+
p = K−n = 0.9, K+

n = K−p = 1.1, CS = 500,
and CT = 200.

CC = CD NPF τ r
Optimality gaps Computation times (minutes)

HC HR Optimal policy HC HR

0.7 0.92% 1.28% 205.4 3.2 0.4

0.95
0.8 0.47% 0.84% 203.7 3.2 0.4
0.9 0.19% 0.49% 204.3 3.2 0.4

0
1 0.12% 0.40% 203.1 3.2 0.4

0.7 1.06% 1.04% 202.2 3.2 0.4

1
0.8 0.39% 0.59% 201.9 3.2 0.4
0.9 0.09% 0.30% 202.7 3.2 0.4

40
1 0.00% 0.24% 157.5 2.9 0.4

0.7 0.84% 1.03% 204.5 3.2 0.4

0.95
0.8 0.44% 0.63% 204.5 3.2 0.4
0.9 0.18% 0.33% 204.2 3.2 0.4

4.02%
1 0.11% 0.27% 203.1 3.3 0.4

0.7 0.79% 0.87% 202.6 3.2 0.4

1
0.8 0.36% 0.47% 202.9 3.2 0.4
0.9 0.08% 0.19% 202.3 3.2 0.4
1 0.00% 0.13% 157.1 2.9 0.4

0.7 1.36% 2.31% 318.8 4.1 0.5

0.95
0.8 0.64% 1.30% 319.5 4.5 0.5
0.9 0.24% 0.76% 319.3 4.7 0.5

0
1 0.13% 0.62% 317.3 4.8 0.5

0.7 1.47% 1.56% 319.2 4.1 0.5

1
0.8 0.53% 0.86% 317.3 4.5 0.5
0.9 0.10% 0.47% 321.4 4.7 0.5

60
1 0.00% 0.40% 248.7 4.2 0.5

0.7 1.25% 1.76% 318.8 4.1 0.5

0.95
0.8 0.66% 0.95% 319.4 4.5 0.5
0.9 0.23% 0.50% 319.3 4.7 0.5

4.02%
1 0.13% 0.40% 318.0 4.8 0.5

0.7 1.21% 1.28% 322.1 4.1 0.5

1
0.8 0.47% 0.65% 317.5 4.5 0.5
0.9 0.10% 0.29% 317.1 4.7 0.5
1 0.00% 0.22% 249.1 4.2 0.5
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Table 4.5: Numerical results when CS = 500, CC = CD = 40, CT = 200, NPF
= 4.02%, τ = 0.95, and r = 0.8.

K+
p = K−

n K+
n = K−

p
Optimality gaps Computation times (minutes)

HC HR Optimal policy HC HR

1.1 0.96% 1.46% 204.8 3.3 0.4

0.6
1.2 1.05% 1.28% 204.4 3.3 0.4
1.3 1.26% 1.38% 205.0 3.3 0.4
1.4 1.63% 1.70% 205.1 3.3 0.4

1.1 0.71% 1.10% 205.6 3.3 0.4

0.7
1.2 0.79% 1.00% 204.7 3.3 0.4
1.3 0.94% 1.06% 204.0 3.3 0.4
1.4 1.20% 1.31% 204.2 3.3 0.4

1.1 0.55% 0.87% 205.9 3.2 0.4

0.8
1.2 0.56% 0.90% 204.4 3.2 0.4
1.3 0.67% 0.96% 204.5 3.2 0.4
1.4 0.87% 1.12% 205.3 3.3 0.4

1.1 0.44% 0.63% 206.5 3.2 0.4

0.9
1.2 0.43% 0.68% 204.0 3.2 0.4
1.3 0.53% 0.79% 205.2 3.3 0.4
1.4 0.66% 0.88% 205.8 3.2 0.4

average distance of 0.84% from the optimal profit. Our method HR, however,

provides a further significant advantage in computations: the execution of our

method HR takes only half a minute while that of the standard DP algorithm

takes several hours. All these results highlight the high efficiency and scalability

of our solution methods constructed with structural knowledge.

We observe from Table 4.4 that our methods HC and HR induce lower opti-

mality gaps when the battery’s charging/discharging capacities are smaller and

the negative prices are observed more frequently. Our explanation for this result

is that the desire for energy arbitrage becomes more dominant than the efficiency

losses during energy transactions in this case, and thus the optimal policy struc-

ture under perfect efficiency becomes less restrictive. Consequently, our methods

HC and HR that are based on this optimal policy structure perform better.

We observe from Table 4.5 that our methods HC and HR induce larger opti-

mality gaps when the penalty for energy imbalances is higher (when K+
p = K−n
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is lower and K+
n = K−p is higher). Our explanation for this result is as follows:

Since the efficiency losses restrict the use of battery for arbitrage purposes, the

target storage levels are expected to be more stable under imperfect efficiency

than under perfect efficiency. When the penalty for energy imbalances is higher,

the target storage levels in the cases of negative and positive imbalances deviate

more from each other according to our methods HC and HR, resulting in larger

optimality gaps.

4.5.1 Alternative solution methods

Recall that our method HC takes a myopic approach in negative-price states, and

our method HR extends this approach to nonzero-spike states. We now evaluate

the use of a myopically optimal policy that adopts the optimal solution of the

two-period problem in each state (even when the price is positive and the spike

component is zero) as an alternative heuristic approach for our problem. Since the

commitment decision in the current period can only affect the payoff in the next

period, we consider the two-period problem for the myopic policy calculation. We

have found that the myopic policy yields solutions with an average distance of

8.88%, a maximum distance of 11.38%, and a minimum distance of 7.26% from

the optimal profit (on the same test bed). Comparing these results with our

earlier results for HC and HR, we may argue that a forward-looking approach is

more suitable in states with positive prices that are not dominantly large.

We also evaluate the use of fixed threshold policies as another heuristic ap-

proach for our problem. For the state-dependent threshold policy in Theorem

4.3.1, the target storage and commitment levels vary with the exogenous state

variables. For the fixed threshold policy, however, the target levels remain con-

stant within each period but vary from one period to another. We consider two

variants of the fixed threshold policy, which we call F1 and F2, respectively. In

F1, we calculate the target levels in period t by restricting the exogenous state

tuple It to its prediction Ît based on the initial state tuple I1 in the backward

algorithm of our method HC. The prediction for k periods later is found by first
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raising the transition probability matrices in Chapter 3.3.3 to the kth power and

then taking the expectations via the resulting distributions. In F2, we calculate

the target levels in period t by taking the expectation over the exogenous state

tuple It conditional on the initial state tuple I1. Specifically, we change step 5 in

the backward algorithm of our method HC to

(
Y

(ν),HC
t , Z

(ν),HC
t

)
← arg max(

Y
(ν)
t ,Z

(ν)
t

)
∈Q×S

{
EIt|I1

[
EIt+1|It

[
v̄HCt+1(Y

(ν)
t , Z

(ν)
t , I t+1)

]
+R(ν)(Z

(ν)
t , It)

]}
.

Like our method HR, both F1 and F2 use the target levels to determine the

storage and commitment decisions in states with a zero spike value and a positive

price, and take the myopic approach in all other states. We have found that F1

yields solutions with an average distance of 6.36%, a maximum distance of 14.90%,

and a minimum distance of 3.50% from the optimal profit (on the same test bed).

F2 yields solutions with an average distance of 7.45%, a maximum distance of

14.89%, and a minimum distance of 3.95% from the optimal profit (again on

the same test bed). These results imply that ignoring the state information in

target level calculation causes a significant loss of optimality, demonstrating the

usefulness of state-dependent policies in our problem.

Finally, we consider a deterministic reoptimization heuristic that solves a sim-

pler version of our problem in each period obtained by replacing the random

components with their expected values conditional on the current state. The

deterministic problem in state (Qt, St, It) is given by

max
{(qη ,sη ,wη ,S′η)}η∈T :η≥t

∑
η∈T :η≥t

R(qη−1, It,η, sη, wη)

where S ′t = St, S
′
η+1 = S ′η − sη, ∀η ≥ t, qt−1 = Qt, (qη, sη, wη) ∈ U(qη−1, S

′
η, It,η),

∀η ≥ t, and It,η := (Pt,η,Wt,η) is the expected exogenous state in period η con-

ditional on the exogenous state It in period t. The objective is to maximize the

total cash flow in periods from t through T . The objective function can be lin-

earized when Pt,η > 0, ∀η ≥ t, since the payoff function in each period can be
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shown to be the minimum of affine functions in this case. This heuristic restricts

all price expectations to be nonnegative and solves a linear program when Pt > 0:

the actions in period t are given by the optimal actions of period t obtained from

the linear program. It takes a myopic approach when Pt ≤ 0: the actions in

period t are given by the optimal actions of the two-period problem with states

It,t and It,t+1. This heuristic yields solutions with an average distance of 3.12%, a

maximum distance of 4.41%, and a minimum distance of 2.10% from the optimal

profit (on the same test bed), performing worse than HC and HR by more than

one percent on average. The precise modeling of uncertainties as in HC and HR

thus seems useful in our problem.

4.6 Concluding Remarks

In this chapter, we establish the multi-dimensional structural properties of the

optimal profit function for the energy commitment, generation and storage prob-

lem of a wind power producer. We prove the optimality of a state-dependent

threshold policy for the storage and commitment decisions under the assump-

tions of perfectly efficient battery and transmission line and positive electricity

prices. Leveraging this policy structure, we construct two heuristic solution meth-

ods (HC and HR) for solving the more general problem in which the battery and

transmission line can be imperfectly efficient and the price can also be negative.

Using data-calibrated time series models of the wind speed and electricity price,

we numerically test the performance of these solution methods in the general

problem.

Our method HC yields near-optimal solutions with an average distance of

0.58% from the optimal profit in our experiments. It has an average solution time

of 3.6 minutes, while the standard DP algorithm has an average solution time of

almost 4 hours. Moreover, our method HR provides high-quality solutions (only

slightly worse than those of our method HC) with an average distance of 0.84%

from the optimal profit within half a minute. These results in the general problem

imply that our methods HC and HR enable large computational savings with little
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loss of optimality. Our experiments have also revealed the poor performance

of simpler alternative solution methods (purely myopic solution approach, fixed

threshold policies, and deterministic reoptimization heuristic) with respect to

objective value.

In the next chapter, we characterize the optimal policy structure, with a dif-

ferent proof technique, in a more general case where the battery and transmission

line need not be perfectly efficient.
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Chapter 5

Commitment and Storage

Problem of Wind Power

Producers: Optimal Policy

Characterization in the Presence

of Efficiency Losses

5.1 Introduction

In this chapter, we characterize the optimal policy structure for the energy com-

mitment, generation and storage problem in Chapter 4 when the battery and

transmission line can be imperfectly efficient. We first show that the optimal

profit function is jointly concave in the two endogenous state variables without

any reliance on perfect efficiency. We then partition the state space of the problem

into several disjoint domains that correspond to the optimal decisions of ‘positive

imbalance’ and ‘negative imbalance’ as well as to the optimal decisions of ‘charge

and purchase,’ ‘charge and sell,’ and ‘discharge and sell,’ respectively: it is op-

timal to bring the storage and commitment levels to a different state-dependent
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threshold pair in each domain.

The remainder of the chapter is organized as follows. Chapter 5.2 establishes

the optimal policy structure and discusses its implications. Chapter 5.3 concludes.

The proof of Theorem 5.2.1 is contained in Appendix C.

5.2 Characterization of the Optimal Policy

5.2.1 Structural results

We assume that EPκ|It [|Pκ|] <∞, ∀κ ≥ t. Note that Lemmas 4.3.1-4.3.3 of Chap-

ter 4 still hold when the battery and transmission line are imperfectly efficient.

Proposition 5.2.1. Under Assumption 4.3.1, v∗t (Qt, St, It) is jointly concave in

(Qt, St), ∀t ∈ T .

Proof. Note that v∗T (·, ·, IT ) is jointly concave, ∀IT . Pick an arbitrary t < T and

fix It. Assuming v∗t+1(·, ·, It+1) is jointly concave, ∀It+1, we will prove v∗t (·, ·, It) is

also jointly concave. First, taking a similar path to that in Zhou et al. [8], we

transform our problem into an equivalent one with linear constraints. We define

the following decision variables:

• sCGt : The amount of energy charged into the battery from the wind energy

generated;

• sCPt : The amount of energy charged into the battery from the energy pur-

chased;

• sDt : The amount of energy discharged from the battery;

• wCt : The amount of wind energy generated and charged into the battery;

and

• wSt : The amount of wind energy generated and sold in the market.
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We define Γ(Qt, St, It) as the set of decision variable tuples (qt, s
CG
t , sCPt , sDt , w

C
t , w

S
t ) ∈

R× R5
+ that satisfy

−min {CC/(θτ), CT} ≤ qt ≤ τCT , (5.1)

wSt + γsDt ≤ CT , (5.2)

sCPt /(θτ) ≤ CT , (5.3)

sCGt = θwCt , (5.4)

wCt + wSt ≤ f(Wt), (5.5)

sDt ≤ min{St, CD}, (5.6)

sCGt + sCPt ≤ min{CS − St, CC}, (5.7)

sCGt , sCPt , sDt , w
C
t , w

S
t ≥ 0. (5.8)

Constraint (5.1) uses Lemma 4.3.1 to set bounds on the commitment amount

without loss of optimality. Constraints (5.2) and (5.3) are the transmission capac-

ity constraints for selling and purchasing energy, respectively. Constraint (5.4)

relates the decision wCt to the decision sCGt . Constraint (5.5) says the wind energy

generated is bounded by the available wind potential. Constraints (5.6) and (5.7)

are the battery capacity constraints for discharging and charging energy, respec-

tively. Finally, constraint (5.8) says all decision variables except the commitment

amount are nonnegative. We now consider the following problem:

max
(qt,sCGt ,sCPt ,sDt ,w

C
t ,w

S
t )∈Γ(Qt,St,It)

{
R(Qt, It, (w

S
t + γsDt )τ − sCPt /(θτ)) (5.9)

+ E
[
v∗t+1(qt, St + sCGt + sCPt − sDt , It+1)

]}
where

R(Qt, It, e) =


QtPt +K+

p Pt(e−Qt) if Qt < e,

QtPt −K+
n Pt(Qt − e) if Qt ≥ e.

We show that the above problem is equivalent to ours by constructing an

optimal solution to (5.9) that satisfies sDt = 0 or sCGt + sCPt = 0. Let
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(q̂, ŝCG, ŝCP , ŝD, ŵC , ŵS) ∈ Γ(Qt, St, It) denote a feasible solution to (5.9). We

consider the following two cases:

(1) Suppose that ŝD > 0 and ŝCP > 0: We define ∆1 = min{ŝCP , ŝD} >
0. Note that (q̂, ŝCG, ŝCP − ∆1, ŝ

D − ∆1, ŵ
C , ŵS) ∈ Γ(Qt, St, It) and

(ŵS + γ(ŝD −∆1))τ − (ŝCP −∆1)/(θτ) > (ŵS + γŝD)τ − ŝCP/(θτ). Since

R(Qt, It, ·) is an increasing function, (q̂, ŝCG, ŝCP − ∆1, ŝ
D − ∆1, ŵ

C , ŵS)

yields a larger objective value to (5.9) than (q̂, ŝCG, ŝCP , ŝD, ŵC , ŵS). Thus,

(q̂, ŝCG, ŝCP , ŝD, ŵC , ŵS) cannot be an optimal solution to (5.9) if ŝD > 0

and ŝCP > 0.

(2) Suppose that ŝD > 0, ŝCP = 0, and ŝCG > 0: We define ∆2 =

min{ŝCG, ŝD} > 0. Note that (q̂, ŝCG −∆2, ŝ
CP , ŝD −∆2, ŵ

C −∆2/θ, ŵ
S +

γ∆2) ∈ Γ(Qt, St, It) and (ŵS + γ∆2 + γ(ŝD − ∆2))τ − ŝCP/(θτ) = (ŵS +

γŝD)τ − ŝCP/(θτ). Thus, if (q̂, ŝCG, ŝCP , ŝD, ŵC , ŵS) is an optimal solution

to (5.9), then (q̂, ŝCG −∆2, ŝ
CP , ŝD −∆2, ŵ

C −∆2/θ, ŵ
S + γ∆2) is also op-

timal with ŝCP + ŝCG −∆2 = 0 or ŝD −∆2 = 0 depending on the value of

∆2.

Thus v∗t (Qt, St, It) equals the optimal objective value of (5.9). Next, we show

that |v∗t (Qt, St, It)| <∞. Since −CT ≤ Qt ≤ τCT from Lemma 4.3.1 and −CT ≤
E(st, wt) ≤ τCT , note that |R(Qt, It, st, wt)| ≤ |Pt|CT . Hence, |v∗t (Qt, St, It)| ≤∑T−1

κ=t |EPκ|It [Pκ]|CT ≤
∑T−1

κ=t EPκ|It [|Pκ|]CT <∞ since EPκ|It [|Pκ|] <∞, ∀κ ≥ t.

Finally, we define C := {(Qt, St, qt, s
CG
t , sCPt , sDt , w

C
t , w

S
t ) | (Qt, St) ∈

Θ, (qt, s
CG
t , sCPt , sDt , w

C
t , w

S
t ) ∈ Γ(Qt, St, It)} where Θ := {(Qt, St) |

−min {CC/(θτ), CT} ≤ Qt ≤ τCT , 0 ≤ St ≤ CS, (St − CS)/(θτ) ≤ Qt}. Note

that C is a convex set since Θ and Γ(Qt, St, It) are polyhedral and thus convex

sets. Also, note that the objective function of problem (5.9) is a concave func-

tion on C since v∗t+1(·, ·, It+1) is jointly concave and R(Qt, It, ·) is concave. Since

v∗t (Qt, St, It) < ∞, Theorem A.4 in Porteus [97] implies that v∗t (Qt, St, It) is a

concave function on Θ.
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5.2.2 Optimal commitment and storage policy

When the battery and transmission line need not be perfectly efficient, the opti-

mal policy structure again involves state-dependent target levels for the commit-

ment and storage decisions.

We need to consider three types of sales/purchase decisions in any period t:

(i) A certain amount of energy is generated by discharging the battery (st > 0).

The resulting energy together with the generated wind energy is sold in the

market. We label this type of decision DS (the initials of ‘discharge’ and ‘sell’).

(ii) A certain amount of energy is stored by charging the battery (st < 0). If

the generated wind energy is sufficient to charge the battery (st/θ ≥ −wt), the

excess wind energy is sold in the market. We label this type of decision CS (the

initials of ‘charge’ and ‘sell’). (iii) If the generated wind energy is not sufficient

to charge the battery (st/θ < −wt), the required additional energy is purchased

from the market. We label this type of decision CP (the initials of ‘charge’ and

‘purchase’). We also need to consider two types of commitment decisions: (i)

‘positive imbalance’ (pi) and (ii) ‘negative imbalance’ (ni).

Hence, we need to consider a total of six decision types to formulate the

state-dependent target levels: charge and purchase leading to positive imbal-

ance (piCP) and negative imbalance (niCP), charge and sell leading to posi-

tive imbalance (piCS) and negative imbalance (niCS), and discharge and sell

leading to positive imbalance (piDS) and negative imbalance (niDS). For ν ∈
{niCP, niCS, niDS, piCP, piCS, piDS},

(
Y

(ν)
t (It), Z

(ν)
t (It)

)
:= arg max

(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[0,CS ]

{
E
[
v∗t+1(qt, zt, It+1)

]
+R(ν)(zt, It)

}

where
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R(ν)(zt, It) =



−K+
n Ptzt/(θτ) if ν = niCP,

−K+
n Ptτzt/θ if ν = niCS,

−K+
n Ptγτzt if ν = niDS,

−K+
p Ptzt/(θτ) if ν = piCP,

−K+
p Ptτzt/θ if ν = piCS,

−K+
p Ptγτzt if ν = piDS,

and zt := St − st is the storage level at the end of period t if the action st is

taken in period t. Since Z
(ν)
t (It) may be inaccessible when the capacity limits

are taken into account, the optimal storage level at the end of period t may be

different from Z
(ν)
t (It) so that Y

(ν)
t (It) may no longer be optimal at this storage

level. Therefore, we also introduce the optimal state-dependent target level for

the commitment decision after the storage decision is made in the constrained

problem:

Yt(St+1, It) := arg max
qt∈[−min{CC/(θτ),CT },τCT ]

{
E
[
v∗t+1(qt, St, It+1)

]}
.

Note that Yt(Z
(ν)
t , It) = Y

(ν)
t (It) for each ν ∈ {niCP, niCS, niDS, piCP, piCS, piDS}.

Finally, we introduce an auxiliary state-dependent target level for the storage

decision, which we denote by Zt(Qt, St, It), that can take the values of Z
(piCP)
t (It),

Z
(piCS)
t (It), Z

(piDS)
t (It), Z

(niCP)
t (It), Z

(niCS)
t (It), and Z

(niDS)
t (It) depending on the

system state.

Let Ω denote the domain of (Qt, St,Wt), i.e., Ω := [−min{CC/(θτ), CT}, τCT ]×
[0, CS]× [0,∞). We define the following disjoint subdomains of Ω:

94



Ψ0 := {(Qt, St,Wt) ∈ Ω : f(Wt) ≥ CT + min{CS − St, CC}/θ},

Ψ+
1 := {(Qt, St,Wt) ∈ Ω : CT + min{CS − St, CC}/θ > f(Wt) ≥ CT ,

f(Wt) ≥ Qt/τ + min{CS − St, CC}/θ, Qt ≥ 0},

Ψ+
2 := {(Qt, St,Wt) ∈ Ω : CT + min{CS − St, CC}/θ > f(Wt) ≥ CT ,

Qt/τ + min{CS − St, CC}/θ > f(Wt), Qt ≥ 0},

Ψ+
3 := {(Qt, St,Wt) ∈ Ω : CT > f(Wt), f(Wt) ≥ Qt/τ + min{CS − St, CC}/θ,

Qt ≥ 0},

Ψ+
4 := {(Qt, St,Wt) ∈ Ω : CT > f(Wt), Qt/τ + min{CS − St, CC}/θ > f(Wt)

≥ Qt/τ, Qt ≥ 0},

Ψ5 := {(Qt, St,Wt) ∈ Ω : CT > f(Wt), Qt/τ > f(Wt)},

Ψ−1 := {(Qt, St,Wt) ∈ Ω : CT + min{CS − St, CC}/θ > f(Wt) ≥ CT ,

f(Wt) ≥ τQt + min{CS − St, CC}/θ, Qt < 0},

Ψ−2 := {(Qt, St,Wt) ∈ Ω : CT + min{CS − St, CC}/θ > f(Wt) ≥ CT ,

τQt + min{CS − St, CC}/θ > f(Wt), Qt < 0},

Ψ−3 := {(Qt, St,Wt) ∈ Ω : CT > f(Wt), f(Wt) ≥ τQt + min{CS − St, CC}/θ,

Qt < 0}, and

Ψ−4 := {(Qt, St,Wt) ∈ Ω : CT > f(Wt), τQt + min{CS − St, CC}/θ > f(Wt),

Qt < 0}.

Theorem 5.2.1. Under Assumption 4.3.1, the optimal policy structure follows a

state-dependent threshold policy with state-dependent target levels for the storage

and commitment decisions. In any period t, if (Qt, St,Wt) ∈ Ψ0, it is optimal to

charge the battery to get as close to CS as possible.

If (Qt, St,Wt) ∈ Ψ+
1 , it is optimal to

• charge to get as close to Z
(piCS)
t (It) as possible if St ≤ Z

(piCS)
t (It), and

• keep unchanged if Z
(piCS)
t (It) < St.
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If (Qt, St,Wt) ∈ Ψ−1 , it is optimal to

• charge to get as close to Z
(piCP)
t (It) as possible if St ≤ Z

(piCP)
t (It)− θf(Wt),

• charge to get as close to Z
(piCS)
t (It) as possible if Z

(piCP)
t (It)−θf(Wt) < St ≤

Z
(piCS)
t (It), and

• keep unchanged if Z
(piCS)
t (It) < St.

If (Qt, St,Wt) ∈ Ψ+
2 , it is optimal to

• charge to get as close to Z
(niCP)
t (It) as possible if St ≤ Z

(niCP)
t (It)− θf(Wt),

• charge to get as close to Z
(niCS)
t (It) as possible if Z

(niCP)
t (It)−θf(Wt) < St ≤

Z
(niCS)
t (It)− θ(f(Wt)−Qt/τ),

• charge to get as close to Z
(piCS)
t (It) as possible if Z

(niCS)
t (It) − θ(f(Wt) −

Qt/τ) < St ≤ Z
(piCS)
t (It), and

• keep unchanged if Z
(piCS)
t (It) < St.

If (Qt, St,Wt) ∈ Ψ−2 , it is optimal to

• charge to get as close to Z
(niCP)
t (It) as possible if St ≤ Z

(niCP)
t (It)−θ(f(Wt)−

τQt),

• charge to get as close to Z
(piCP)
t (It) as possible if Z

(niCP)
t (It) − θ(f(Wt) −

τQt) < St ≤ Z
(piCP)
t (It)− θf(Wt),

• charge to get as close to Z
(piCS)
t (It) as possible if Z

(piCP)
t (It)−θf(Wt) < St ≤

Z
(piCS)
t (It), and

• keep unchanged if Z
(piCS)
t (It) < St.

If (Qt, St,Wt) ∈ Ψ+
3 , it is optimal to
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• charge to get as close to Z
(piCS)
t (It) as possible if St ≤ Z

(piCS)
t (It),

• keep unchanged if Z
(piCS)
t (It) < St ≤ Z

(piDS)
t (It), and

• discharge to get as close to Z
(piDS)
t (It) as possible if Z

(piDS)
t (It) < St.

If (Qt, St,Wt) ∈ Ψ−3 , it is optimal to

• charge to get as close to Z
(piCP)
t (It) as possible if St ≤ Z

(piCP)
t (It)− θf(Wt),

• charge to get as close to Z
(piCS)
t (It) as possible if Z

(piCP)
t (It)−θf(Wt) < St ≤

Z
(piCS)
t (It),

• keep unchanged if Z
(piCS)
t (It) < St ≤ Z

(piDS)
t (It), and

• discharge to get as close to Z
(piDS)
t (It) as possible if Z

(piDS)
t (It) < St.

If (Qt, St,Wt) ∈ Ψ+
4 , it is optimal to

• charge to get as close to Z
(niCP)
t (It) as possible if St ≤ Z

(niCP)
t (It)− θf(Wt),

• charge to get as close to Z
(niCS)
t (It) as possible if Z

(niCP)
t (It)−θf(Wt) < St ≤

Z
(niCS)
t (It)− θ(f(Wt)−Qt/τ),

• charge to get as close to Z
(piCS)
t (It) as possible if Z

(niCS)
t (It) − θ(f(Wt) −

Qt/τ) < St ≤ Z
(piCS)
t (It),

• keep unchanged if Z
(piCS)
t (It) < St ≤ Z

(piDS)
t (It), and

• discharge to get as close to Z
(piDS)
t (It) as possible if Z

(piDS)
t (It) < St.

If (Qt, St,Wt) ∈ Ψ−4 , it is optimal to

• charge to get as close to Z
(niCP)
t (It) as possible if St ≤ Z

(niCP)
t (It)−θ(f(Wt)−

τQt),
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• charge to get as close to Z
(piCP)
t (It) as possible if Z

(niCP)
t (It) − θ(f(Wt) −

τQt) < St ≤ Z
(piCP)
t (It)− θf(Wt),

• charge to get as close to Z
(piCS)
t (It) as possible if Z

(piCP)
t (It)−θf(Wt) < St ≤

Z
(piCS)
t (It),

• keep unchanged if Z
(piCS)
t (It) < St ≤ Z

(piDS)
t , and

• discharge to get as close to Z
(piDS)
t (It) as possible if Z

(piDS)
t (It) < St.

If (Qt, St,Wt) ∈ Ψ5, it is optimal to

• charge to get as close to Z
(niCP)
t (It) as possible if St ≤ Z

(niCP)
t (It)− θf(Wt),

• charge to get as close to Z
(niCS)
t (It) as possible if Z

(niCP)
t (It)−θf(Wt) < St ≤

Z
(niCS)
t (It),

• keep unchanged if Z
(niCS)
t (It) < St ≤ Z

(niDS)
t (It),

• discharge to get as close to Z
(niDS)
t (It) as possible if Z

(niDS)
t (It) < St ≤

Z
(piDS)
t (It) + (Qt/τ − f(Wt))/γ, and

• discharge to get as close to Z
(piDS)
t (It) as possible if Z

(piDS)
t (It) + (Qt/τ −

f(Wt))/γ < St.

The optimal commitment action is q∗t (Qt, St, It) = Yt(St − s) where s is the op-

timal amount of energy generated or stored. Furthermore, the optimal state-

dependent target storage levels obey (i) Z
(niCP)
t (It) ≤ Z

(niCS)
t (It) ≤ Z

(niDS)
t (It),

(ii) Z
(piCP)
t (It) ≤ Z

(piCS)
t (It) ≤ Z

(piDS)
t (It), (iii) Z

(niCP)
t (It) ≤ Z

(piCP)
t (It), (iv)

Z
(niCS)
t (It) ≤ Z

(piCS)
t (It), and (v) Z

(niDS)
t (It) ≤ Z

(piDS)
t (It).

Proof. See Appendix C.

We discuss below the implications of Theorem 5.2.1:
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• Suppose that the maximum amount of renewable energy that can be gen-

erated is greater than the maximum total amount of energy that can be

used for selling and storing (i.e., (Qt, St,Wt) ∈ Ψ0). Then it is optimal to

increase the storage level as much as possible.

• Suppose that the maximum amount of renewable energy that can be gener-

ated is greater than the transmission line capacity and the maximum total

amount of energy that can be used for meeting the commitment (for selling

energy to the market) and storing, but less than the maximum total amount

of energy that can be used for selling and storing (i.e., (Qt, St,Wt) ∈ Ψ+
1 ).

If the storage level is too low (i.e., St ≤ Z
(piCS)
t (It)), it is optimal to bring

the storage level as close to Z
(piCS)
t (It) as possible. If the storage level is

too high (i.e., if Z
(piCS)
t (It) < St), it is optimal to keep the storage level

unchanged.

• Suppose that the maximum amount of renewable energy that can be

generated is greater than the transmission line capacity and the maxi-

mum total amount of energy that can be used for meeting the commit-

ment (for purchasing energy from the market) and storing, but less than

the maximum total amount of energy that can be used for selling and

storing (i.e., (Qt, St,Wt) ∈ Ψ−1 ). If the storage level is too low (i.e.,

St ≤ Z
(piCP)
t (It) − θf(Wt)), it is optimal to bring the storage level as close

to Z
(piCP)
t (It) as possible. If the storage level is in a medium range (i.e.,

Z
(piCP)
t (It) − θf(Wt) < St ≤ Z

(piCS)
t (It)), it is optimal to bring the storage

level as close to Z
(piCS)
t (It) as possible. If the storage level is too high (i.e.,

Z
(piCS)
t (It) < St), it is optimal to keep the storage level unchanged.

• Suppose that the maximum amount of renewable energy that can be

generated is greater than the transmission line capacity but less than

the maximum total amount of energy that can be used for meeting the

commitment (for selling energy to the market) and storing, as well as

the maximum total amount of energy that can be used for selling and

storing (i.e., (Qt, St,Wt) ∈ Ψ+
2 ). If the storage level is too low (i.e.,

St ≤ Z
(niCP)
t (It) − θf(Wt)), it is optimal to bring the storage level as close

to Z
(niCP)
t (It) as possible. If the storage level is in a medium range (i.e.,
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Z
(niCP)
t (It) − θf(Wt) < St ≤ Z

(niCS)
t (It) − θ(f(Wt) − Qt/τ)), it is optimal

to bring the storage level as close to Z
(niCS)
t (It) as possible. If the storage

level is high enough (i.e., Z
(niCS)
t (It)− θ(f(Wt)−Qt/τ) < St ≤ Z

(piCS)
t (It)),

it is optimal to bring the storage level as close to Z
(piCS)
t (It) as possible. If

the storage level is too high (i.e., Z
(piCS)
t (It) < St), it is optimal to keep the

storage level unchanged.

• Suppose that the maximum amount of renewable energy that can be gen-

erated is greater than the transmission line capacity but less than the

maximum total amount of energy that can be used for meeting the com-

mitment (for purchasing energy from the market) and storing, as well as

the maximum total amount of energy that can be used for selling and

storing (i.e., (Qt, St,Wt) ∈ Ψ−2 ). If the storage level is too low (i.e.,

St ≤ Z
(niCP)
t (It)−θ(f(Wt)−τQt)), it is optimal to bring the storage level as

close to Z
(niCP)
t (It) as possible. If the storage level is in medium range (i.e.,

Z
(niCP)
t (It) − θ(f(Wt) − τQt) < St ≤ Z

(piCP)
t (It) − θf(Wt)), it is optimal to

bring the storage level as close to Z
(piCP)
t (It) as possible. If the storage level

is high enough (i.e., Z
(piCP)
t (It) − θf(Wt) < St ≤ Z

(piCS)
t (It)), it is optimal

to bring the storage level as close to Z
(piCS)
t (It) as possible. If the storage

level is too high (i.e., Z
(piCS)
t (It) < St), it is optimal to keep the storage level

unchanged.

• Suppose that the maximum amount of renewable energy that can be gener-

ated is greater than the maximum total amount of energy that can be used

for meeting the commitment (for selling energy to the market) and storing

but less than the transmission line capacity (i.e., (Qt, St,Wt) ∈ Ψ+
3 ). If the

storage level is too low (i.e., St ≤ Z
(piCS)
t (It)), it is optimal to bring the stor-

age level as close to Z
(piCS)
t (It) as possible. If the storage level is in a medium

range (i.e., Z
(piCS)
t (It) < St ≤ Z

(piDS)
t (It)), it is optimal to keep the storage

level unchanged. If the storage level is too high (i.e., St > Z
(piDS)
t (It)), it is

optimal to bring the storage level as close to Z
(piDS)
t (It) as possible.

• Suppose that the maximum amount of renewable energy that can be gener-

ated is greater than the maximum total amount of energy that can be used

for meeting the commitment (for purchasing energy from the market) and
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storing but less than the transmission line capacity (i.e., (Qt, St,Wt) ∈ Ψ−3 ).

If the storage level is too low (i.e., St ≤ Z
(piCP)
t (It)− θf(Wt)), it is optimal

to bring the storage level as close to Z
(piCP)
t (It) as possible. If the storage

level is in medium range (i.e., Z
(piCP)
t (It) − θf(Wt) < St ≤ Z

(piCS)
t (It)), it

is optimal to bring the storage level as close to Z
(piCS)
t (It) as possible. The

optimal actions are similar to those in the scenario (Qt, St,Wt) ∈ Ψ+
3 if the

storage level is high enough or too high, respectively.

• Suppose that the maximum amount of renewable energy that can be gener-

ated is greater than the amount of energy that can be used for meeting the

commitment but less than the maximum total amount of energy that can

be used for meeting the commitment (for selling energy to the market) and

storing, as well as the transmission line capacity (i.e., if (Qt, St,Wt) ∈ Ψ+
4 ).

The optimal actions are similar to those in the scenario (Qt, St,Wt) ∈ Ψ+
2 if

the storage level is too low, in the medium range, or not high enough. The

optimal actions are similar to those in the scenario (Qt, St,Wt) ∈ Ψ+
3 if the

storage level is high enough or too high.

• Suppose that the maximum amount of renewable energy that can be gen-

erated is less than the maximum total amount of energy that can be used

for meeting the commitment (for purchasing energy from the market) and

storing, as well as the transmission line capacity (i.e., (Qt, St,Wt) ∈ Ψ−4 ).

The optimal actions are similar to those in the scenario (Qt, St,Wt) ∈ Ψ−2 if

the storage level is too low, in the medium range, or not high enough. The

optimal actions are similar to those in the scenario (Qt, St,Wt) ∈ Ψ−3 if the

storage level is high enough or too high.

• Suppose that the maximum amount of energy that can be generated is

less than the transmission line capacity and the amount of energy that

can be used for meeting the commitment (i.e., (Qt, St,Wt) ∈ Ψ5), the op-

timal actions are similar to those in the scenarios (Qt, St,Wt) ∈ Ψ+
2 and

(Qt, St,Wt) ∈ Ψ+
4 if the storage level is too low or in the medium range.

If the storage level is not high enough (i.e., Z
(piCS)
t (It) < St ≤ Z

(niDS)
t (It)),

it is optimal to keep the storage level unchanged. If the storage level is

high enough (i.e., Z
(niDS)
t (It) < St ≤ Z

(piDS)
t (It) + (Qt/τ − f(Wt))/γ), it is
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optimal to bring the storage level down as close to Z
(niDS)
t (It) as possible.

If the storage level is too high (i.e., Z
(piDS)
t (It) + (Qt/τ − f(Wt))/γ < St), it

is optimal to bring the storage level down as close to Z
(piDS)
t (It) as possible.

Theorem 5.2.1 also implies that when the storage level is too low, it is optimal

to charge the battery and purchase energy from the market. In this case, the

operator chooses to bring the storage level up to Z
(niCP)
t (It) by purchasing energy

more than the commitment level if the energy storage is critical, and bring it up

to Z
(piCP)
t (It) by purchasing energy no more than the commitment level otherwise.

When the storage level is in the medium range, the operator gains the flexibility

to charge the battery and sell energy to the market. In this case, the operator

chooses to bring the storage level up to Z
(niCS)
t (It) by selling energy less than the

commitment level if the energy storage is critical, and bring it up to Z
(piCS)
t (It)

by selling energy no less than the commitment level otherwise. When the storage

level is high enough, it is optimal to keep the storage level unchanged. However,

when the storage level is too high, it is optimal to discharge the battery and sell

energy to the market. In this case, the operator chooses to bring the storage level

down to Z
(niDS)
t (It) by selling energy less than the commitment level if the energy

storage is critical, and bring it down to Z
(piDS)
t (It) by selling energy no less than

the commitment level otherwise.

The inefficiencies of the battery lead to different marginal payoffs in the en-

ergy generation and storage modes. Therefore, Z
(niCS)
t (It) ≤ Z

(niDS)
t (It) and

Z
(piCS)
t (It) ≤ Z

(piDS)
t (It). Note that Z

(niCS)
t (It) = Z

(niDS)
t (It) and Z

(piCS)
t (It) =

Z
(piDS)
t (It) if γθ = 1. The inefficiency of the transmission line leads to differ-

ent marginal payoffs in the energy selling and purchasing modes. Therefore,

Z
(niCP)
t (It) ≤ Z

(niCS)
t (It) and Z

(piCP)
t (It) ≤ Z

(piCS)
t (It). Note that Z

(niCP)
t (It) =

Z
(niCS)
t (It) and Z

(piCP)
t (It) = Z

(piCS)
t (It) if τ = 1.
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5.3 Concluding Remarks

In this chapter, we have characterized the structure of the optimal commitment

and storage policy for a wind power producer who utilizes a battery that can be

imperfectly efficient and may experience transmission losses when selling energy

to or purchasing energy from the market. We partition the state space of the

problem into several disjoint domains, depending on the wind energy availability,

the type and level of the commitment, and the storage level of the battery. Each

subdomain corresponds to a set of target storage levels, from which one particular

target level is chosen depending on the battery’s storage level. We also show

that the optimal target levels for the storage decisions are higher in the case

of ‘discharge and sell’ decisions and lower in the case of ‘charge and purchase’

decisions. Future extensions of this study may consider other storage technologies,

such as pumped hydro energy storage and compressed air energy storage. The

theory of ADP may be usefully employed in this research direction in order to

handle potentially larger state and/or action spaces.
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Chapter 6

Commitment and Storage

Problem of Wind Power

Producers: The Impact of

Commitment Decisions

6.1 Introduction

In this chapter, we consider an alternative market setting that allows for real-time

trading without making any advance commitment. This type of energy trading

can be referred to as merchant agreements (a special type of the power purchase

agreements mentioned in Chapter 2) and is widely used as a market setting in the

literature; see, for example, [8, 57, 58, 61, 62, 64] and [88]. Under this merchant

agreement type, the wind power producer sells her electricity output directly into

the market at the prevailing market price [14]. The producer faces the risk of fluc-

tuating electricity prices, but she also has the potential to earn higher profits if

the market conditions are favorable and/or if she has an energy storage unit that

can be used as a financial hedging instrument (e.g., she can choose to hold back

some of her output to sell at a later time if the market conditions are expected to
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be more favorable). Under this merchant agreement type, the wind power pro-

ducer is not penalized for not supplying energy in real-time, because these types

of agreements typically do not include capacity or availability guarantees and are

not based on advance commitments. Making commitments in an electricity mar-

ket, on the other hand, carries the risk of dispatch uncertainty in real-time. When

the wind power producer makes a commitment in an electricity market, she may

be unable to meet her contracted energy output requirement in real-time, result-

ing in financial penalties and lost revenues (i.e., specifically, when she participates

in a single market with no option to fix any deviation from her commitments or

benefit from price discrepancies that can occur between markets).

This chapter constructs a theoretical upper bound on the possible cost of ad-

vance commitments by comparing the total cash flows in our original problem

setting and in the above-mentioned alternative problem setting. The key differ-

ence between the two problem settings is that the producer in the former setting

makes commitment decisions under uncertainty in the electricity price and wind

speed of the upcoming time period and is penalized for any possible imbalances

that occur in real-time, whereas the producer in the latter setting sells or pur-

chases energy after observing the market price and wind speed in real-time. We

also investigate the impact of commitment decisions on the producers’ storage

and generation decisions.

The remainder of the chapter is organized as follows. Chapter 6.2 compares

the total cash flows in the original and alternative problem settings and offers a

theoretical bound on the difference in cash flows. Chapter 6.3 presents numerical

results and discusses the impact of commitment decisions. Chapter 6.4 concludes.

Detailed numerical results are contained in Appendix D.

6.2 Problem Formulation

In spot markets, like the one in the original problem setting (a spot market

with hour-ahead commitments and hourly settlements), the market participants
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are supposed to make advance commitment decisions in the absence of precise

knowledge about the future electricity price and renewable energy potential. The

profit of a power producer in such markets is potentially lower than in markets

that accept dispatch or purchase amounts determined in real-time without any

commitment decisions. Recall that the payoff function for the original problem

setting is:

R(Qt, It, st, wt) =



QtPt +K+
p Pt(E(st, wt)−Qt) if Pt ≥ 0 and

Qt < E(st, wt) (pi),

QtPt −K+
n Pt(Qt − E(st, wt)) if Pt ≥ 0 and

Qt ≥ E(st, wt) (ni),

QtPt +K−p Pt(E(st, wt)−Qt) if Pt < 0 and

Qt < E(st, wt) (pi),

QtPt −K−n Pt(Qt − E(st, wt)) if Pt < 0 and

Qt ≥ E(st, wt) (ni),

where K+
p Pt and K+

n Pt denote the imbalance prices when the electricity price

is positive in the cases of pi and ni, respectively; K−p Pt and K−n Pt denote the

imbalance prices when the electricity price is negative in the cases of pi and ni,

respectively; and 0 ≤ K+
p = K−n < 1 < K+

n = K−p . Also recall that v∗t (Qt, St, It)

denotes the optimal profit function in period t for the producer with hour-ahead

commitment decisions:

v∗t (Qt, St, It) = max
(qt,st,wt)∈U(Qt,St,It)

{
R(Qt, It, st, wt) + EIt+1|It

[
v∗t+1(qt, St − st, It+1)

]}
.

(6.1)

We now consider an alternative problem setting that enables real-time trading

without any advance commitment decisions. In other words, any electricity of-

fered to the market in real-time without any advance commitment, E(st, wt), is

always accepted, and the producer makes only real-time trading decisions. This

problem setting can be obtained from our original problem setting by restricting
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all of the imbalance pricing parameters to be 1 (K+
p = K−n = K+

n = K−p = 1).

The payoff function thus becomes R̃(It, st, wt) = E(st, wt)Pt; this alternative

problem setting is equivalent to the one in Zhou et al. [8]. Recall from Chapter

5 that Zhou et al. [8] investigate the optimal operating policy of a wind power

plant co-located with a battery without considering any advance commitment

decisions.

A control policy π̃ is the sequence of decision rules (η̃π̃t (Sπ̃t , It))t∈T , where

η̃π̃t (Sπ̃t , It) := (sπ̃t (Sπ̃t , It), w
π̃
t (Sπ̃t , It)) and Sπ̃t denotes the random state variable

governed by policy π̃, ∀t ∈ T \{1}. We denote the set of all admissible control

policies by Π̃. For any initial state (S1, I1), the optimal expected total cash flow

over the finite horizon can be written as

max
π̃∈Π̃

E

[∑
t∈T

R̃(It, s
π̃
t (Sπ̃t , It), w

π̃
t (Sπ̃t , It))

∣∣∣∣S1, I1

]
.

For each period t ∈ T and each state (St, It), the optimal profit function ṽ∗t (St, It)

can be calculated with the following DP recursion:

ṽ∗t (St, It) = max
(st,wt)∈Ũ(St,It)

{
R̃(It, st, wt) + EIt+1|It [ṽ

∗
t+1(St+1, It+1)]

}
(6.2)

where Ũ(St, It) denotes the set of admissible action pairs (st, wt) in state (St, It)

and ṽT (ST , IT ) = 0. We compare below the total cash flows in the original and

alternative settings.

Proposition 6.2.1. Let Υ(It) = max{(1 − K+
p )EPt, (K

+
n − 1)EPt, (1 −

K−p )EPt, (K
−
n − 1)EPt} where E = τCT and E = min{CC/(θτ), CT}.

Then v∗t (Qt, St, It) ≤ ṽ∗t (St, It) ≤ v∗t (Qt, St, It) + max{(K+
p − 1)QtPt, (K

+
n −

1)QtPt, (K
−
p − 1)QtPt, (K

−
n − 1)QtPt}+ Υ(It) +

∑T
κ=t+1 E[Υ(Iκ)], ∀Qt.

Proof. First, we will prove that v∗t (Qt, St, It) ≤ ṽ∗t (St, It), ∀Qt ∈ R, ∀t ∈
T . Note that v∗T (QT , ST , IT ) = ṽ∗T (ST , IT ) = 0, ∀QT ∈ R. Assuming

v∗t+1(Qt+1, St+1, It+1) ≤ ṽ∗t+1(St+1, It+1), we will show v∗t (Qt, St, It) ≤ ṽ∗t (St, It),
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∀Qt ∈ R. Pick an arbitrary Qt and let η∗t (Qt, St, It) = (q, s, w) and η̃∗(St, It) =

(s̃, w̃). Also, let U(Qt, St, It) and Ũ(St, It) denote the sets of admissible ac-

tion triplets (qt, st, wt) and (s̃t, w̃t) in state (Qt, St, It), respectively. Note that

(s, w) ∈ Ũ(St, It). Thus:

v∗t (Qt, St, It) = R(Qt, It, s, w) + E
[
v∗t+1(q, St − s, It+1)

]
≤ R̃(It, s, w) + E

[
ṽ∗t+1(St − s, It+1)

]
≤ ṽ∗t (St, It).

The first inequality holds since R̃(It, s, w) = R(E(s, w), It, s, w) =

maxQt R(Qt, It, s, w).

Next, note that ṽ∗T (ST , IT ) = 0 = v∗T (0, ST , IT ) ≤ v∗T (0, ST , IT ) + Υ(IT )

since Υ(IT ) ≥ 0. Assuming ṽ∗t+1(St+1, It+1) ≤ v∗t+1(0, St+1, It+1) + Υ(It+1) +∑T
κ=t+2 E[Υ(Iκ)], we will prove ṽ∗t (St, It) ≤ v∗t (0, St, It)+Υ(It)+

∑T
κ=t+1 E[Υ(Iκ)],

∀t ∈ T . Let η∗(0, St, It) = (q, s, w) and η̃∗(St, It) = (s̃, w̃). Note that

(0, s̃, w̃) ∈ U(0, St, It). Thus:

ṽ∗t (St, It)− v∗t (0, St, It) ≤ R̃(It, s̃, w̃) + E
[
ṽ∗t+1(St − s̃, It+1)

]
−R(0, It, s̃, w̃)

− E
[
v∗t+1(0, St − s̃, It+1)

]
≤ R̃(It, s̃, w̃)−R(0, It, s̃, w̃) +

T∑
κ=t+1

E[Υ(Iκ)]

≤ Υ(It) +
T∑

κ=t+1

E[Υ(Iκ)].

The third inequality holds in each of the following four cases:

(1) Suppose that Pt ≥ 0 and 0 < E(s̃, w̃): Since K+
p < 1, R̃(It, s̃, w̃) −

R(0, St, s̃, w̃) = E(s̃, w̃)(1−K+
p )Pt ≤ τCT (1−K+

p )Pt ≤ Υ(It).

(2) Suppose that Pt ≥ 0 and 0 ≥ E(s̃, w̃): Since K+
n > 1, R̃(It, s̃, w̃) −

R(0, St, s̃, w̃) = E(s̃, w̃)(1−K+
n )Pt ≤ min{CC/(θτ), CT}(K+

n −1)Pt ≤ Υ(It).
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(3) Suppose that Pt < 0 and 0 < E(s̃, w̃): Since K−p > 1, R̃(It, s̃, w̃) −
R(0, St, s̃, w̃) = E(s̃, w̃)(1−K−p )Pt ≤ τCT (1−K−p )Pt ≤ Υ(It).

(4) Suppose that Pt < 0 and 0 ≥ E(s̃, w̃): Since K−n < 1, R̃(It, s̃, w̃) −
R(0, St, s̃, w̃) = E(s̃, w̃)(1−K−n )Pt ≤ min{CC/(θτ), CT}(K−n −1)Pt ≤ Υ(It).

Finally, we prove that v∗t (0, St, It)−v∗t (Qt, St, It) ≤ max{(K+
p −1)QtPt, (K

+
n −

1)QtPt, (K
−
p − 1)QtPt, (K

−
n − 1)QtPt}, ∀t ∈ T .

v∗t (0, St, It)− v∗t (Qt, St, It)

≤ R(0, It, s, w) + E
[
v∗t+1(q, St − s, It+1)

]
−R(Qt, It, s, w)− E

[
v∗t+1(q, St − s, It+1)

]
≤ max{(K+

p − 1)QtPt, (K
+
n − 1)QtPt, (K

−
p − 1)QtPt, (K

−
n − 1)QtPt}.

The second inequality holds in each of the following eight cases:

(1) Suppose that Pt ≥ 0, Qt < E(s, w), and 0 < E(s, w): R(0, It, s, w) −
R(Qt, It, s, w) = (K+

p − 1)QtPt.

(2) Suppose that Pt ≥ 0, E(s, w) ≤ Qt, and E(s, w) ≤ 0: R(0, It, s, w) −
R(Qt, It, s, w) = (K+

n − 1)QtPt.

(3) Suppose that Pt ≥ 0 and Qt < E(s, w) ≤ 0: Since K+
n > K+

p , R(0, It, s, w)−
R(Qt, It, s, w) = (K+

n −K+
p )PtE(s, w) + (K+

p − 1)QtPt ≤ (K+
p − 1)QtPt.

(4) Suppose that Pt ≥ 0 and 0 < E(s, w) ≤ Qt: Since K+
n > K+

p , R(0, It, s, w)−
R(Qt, It, s, w) = (K+

p −K+
n )PtE(s, w) + (K+

n − 1)QtPt ≤ (K+
n − 1)QtPt.

(5) Suppose that Pt < 0, Qt < E(s, w), and 0 < E(s, w): R(0, It, s, w) −
R(Qt, It, s, w) = (K−p − 1)QtPt.

(6) Suppose that Pt < 0, E(s, w) ≤ Qt, and E(s, w) ≤ 0: R(0, It, s, w) −
R(Qt, It, s, w) = (K−n − 1)QtPt.

(7) Suppose that Pt < 0 and Qt < E(s, w) ≤ 0: Since K−p > K−n , R(0, It, s, w)−
R(Qt, It, s, w) = (K−n −K−p )PtE(s, w) + (K−p − 1)QtPt ≤ (K−p − 1)QtPt.
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(8) Suppose that Pt < 0 and 0 < E(s, w) ≤ Qt: Since K−p > K−n , R(0, It, s, w)−
R(Qt, It, s, w) = (K−p −K−n )PtE(s, w) + (K−n − 1)QtPt ≤ (K−n − 1)QtPt.

Proposition 6.2.1 states that the optimal total profit in the presence of com-

mitment decisions (i.e., v∗1(Q1, S1, I1)) is lower than the optimal total profit in the

absence of commitment decisions (i.e., ṽ∗1(S1, I1)). This is because the producer

is penalized if she does not meet her commitments in real-time. Proposition 6.2.1

also establishes an upper bound on the loss of total cash flow due to the existence

of commitment decisions. This bound can be viewed as the maximum possible

penalty incurred due to the maximum possible imbalance amount summed over

all future periods. This bound is affected by the market characteristics (elec-

tricity prices and imbalance pricing parameters) as well as the energy system

characteristics (capacity and efficiency levels). This bound would be tight in en-

ergy systems with low capacity levels and in electricity markets with low price

volatility and low penalty mechanisms (i.e., high values of K+
p = K−n and low

values of K+
n = K−p ).

6.3 Numerical Results

In this section, we perform numerical experiments to gain further insights into

the impact of commitment decisions. Note that a decrease in K+
p (K−n ) and an

increase in K+
n (K−p ) increase the penalty for energy imbalances, amplifying the

effect of commitment decisions. Using data-calibrated time series models pre-

sented in Chapter 3, we consider instances in which the planning horizon spans

the first week of August, N = 100, K+
p = K−n ∈ {0.7, 0.8, 0.9} and K+

n = K−p ∈
{1.1, 1.2, 1.3} (our problem setting) or K+

p = K+
n = K−p = K−n = 1 (alternative

problem setting [8]), CS ∈ {0, 250, 500} (in MWh), CC = CD ∈ {40, 60} (in

MWh), CT ∈ {100, 200} (in MWh), NPF ∈ {0, 4.02%, 7.66%, 10.96%, 13.98%},
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Figure 6.1: ESC and EGD vs. (K+
p , K

+
n ) when CC = CD = 40, CT = 200, NPF

= 4.02%, τ = 0.95, and r = 0.8.
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r ∈ {0.7, 0.8, 0.9, 1}, and τ ∈ {0.95, 1}. We provide our detailed results in Ap-

pendix D (Tables D.1–D.6) and present our key results in Figures 6.1–6.3.

We have found that the existence of commitment decisions reduces the total

cash flow by 4.91%, on average, on a test bed of 162 instances. This loss in TCF

is smaller when the imbalance penalty is lower. This loss is greater under higher

price volatility (via higher NPF values) and higher system capacity levels that

potentially induce larger strategic deviations. All these results agree with our

theoretical upper bound on the TCF difference in Proposition 6.2.1.

While our numerical results verify the insights available from the upper bound

in Proposition 6.2.1, we observe that the efficiency levels have a very limited effect

on the revenue loss due to commitment decisions. We also examined the impact

of commitment decisions on the battery storage and generation decisions: We

define ESC as the expected total amount of energy stored by charging the battery,

and EGD as the expected total amount of energy generated by discharging the

battery. We observe from Figure 6.1 that ESC and EGD increase as the imbalance

penalty grows, starting from (K+
p , K

+
n ) = (0.9, 1.1). This increase is smaller when

CS = 500. This result can be explained by the different roles of the battery in the

presence of commitment decisions: The battery can be used as a strategic tool to

support deviations from commitments as well as a backup source to better fulfill
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Figure 6.2: ESC and EGD vs. (K+
p , K

+
n ) when CS = 500, CC = CD = 40,

CT = 200, NPF = 4.02%, and τ = 0.95.
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Figure 6.3: ESC and EGD vs. (K+
p , K

+
n ) when CS = 500, CC = CD = 40,

CT = 200, τ = 0.95, and r = 0.8.
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commitments. The producer with a large battery has the potential to greatly

deviate from her commitments. Increasing the imbalance penalty reduces the

use of the battery for strategic deviations. This effect is thus stronger when the

battery is larger, leading to a smaller increase in ESC and EGD when CS = 500.

But increasing the imbalance penalty also raises the use of the battery as the

backup source. This effect is stronger when the battery is smaller, leading to a

larger increase in ESC and EGD when CS = 250.

We observe from Figure 6.2 that, when the roundtrip efficiency is higher, ESC

and EGD decrease as the imbalance penalty grows: Under higher efficiencies, the

producer may utilize the battery more for strategic deviations since less energy is

lost during charging and discharging. Thus increasing the imbalance penalty

prevents such utilization of the battery more effectively, reducing the overall

utilization of the battery. We note from Figure 6.3 that ESC and EGD increase

with NPF. The producer utilizes the battery more when NPF is higher. We

again observe that ESC and EGD increase as the imbalance penalty grows. This

increase is smaller when NPF is higher: Under higher NPF values, the producer

may utilize the battery more for strategic deviations since there is more incentive

to purchase energy at negative prices to sell it in future periods with high prices.

Thus increasing the imbalance penalty may prevent such utilization of the battery

more effectively (although the overall utilization of the battery grows).

6.4 Concluding Remarks

In this chapter, we consider an alternative problem setting in which the producer

makes energy trading in real-time without making advance commitment deci-

sions. This problem setting is similar to the one in [8]. We establish a theoretical

upper bound on the cost of commitment decisions by comparing our problem set-

ting to this alternative setting. We find that this theoretical bound is dependent

on the characteristics of both the energy system, such as capacity and efficiency

levels, and the market, such as electricity prices and imbalance pricing parame-

ters. Energy systems with low capacity levels and electricity markets with low
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price volatility and penalty mechanisms are likely to experience tighter bounds.

We also conducted an extensive numerical study to examine the impact of

commitment decisions in different environments, measuring several metrics for

the original problem setting and the alternative problem setting. Based on an

experimental test bed of 162 instances, we find that the existence of commitment

decisions reduces the total cash flow by 4.91%, on average. This loss is larger

in energy systems with large capacity levels and in electricity markets with high

price volatility and high penalty mechanisms.

Future research may extend our analysis to multi-settlement electricity mar-

kets, which may include a combination of the day-ahead market, the intraday

market, or the balancing market (the real-time market). In the multi-settlement

electricity markets, depending on the relationship between prices in sequential

markets, engaging in commitment decisions as well as real-time dispatch/purchase

decisions may improve the producer’s profit. Therefore, it might be interesting to

analytically compare the total cash flows obtained in single-settlement electricity

markets to the total cash flows obtained in multi-settlement electricity markets.
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Chapter 7

Conclusion

Renewable energy sources such as wind and solar are essential for the develop-

ment of power systems as countries set ambitious targets for renewable energy

generation. While these sources contribute to the overall energy supply, the re-

newable power producers participate in electricity markets where they need to

make advance commitment decisions for energy delivery and purchase, adding a

layer of complexity to their operational decisions [7]. The fundamental challenge

of intermittency in renewable energy generation is in managing their commitment

decisions. Energy storage provides an opportunity to mitigate this challenge by

presenting a hedging opportunity against the cost of imbalance. This raises the

question of how a renewable power producer could jointly optimize energy gener-

ation and storage decisions while making advance commitments in an electricity

market.

The energy commitment, generation and storage problem of an energy system

that consist of a renewable power plant and an energy storage unit is a challenging

problem that requires a thorough understanding of the system dynamics, market

characteristics, and uncertainties in energy renewable source and electricity price.

Optimizing the operation of renewable power plants together with energy storage

systems in electricity markets is a relatively underdeveloped but a promising

area for OR/MS scholars [17]. The aim of this thesis is to address this problem
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by developing mathematical models that can capture the system dynamics and

uncertainties inherent in the problem, and providing clean analytical formulations

that enable optimal policy characterizations.

This thesis formulates the real-time decision making problem of a wind power

producer who owns a battery and participates in a spot market operating with

hourly commitments and settlements as an MDP by taking into account the elec-

tricity price and wind uncertainties. We provide managerial insights to renewable

power producers in their assessment of energy storage adoption decisions, as well

as to power system operators in their understanding of the producers’ behavior

in the market with their storage capabilities. We characterize the structure of the

optimal energy commitment, generation and storage policy as a threshold policy.

We employ our structural results to develop heuristic solution procedures as an

alternative to standard dynamic programming algorithm. Finally, we consider

an alternative problem setting that allows for real-time trading without making

any advance commitment and evaluate it in comparison to the original problem

setting.

Specifically, in Chapter 3, we consider the following two possible settings: (i)

The battery can be used to support intentional deviations from commitments or

(ii) it should be used to minimize such deviations. We construct data-calibrated

time series models for the electricity price and wind speed, which we incorpo-

rate into our MDP formulations. We numerically examine the effects of system

components, imbalance pricing parameters, and negative prices on the producer’s

profits, curtailment decisions, and imbalance tendencies for each problem setting.

Our findings suggest that the presence of a battery reduces energy imbalance

when the producer cannot make intentional deviations. However, if the producer

can make intentional deviations, the battery has an opposite effect, leading to

a higher negative imbalance than a positive imbalance. Appropriate selection of

imbalance pricing parameters can result in a decrease in the imbalance amounts

when intentional deviations are allowed. Finally, the supporting role of the bat-

tery for intentional deviations becomes more valuable as negative electricity prices

are observed more frequently in the market.
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In Chapter 4, we consider the same problem presented in Chapter 3 (i.e., the

first setting). We use the multi-dimensional structural properties of the optimal

profit function to demonstrate the optimality of a state-dependent threshold pol-

icy for storage and commitment decisions, under the assumptions of perfectly

efficient battery and transmission line, and positive electricity prices. Using this

policy structure, we develop two heuristic solution methods (HC and HR) for

solving the more general problem, in which the battery and transmission line

may not be perfectly efficient and electricity prices may be negative. Our numer-

ical experiments have revealed that both HC and HR outperform the standard

dynamic programming algorithm with respect to computation time by two orders

of magnitude and yield solutions with an average distance of less than one percent

from the optimal profit. Our experiments also show the poor performance of a

purely myopic solution approach, simpler fixed threshold policies, and a deter-

ministic reoptimization heuristic with respect to objective value. These results

imply that ignoring the current state information, the forward-looking effects,

and/or precise modeling of uncertainties in decision-making leads to a significant

loss of optimality, demonstrating the usefulness of our state-dependent policies

in the energy commitment problem.

In Chapter 5, we characterize the optimal policy structure for the energy com-

mitment, generation and storage problem in Chapter 4 when the battery and

transmission line can be imperfectly efficient. The decision space grows to in-

clude scenarios such as charging the battery and purchasing energy from the

market, charging the battery and selling energy to the market, and discharging

the battery and selling energy to the market. These decisions are in addition to

the previously considered negative and positive imbalance decisions. We show

that the target storage level associated with the charge and purchase decision

is the lowest and the target storage level associated with the discharge and sell

decision is the highest. In Chapter 6, we consider an alternative problem set-

ting that allows for real-time trading without making any advance commitment.

We analytically compare total cash flows of this setting to our original problem

setting. We numerically examine the effect of advance commitment decisions on

the producer’s energy storage and generation decisions. We find that in such
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single-settlement market setting, the existence of commitment decisions reduces

the total cash flow by 4.91%, on average. This loss is larger in electricity markets

with high price volatility and high penalty mechanisms.

There are several directions for future research. One would be to extend our

analyses in Chapter 3 by examining the effect of different imbalance pricing mech-

anisms on optimal strategies of renewable power producers. This entails address-

ing several open questions, such as: (i) What is the impact of different imbalance

pricing mechanisms on the commitment decisions of renewable power produc-

ers, i.e., whether they tend to make negative or positive imbalances? (ii) How do

these pricing mechanisms affect the optimal commitment and storage policy? (iii)

Which imbalance pricing mechanism is more effective in integrating a renewable

source with an energy storage unit?

Another research direction would be to extend our analyses in Chapters 4-6

to more complex market structures such as a day-ahead market. It is important

to note that every electricity market has its own structure. For example, a par-

ticipant in the day-ahead market should report her hourly commitments one day

before her actual production is realized. It may be risky for a renewable power

producer to participate in a day-ahead market since the uncertainty level of this

market is higher than other markets. This risk may lead to different optimal

energy commitment, storage and generation policies. Therefore, it might be in-

teresting to analyze how participating in different markets affects the renewable

power producer’s profitability and optimal operation policies.

Future research may also extend our models and analyses to multi-settlement

electricity markets, which may include a combination of a day-ahead market, an

intraday market, or a balancing market. A renewable power producer with a

storage unit in multi-settlement electricity markets may co-optimize her commit-

ments to reduce her exposure to risk from the uncertainty of electricity prices,

thereby minimizing her imbalances in the market. Additionally, such a producer

could take advantage of intertemporal pricing disparities resulting from fluctuat-

ing demand and renewable power generation. Such an extension will likely entail

the development of multi-stage stochastic programs in addition to MDPs, given
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that the producer is faced with a multidimensional, multistage decision-making

problem under uncertainty.

Finally, future extensions of this study may also consider other storage tech-

nologies, such as pumped hydro energy storage and compressed air energy storage.

For an energy system with a battery, it is sufficient to keep track of the amount

of energy storage via a single endogenous state variable. However, for a pumped

hydro energy storage facility, one need to keep track of water levels in upper and

lower reservoirs via two endogenous state variables. The theory of ADP may be

usefully employed in this research direction in order to handle potentially larger

state and/or action spaces.
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Appendix A

Additional numerical

experiments for the month of

January in the city of Albany

and for the city of Buffalo in the

month of August
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Table A.1: Numerical results for Albany in January when K+
p = K−n = 0.9,

K+
n = K−p = 1.1, and NPF = 1.61%.

Setting CT CC = CD CS TCF WEC NI PI ED

ID

50

200 1.103 6736 426 96 523
400 1.103 6713 427 96 523
600 1.103 6677 427 96 523
800 1.103 6578 427 96 523

75

200 1.106 6820 508 96 604

100
400 1.106 6856 509 96 605
600 1.106 6896 509 96 605
800 1.106 6878 509 96 605

100

200 1.107 6836 532 96 629
400 1.108 6877 533 96 630
600 1.108 6913 533 96 630
800 1.108 6941 533 96 630

50

200 1.613 373 2970 634 3603
400 1.641 373 3292 815 4107
600 1.657 373 3319 888 4207
800 1.668 373 3366 937 4303

75

200 1.629 374 3402 610 4012

200
400 1.667 374 4293 778 5071
600 1.689 374 4460 872 5332
800 1.704 373 4528 891 5420

100

200 1.639 374 3898 597 4495
400 1.683 374 4939 676 5615
600 1.710 374 5338 764 6101
800 1.728 374 5532 800 6331

UD

50

200 1.078 6305 0 0 0
400 1.078 6203 0 0 0
600 1.078 6092 0 0 0
800 1.078 5980 0 0 0

75

200 1.078 6305 0 0 0

100
400 1.078 6199 0 0 0
600 1.078 6089 0 0 0
800 1.078 5978 0 0 0

200 1.078 6305 0 0 0

100
400 1.078 6199 0 0 0
600 1.078 6089 0 0 0
800 1.078 5978 0 0 0

50

200 1.507 111 223 0 223
400 1.524 117 175 0 175
600 1.535 122 180 0 180
800 1.544 125 189 0 189

75

200 1.512 77 247 0 247

200
400 1.532 81 131 0 131
600 1.546 87 109 0 109
800 1.557 91 104 0 104

100

200 1.515 47 281 0 281
400 1.538 50 145 0 145
600 1.554 53 94 0 94
800 1.566 57 77 0 77
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Figure A.1: WEC, NI, PI, and ED vs. CS for Albany in January when K+
p =

K−n = 0.9, K+
n = K−p = 1.1, CC = CD = 50 MWh, and NPF = 1.61%.
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Table A.2: Numerical results for Albany in January for ID and ID-NB when
CS = 400 MWh, CC = CD = 50 MWh, CT = 200 MWh, and NPF = 1.61%.

Setting K+
p = K−n K+

n = K−p TCF WEC NI PI ED

ID

0.6

1.1 1.615 373 5867 224 6090
1.2 1.601 373 2986 369 3354
1.3 1.594 373 2226 416 2642
1.4 1.589 373 1879 442 2320

0.7

1.1 1.622 373 4891 278 5169
1.2 1.611 373 2694 394 3088
1.3 1.604 373 2103 438 2540
1.4 1.600 373 1780 467 2247

0.8

1.1 1.630 373 3995 348 4343
1.2 1.621 373 2437 487 2924
1.3 1.615 373 1968 569 2537
1.4 1.611 373 1618 640 2258

0.9

1.1 1.641 373 3292 815 4107
1.2 1.634 373 1889 1215 3105
1.3 1.630 373 1533 1464 2997
1.4 1.627 373 1272 1623 2895

ID-NB

0.6

1.1 1.485 373 2225 261 2487
1.2 1.474 373 1781 438 2219
1.3 1.465 373 1569 568 2137
1.4 1.457 373 1402 714 2116

0.7

1.1 1.489 373 2130 290 2421
1.2 1.479 373 1609 540 2149
1.3 1.471 373 1402 714 2116
1.4 1.465 373 1236 899 2135

0.8

1.1 1.493 373 1781 438 2219
1.2 1.485 373 1402 714 2116
1.3 1.479 373 1176 984 2159
1.4 1.474 373 990 1289 2279

0.9

1.1 1.498 373 1402 714 2116
1.2 1.493 373 990 1289 2279
1.3 1.490 373 716 1941 2657
1.4 1.487 373 584 2376 2960

134



Table A.3: Numerical results for Albany in January for UD and UD-NB when
CS = 400 MWh, CC = CD = 50 MWh, CT = 200 MWh, and NPF = 1.61%.

Setting K+
p = K−n K+

n = K−p TCF WEC NI PI ED

UD

0.6

1.1 1.524 117 173 0 173
1.2 1.522 116 107 0 107
1.3 1.522 116 77 0 77
1.4 1.521 116 60 0 60

0.7

1.1 1.524 117 174 0 174
1.2 1.522 116 107 0 107
1.3 1.522 116 77 0 77
1.4 1.521 116 60 0 60

0.8

1.1 1.524 117 175 0 175
1.2 1.522 116 108 0 108
1.3 1.522 116 77 0 77
1.4 1.521 116 60 0 60

0.9

1.1 1.524 117 175 0 175
1.2 1.522 116 108 0 108
1.3 1.522 116 77 0 77
1.4 1.521 116 60 0 60

UD-NB

0.6

1.1 1.467 171 2404 0 2404
1.2 1.452 228 2056 0 2056
1.3 1.439 286 1821 0 1821
1.4 1.427 354 1646 0 1646

0.7

1.1 1.467 171 2404 0 2404
1.2 1.452 226 2065 0 2065
1.3 1.439 286 1821 0 1821
1.4 1.427 351 1653 0 1653

0.8

1.1 1.467 171 2405 0 2405
1.2 1.452 225 2068 0 2068
1.3 1.439 285 1823 0 1823
1.4 1.427 350 1655 0 1655

0.9

1.1 1.467 171 2405 0 2405
1.2 1.452 223 2076 0 2076
1.3 1.439 284 1828 0 1828
1.4 1.427 348 1659 0 1659

135



0.6 0.7 0.8 0.9
0

200

400

W
E

C
(M

W
h
)

1.1 1.2 1.3 1.4
0

200

400

0.6 0.7 0.8 0.9
0

2,000

4,000

6,000

N
I

(M
W

h
)

1.1 1.2 1.3 1.4
0

2,000

4,000

6,000

0.6 0.7 0.8 0.9
0

1,000

2,000

3,000

P
I

(M
W

h
)

1.1 1.2 1.3 1.4
0

1,000

2,000

3,000

0.6 0.7 0.8 0.9
0

2,000

4,000

6,000

K+
p = K−n

E
D

(M
W

h
)

1.1 1.2 1.3 1.4
0

2,000

4,000

6,000

K+
n = K−p

K+
n = K−p = 1.1 K+

p = K−n = 0.9

ID UD ID-NB UD-NB

Figure A.2: WEC, NI, PI, and ED vs. K+
p = K−n and K+

n = K−p for Albany in
January when CS = 400 MWh, CC = CD = 50 MWh, CT = 200 MWh, and NPF
= 1.61%.
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Figure A.3: The effects of K+
p = K−n and K+

n = K−p on ED for Albany in January
when (K+

p , K
+
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−
p ), CS = 400 MWh, CC = CD = 50 MWh, CT = 200

MWh, and NPF = 1.61%.
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Figure A.4: TCF, WEC, NI, PI, and ED vs. NPF for Albany in January when
CS = 400 MWh (for ID and UD), CC = CD = 50 MWh (for ID and UD), CT = 200
MWh, K+

p = K−n = 0.9, and K+
n = K−p = 1.1.
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Table A.4: Numerical results for Buffalo in August when K+
p = K−n = 0.9,

K+
n = K−p = 1.1, and NPF = 4.02%.

Setting CT CC = CD CS TCF WEC NI PI ED

ID

50

200 0.562 1796 2989 442 3431
400 0.587 1510 3233 399 3632
600 0.601 1333 3287 381 3668
800 0.610 1214 3312 366 3678

75

200 0.575 1840 3402 400 3802

100
400 0.609 1576 3865 314 4179
600 0.628 1412 4053 272 4325
800 0.640 1295 4137 242 4379

100

200 0.578 1803 3505 389 3894
400 0.615 1539 4021 288 4309
600 0.636 1385 4258 240 4498
800 0.649 1263 4378 207 4585

50

200 0.665 534 4162 1096 5258
400 0.693 536 4365 1126 5491
600 0.707 536 4530 1190 5721
800 0.716 536 4543 1197 5740

75

200 0.695 536 5067 912 5979

200
400 0.738 540 5704 1256 6960
600 0.761 543 5884 1338 7222
800 0.776 544 6070 1375 7445

100

200 0.718 537 6064 1060 7124
400 0.771 537 6992 1305 8298
600 0.803 543 7232 1427 8658
800 0.823 544 7443 1494 8937

UD

50

200 0.488 1291 581 0 581
400 0.507 976 422 0 422
600 0.519 769 400 0 400
800 0.528 625 407 0 407

75

200 0.490 1290 472 0 472

100
400 0.513 971 247 0 247
600 0.527 765 181 0 181
800 0.538 619 154 0 154

200 0.491 1290 480 0 480

100
400 0.515 963 240 0 240
600 0.530 753 160 0 160
800 0.541 604 121 0 121

50

200 0.546 222 512 0 512
400 0.561 254 505 0 505
600 0.570 272 540 0 540
800 0.576 282 574 0 574

75

200 0.552 150 421 0 421

200
400 0.573 165 388 0 388
600 0.586 184 414 0 414
800 0.596 198 444 0 444

100

200 0.555 114 428 0 428
400 0.581 115 334 0 334
600 0.597 127 335 0 335
800 0.609 139 349 0 349
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Figure A.5: WEC, NI, PI, and ED vs. CS for Buffalo in August when K+
p =

K−n = 0.9, K+
n = K−p = 1.1, CC = CD = 50 MWh, and NPF = 4.02%.
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Table A.5: Numerical results for Buffalo in August for ID and ID-NB when
CS = 400 MWh, CC = CD = 50 MWh, CT = 200 MWh, and NPF = 4.02%.

Setting K+
p = K−n K+

n = K−p TCF WEC NI PI ED

ID

0.6

1.1 0.667 533 7775 193 7969
1.2 0.654 533 5057 317 5374
1.3 0.648 534 3772 398 4171
1.4 0.644 535 3269 446 3715

0.7

1.1 0.674 533 7202 245 7447
1.2 0.663 534 4516 408 4924
1.3 0.658 535 3472 520 3991
1.4 0.654 536 3092 586 3679

0.8

1.1 0.682 533 6243 450 6693
1.2 0.674 534 3871 776 4646
1.3 0.669 536 3078 946 4024
1.4 0.667 537 2812 1072 3884

0.9

1.1 0.693 536 4365 1126 5491
1.2 0.688 538 3020 1627 4647
1.3 0.685 539 2536 1903 4439
1.4 0.683 540 2249 2165 4414

ID-NB

0.6

1.1 0.521 533 3522 643 4165
1.2 0.510 533 2555 1011 3566
1.3 0.502 533 2090 1307 3397
1.4 0.496 533 1683 1658 3340

0.7

1.1 0.526 533 3012 807 3819
1.2 0.517 533 2226 1207 3433
1.3 0.511 533 1683 1658 3340
1.4 0.506 533 1466 1902 3368

0.8

1.1 0.532 533 2555 1011 3566
1.2 0.525 533 1683 1658 3340
1.3 0.521 533 1364 2044 3408
1.4 0.517 533 1083 2503 3586

0.9

1.1 0.540 533 1683 1658 3340
1.2 0.536 533 1083 2503 3586
1.3 0.534 533 805 3137 3942
1.4 0.532 533 664 3566 4231
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Table A.6: Numerical results for Buffalo in August for UD and UD-NB when
CS = 400 MWh, CC = CD = 50 MWh, CT = 200 MWh, and NPF = 4.02%.

Setting K+
p = K−n K+

n = K−p TCF WEC NI PI ED

UD

0.6

1.1 0.561 253 491 0 491
1.2 0.558 248 322 0 322
1.3 0.557 244 246 0 246
1.4 0.556 240 201 0 201

0.7

1.1 0.561 253 495 0 495
1.2 0.558 248 324 0 324
1.3 0.557 244 247 0 247
1.4 0.556 240 203 0 203

0.8

1.1 0.561 253 500 0 500
1.2 0.558 248 326 0 326
1.3 0.557 244 248 0 248
1.4 0.556 240 203 0 203

0.9

1.1 0.561 254 505 0 505
1.2 0.559 248 328 0 328
1.3 0.557 244 249 0 249
1.4 0.556 240 204 0 204

UD-NB

0.6

1.1 0.499 341 4671 0 4671
1.2 0.481 514 3673 0 3673
1.3 0.466 749 2851 0 2851
1.4 0.455 923 2396 0 2396

0.7

1.1 0.499 333 4735 0 4735
1.2 0.481 506 3706 0 3706
1.3 0.467 741 2876 0 2876
1.4 0.455 918 2409 0 2409

0.8

1.1 0.500 326 4796 0 4796
1.2 0.482 497 3745 0 3745
1.3 0.467 734 2895 0 2895
1.4 0.456 913 2419 0 2419

0.9

1.1 0.501 317 4867 0 4867
1.2 0.482 491 3769 0 3769
1.3 0.468 724 2923 0 2923
1.4 0.456 909 2429 0 2429
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Figure A.6: WEC, NI, PI, and ED vs. K+
p = K−n and K+

n = K−p for Buffalo in
August when CS = 400 MWh, CC = CD = 50 MWh, CT = 200 MWh, and NPF
= 4.02%.
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Appendix B

Supplement to optimal policy

characterization under perfect

efficiency

This chapter includes supplementary material for Chapter 4: Commitment and

Storage Problem of Wind Power Producers: Optimal Policy Characterization

under Perfect Efficiency.

Proof of Lemma 4.3.1. Let
¯
Qt and Q̄t denote some bounds on E(st, wt) in

state (Qt, St, It) such that
¯
Qt ≤ E(st, wt) ≤ Q̄t. Note that R(·, It, st, wt) is a

decreasing function for Qt ≥ E(st, wt) since Pt(1 − K+
n ) < 0 for Pt ≥ 0 and

Pt(1−K−n ) < 0 for Pt < 0. Thus R(Q̄t+α, It, st, wt) < R(Q̄t, It, st, wt) for α > 0.

This implies that

v∗t (Q̄t + α, St, It) = max
(qt,st,wt)∈U(Q̄t+α,St,It)

{
R(Q̄t + α, It, st, wt) (B.1)

+ EIt+1|It

[
v∗t+1(qt, St+1, It+1)

]}
< max

(qt,st,wt)∈U(Q̄t,St,It)

{
R(Q̄t, It, st, wt) + EIt+1|It

[
v∗t+1(qt, St+1, It+1)

]}
= v∗t (Q̄t, St, It). (B.2)
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Also, note that R(·, It, st, wt) is an increasing function for Qt ≤ E(st, wt) since

Pt(1 − K+
p ) > 0 for Pt ≥ 0 and Pt(1 − K−p ) > 0 for Pt < 0. Thus R(

¯
Qt −

α, It, st, wt) < R(
¯
Qt, It, st, wt). This implies that

v∗t (
¯
Qt − α, St, It) = max

(qt,st,wt)∈U(
¯
Qt−α,St,It)

{
R(

¯
Qt − α, It, st, wt) (B.3)

+ EIt+1|It

[
v∗t+1(qt, St+1, It+1)

]}
< max

(qt,st,wt)∈U(
¯
Qt,St,It)

{
R(

¯
Qt, It, st, wt) + EIt+1|It

[
v∗t+1(qt, St+1, It+1)

]}
= v∗t (

¯
Qt, St, It),∀t ∈ T . (B.4)

Let η∗t (Qt, St, It) = (q, s, w). Assume to the contrary that q > Q̄t+1. Then,

v∗t (Qt, St, It) = R(Qt, It, s, w) + E
[
v∗t+1(q, St − s, It+1)

]
≥ R(Qt, It, s, w) +

E
[
v∗t+1(Q̄t+1, St − s, It+1)

]
. But this leads to a contradiction since v∗t+1(q, St −

s, It+1) < v∗t+1(Q̄t+1, St − s, It+1) from (B.2). Hence q ≤ Q̄t+1. Now, as-

sume to the contrary that q <
¯
Qt+1. Then, v∗t (Qt, St, It) = R(Qt, It, s, w) +

E
[
v∗t+1(q, St − s, It+1)

]
≥ R(Qt, It, s, w) + E

[
v∗t+1(

¯
Qt+1, St − s, It+1)

]
. But this

leads to a contradiction since v∗t+1(q, St − s, It+1) < v∗t+1(
¯
Qt+1, St − s, It+1)

from (B.4). Hence q ≥
¯
Qt+1. We showed that

¯
Qt+1 ≤ qt ≤ Q̄t+1.

Since −min {(CS − St+1)/(θτ), CC/(θτ), CT} ≤ E(st+1, wt+1) ≤ τCT , note that

−min {(CS − (St − st)) /(θτ), CC/(θτ), CT} ≤ qt ≤ τCT , ∀t ∈ T . Since Qt+1 =

qt, we have −min {(CS − St) /(θτ), CC/(θτ), CT} ≤ Qt ≤ τCT , ∀t ∈ T \{1}.

Proof of Lemma 4.3.2. For α > 0, note that v∗T (QT , ST , IT ) = v∗T (QT , ST +

α, IT ) = 0. Assuming v∗t+1(Qt+1, St+1, It+1) ≤ v∗t+1(Qt+1, St+1 + α, It+1), we show

v∗t (Qt, St, It) ≤ v∗t (Qt, St + α, It). Let η∗t (Qt, St, It) = (q, s, w). Also, let ŝ =

max{s, St + α− CS} and

ŵ =

w if ŝ = s,

max{0, w − (ŝ− s)/θ} if ŝ 6= s.
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We show that (q, ŝ, ŵ) ∈ U(Qt, St + α, It): If s < St + α − CS, since (q, s, w) ∈
U(Qt, St, It), note that −CC ≤ s < St + α − CS = ŝ ≤ min{St + α,CD}. If

s ≥ St+α−CS, since (q, s, w) ∈ U(Qt, St, It), note that −min{CS−St−α,CC} ≤
ŝ = s ≤ min{St +α,CD}. Thus −min{CS −St−α,CC} ≤ ŝ ≤ min{St +α,CD}.
Since s ≤ ŝ, we have 0 ≤ ŵ ≤ w ≤ f(Wt). If ŝ = s, then −CT ≤ E(s, w) =

E(ŝ, ŵ) ≤ τCT . If s < ŝ = St + α − CS ≤ 0, then ŝ/θ + ŵ = ŝ/θ + max{0, w −
(ŝ − s)/θ} = max{ŝ/θ, s/θ + w} ≤ CT and −τCT ≤ s/θ + w ≤ ŝ/θ + ŵ. Hence

(q, ŝ, ŵ) ∈ U(Qt, St + α, It). We consider the following three cases to show that

E(s, w) ≤ E(ŝ, ŵ):

(1) If s ≥ St + α− CS, then ŝ = s and ŵ = w. Thus E(s, w) = E(ŝ, ŵ).

(2) If s < St + α − CS ≤ 0 and −w ≤ s/θ < 0, then ŝ ≤ 0 and ŝ/θ + ŵ =

max{ŝ/θ, s/θ + w} = s/θ + w ≥ 0. Thus E(s, w) = (s/θ + w)τ = (ŝ/θ +

ŵ)τ = E(ŝ, ŵ).

(3) If s < St + α − CS ≤ 0 and s/θ < −w ≤ 0, then ŝ ≤ 0 and ŝ/θ + ŵ =

max{ŝ/θ, s/θ + w} ≤ 0. Thus E(s, w) = (s/θ + w)/τ ≤ (ŝ/θ + ŵ)/τ =

E(ŝ, ŵ).

Hence E(s, w) ≤ E(ŝ, ŵ). Thus R(Qt, It, s, w) ≤ R(Qt, It, ŝ, ŵ). Finally, note

that ŝ ≤ s+ α since (q, s, w) ∈ U(Qt, St, It). Thus:

v∗t (Qt, St, It) = R(Qt, It, s, w) + E
[
v∗t+1(q, St − s, It+1)

]
≤ R(Qt, It, ŝ, ŵ) + E

[
v∗t+1(q, St + α− ŝ, It+1)

]
≤ v∗t (Qt, St + α, It).

The first inequality above holds as we assume v∗t+1(Qt+1, St+1, It+1) ≤
v∗t+1(Qt+1, St+1 + α, It+1).

Proof of Lemma 4.3.3. Let η∗t (Qt, St, It) = (q, s, w). Also, let w̄ :=

min{f(Wt), CT + min{CS − St, CC}/θ} denote the maximum amount of wind
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energy that can be generated in state (Qt, St, It) and (q, ŝ, ŵ) ∈ U(Qt, St, It) de-

note any feasible action triplet with ŵ < w̄. We will show that it is possible to

construct a feasible action triplet that leads to a larger profit than the one under

the action triplet (q, ŝ, ŵ) in each of the following four cases:

(1) Suppose that E(ŝ, ŵ) < 0: We define ∆1 = min{−τE(ŝ, ŵ), w̄ − ŵ} > 0.

Note that −CT ≤ E(ŝ, ŵ) < E(ŝ, ŵ) + ∆1/τ = E(ŝ, ŵ + ∆1) ≤ 0 and

0 ≤ ŵ < ŵ + ∆1 ≤ w̄ ≤ f(Wt). Hence, (q, ŝ, ŵ + ∆1) ∈ U(Qt, St, It) and

R(Qt, It, ŝ, ŵ+∆1) > R(Qt, It, ŝ, ŵ). Thus, the triplet (q, ŝ, ŵ+∆1) is more

profitable than the triplet (q, ŝ, ŵ).

(2) Suppose that E(ŝ, ŵ) ≥ 0 and ŝ = −min{CS − St, CC}: We define ∆2 =

w̄ − ŵ > 0. Note that 0 ≤ E(ŝ, ŵ) < E(ŝ, ŵ + ∆2) = (ŝ/θ + ŵ + ∆2)τ =

(ŝ/θ+ w̄)τ ≤ (−min{CS −St, CC}/θ+CT + min{CS −St, CC}/θ)τ = τCT

and 0 ≤ ŵ < ŵ + ∆2 = w̄ ≤ f(Wt). Hence, (q, ŝ, ŵ + ∆2) ∈ U(Qt, St, It)

and R(Qt, It, ŝ, ŵ+ ∆2) > R(Qt, It, ŝ, ŵ). Thus, the triplet (q, ŝ, ŵ+ ∆2) is

more profitable than the triplet (q, ŝ, ŵ).

(3) Suppose that E(ŝ, ŵ) ≥ 0 and −min{CS − St, CC} < ŝ ≤ 0: We define

∆3 = min{min{CS−St, CC}/θ+ŝ/θ, w̄−ŵ} > 0. Since 0 < ∆3 ≤ min{CS−
St, CC}/θ+ŝ/θ, note that−min{CS−St, CC} ≤ ŝ−θ∆3 < ŝ ≤ 0. Also, note

that E(ŝ, ŵ) = (ŝ/θ+ ŵ)τ = ((ŝ−θ∆3)/θ+ ŵ+∆3)τ = E(ŝ−θ∆3, ŵ+∆3)

and 0 ≤ ŵ < ŵ + ∆3 ≤ w̄ ≤ f(Wt). Hence, (q, ŝ − θ∆3, ŵ + ∆3) ∈
U(Qt, St, It) and R(Qt, It, ŝ, ŵ) = R(Qt, It, ŝ − θ∆3, ŵ + ∆3). Then, by

Lemma 4.3.2,

R(Qt, It, ŝ, ŵ) + E
[
v∗t+1(q, St − ŝ, It+1)

]
< R(Qt, It, ŝ− θ∆3, ŵ + ∆3)

+ E
[
v∗t+1(q, St − ŝ+ θ∆3, It+1)

]
.

Thus, the triplet (q, ŝ − θ∆3, ŵ + ∆3) is more profitable than the triplet

(q, ŝ, ŵ).

(4) Suppose that E(ŝ, ŵ) ≥ 0 and ŝ > 0: We define ∆4 = min{γŝ, w̄− ŵ} > 0.

Since 0 < ∆4 ≤ γŝ, note that 0 ≤ ŝ−∆4/γ < ŝ ≤ min{St, CD}. Also, note

that E(ŝ, ŵ) = (γŝ+ŵ)τ = (γ(ŝ−∆4/γ)+ŵ+∆4)τ = E(ŝ−∆4/γ, ŵ+∆4)
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and 0 ≤ ŵ < ŵ + ∆4 ≤ w̄ ≤ f(Wt). Hence, (q, ŝ − ∆4/γ, ŵ + ∆4) ∈
U(Qt, St, It) and R(Qt, It, ŝ, ŵ) = R(Qt, It, ŝ − ∆4/γ, ŵ + ∆4). Then, by

Lemma 4.3.2,

R(Qt, It, ŝ, ŵ) + E
[
v∗t+1(q, St − ŝ, It+1)

]
< R(Qt, It, ŝ−∆4/γ, ŵ + ∆4)

+ E
[
v∗t+1(q, St − ŝ+ ∆4/γ, It+1)

]
.

Thus, the triplet (q, ŝ − ∆4/γ, ŵ + ∆4) is more profitable than the triplet

(q, ŝ, ŵ).

Hence we showed that w = w̄. Next, suppose that w = CT +min{CS−St, CC}/θ.
We will show that s = −min{CS − St, CC}. First, assume to the contrary that

s > 0. In this case, wτ < (γs + w)τ = E(s, w) ≤ τCT . But this leads to a

contradiction since w ≥ CT . Thus s ≤ 0. Note that −min{CS − St, CC} ≤ s

since (q, s, w) ∈ U(Qt, St, It). Also, note that (s/θ+CT +min{CS−St, CC}/θ)τ =

E(s, w) ≤ τCT , implying that −min{CS − St, CC} ≥ s. Hence, the only feasible

action is s = −min{CS − St, CC}.

Proof of Proposition 4.3.1. Note that v∗T (·, ·, IT ) satisfies properties (a)-(c),

∀IT . Pick an arbitrary t < T and fix It. Assuming v∗t+1(·, ·, It+1) satisfies proper-

ties (a)-(c), ∀It+1, we will prove that v∗t (·, ·, It) satisfies properties (a)-(c).

(a) First we prove that v∗t (Qt + α, St, It) − v∗t (Qt, St, It) ≤ v∗t (Qt + α, St +

β, It)− v∗t (Qt, St +β, It). Let η∗t (Qt +α, St, It) = (q, s, w) and η∗t (Qt, St +β, It) =

(q′, s′, w′). We consider the following four scenarios to prove the statement:

(a1) Suppose that s′ ≥ s. We show that E(s′, w′) ≥ E(s, w): If w′ < CT +CS −
St− β, by Lemma 4.3.3, w′ = min{f(Wt), CT +CC} < CT +CS −St− β <
CT + CS − St. Thus, again by Lemma 4.3.3, w = min{f(Wt), CT + CC} =

w′. Since s′ ≥ s, we have E(s′, w′) = s′ + w′ ≥ s + w = E(s, w). If

w′ = CT + CS − St − β, by Lemma 4.3.3, s′ = St + β − CS. Thus, and

since (q, s, w) ∈ U(Qt +α, St, It), we have E(s′, w′) = CT ≥ E(s, w). Hence
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E(s′, w′) = E(s, w) + δ for some δ ≥ 0. Note that (q, s, w) ∈ U(Qt, St, It)

and (q′, s′, w′) ∈ U(Qt + α, St + β, It). Thus:

v∗t (Qt + α, St, It)− v∗t (Qt, St, It)

≤ R(Qt + α, It, s, w) + E
[
v∗t+1(q, St − s, It+1)

]
−R(Qt, It, s, w)− E

[
v∗t+1(q, St − s, It+1)

]
= R(Qt + α + δ, It, s

′, w′)−R(Qt + δ, It, s
′, w′)

≤ R(Qt + α, It, s
′, w′) + E

[
v∗t+1(q′, St + β − s′, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St + β − s′, It+1)

]
≤ v∗t (Qt + α, St + β, It)− v∗t (Qt, St + β, It).

The second inequality above holds since R(·, It, s′, w′) is concave.

(a2) Suppose that s′ < s and q′− q > s− s′. Since (q′, s′, w′) ∈ U(Qt, St + β, It),

(q, s, w) ∈ U(Qt + α, St, It), and s′ < s, we have −min{CS − St, CC} ≤
−min{CS−St−β, CC} ≤ s′ < s ≤ min{St, CD} ≤ min{St+β, CD}. Hence,

(q+s−s′, s′, w′) ∈ U(Qt, St, It) and (q′−s+s′, s, w) ∈ U(Qt+α, St+β, It).

Thus:

v∗t (Qt + α, St, It)− v∗t (Qt, St, It)

≤ R(Qt + α, It, s, w) + E
[
v∗t+1(q, St − s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q + s− s′, St − s′, It+1)

]
≤ R(Qt + α, It, s, w) + E

[
v∗t+1(q′ − s+ s′, St − s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ R(Qt + α, It, s, w) + E

[
v∗t+1(q′ − s+ s′, St + β − s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St + β − s′, It+1)

]
≤ v∗t (Qt + α, St + β, It)− v∗t (Qt, St + β, It).

The second inequality above holds since v∗t+1(·, ·, It+1) satisfies property (c).

The third inequality above holds since v∗t+1(·, ·, It+1) satisfies property (b).
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(a3) Suppose that s′ < s and s− s′ ≥ q′ − q > 0. Recall from scenario (a2) that

−min{CS − St, CC} ≤ s′ < min{St, CD} and −min{CS − St − β, CC} <
s ≤ min{St + β, CD}. Hence, (q′, s′, w′) ∈ U(Qt, St, It) and (q, s, w) ∈
U(Qt + α, St + β, It). Thus:

v∗t (Qt + α, St, It)− v∗t (Qt + α, St + β, It)

≤ R(Qt + α, It, s, w) + E
[
v∗t+1(q, St − s, It+1)

]
−R(Qt + α, It, s, w)− E

[
v∗t+1(q, St + β − s, It+1)

]
≤ R(Qt + α, It, s, w) + E

[
v∗t+1(q, St + q − q′ − s′, It+1)

]
−R(Qt + α, It, s, w)− E

[
v∗t+1(q, St + β + q − q′ − s′, It+1)

]
≤ R(Qt, It, s

′, w′) + E
[
v∗t+1(q′, St − s′, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St + β − s′, It+1)

]
≤ v∗t (Qt, St, It)− v∗t (Qt, St + β, It).

The second inequality above holds since v∗t+1(·, ·, It+1) satisfies properties

(a) and (b) (which together imply the concavity of v∗t+1(q, ·, It+1)). The

third inequality above holds since v∗t+1(·, ·, It+1) satisfies property (b).

(a4) Suppose that s′ < s and 0 ≥ q′ − q. Since η∗t (Qt + α, St, It) = (q, s, w), we

have

v∗t (Qt + α, St, It) = R(Qt + α, It, s, w) + E
[
v∗t+1(q, St − s, It+1)

]
> R(Qt + α, It, s, w) + E

[
v∗t+1(q′, St − s, It+1)

]
.

Since η∗t (Qt, St + β, It) = (q′, s′, w′), we have

v∗t (Qt, St + β, It) = R(Qt, It, s
′, w′) + E

[
v∗t+1(q′, St + β − s′, It+1)

]
> R(Qt, It, s

′, w′) + E
[
v∗t+1(q, St + β − s′, It+1)

]
.

The inequalities above imply that

E
[
v∗t+1(q, St − s, It+1)

]
− E

[
v∗t+1(q′, St − s, It+1)

]
> E

[
v∗t+1(q, St + β − s′, It+1)

]
− E

[
v∗t+1(q′, St + β − s′, It+1)

]
.
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But this leads to a contradiction since v∗t+1(·, ·, It+1) satisfies property (a).

Hence this scenario is not possible.

(b) Next we prove that v∗t (Qt + α, St + α + β, It) − v∗t (Qt + α, St + α, It) ≤
v∗t (Qt, St + β, It) − v∗t (Qt, St, It). Let η∗t (Qt + α, St + α + β, It) = (q, s, w) and

η∗t (Qt, St, It) = (q′, s′, w′). We consider the following seven scenarios to prove the

statement:

(b1) Suppose that s ≤ s′ + α and q − q′ > α+ β − s+ s′. Since η∗t (Qt + α, St +

α + β, It) = (q, s, w), we have

v∗t (Qt + α, St + α + β, It)

= R(Qt + α, It, s, w) + E
[
v∗t+1(q, St + α + β − s, It+1)

]
> R(Qt + α, It, s, w) + E

[
v∗t+1(q′ + α + β − s+ s′, St + α + β − s, It+1)

]
.

Since η∗t (Qt, St, It) = (q′, s′, w′), we have

v∗t (Qt, St, It) = R(Qt, It, s
′, w′) + E

[
v∗t+1(q′, St − s′, It+1)

]
> R(Qt, It, s

′, w′) + E
[
v∗t+1(q − α− β + s− s′, St − s′, It+1)

]
.

The inequalities above imply that

E
[
v∗t+1(q, St + α + β − s, It+1)

]
− E

[
v∗t+1(q′ + α + β − s+ s′, St + α + β − s, It+1)

]
> E

[
v∗t+1(q − α− β + s− s′, St − s′, It+1)

]
− E

[
v∗t+1(q′, St − s′, It+1)

]
.

But this leads to a contradiction since v∗t+1(·, ·, It+1) satisfies property (c).

Hence this scenario is not possible.

(b2) Suppose that s ≤ s′ + α and α + β − s + s′ ≥ q − q′ > α − s + s′. We

show that (q − α + s − s′, s′, w′) ∈ U(Qt, St + β, It): Since (q′, s′, w′) ∈
U(Qt, St, It), note that −CC ≤ s′ ≤ CD and s′ ≤ St < St + β. Since
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(q, s, w) ∈ U(Qt+α, St+α+β, It), note that St+β−CS ≤ s−α ≤ s′. Thus

−min{CS−St−β, CC} ≤ s′ ≤ min{St+β, CD}. Hence (q−α+s−s′, s′, w′) ∈
U(Qt, St+β, It). We also show that (q′+α−s+s′, s, w) ∈ U(Qt+α, St+α, It):

Since (q, s, w) ∈ U(Qt + α, St + α + β, It), note that −CC ≤ s ≤ CD and

St+α−CS < St+α+β−CS ≤ s. Since (q′, s′, w′) ∈ U(Qt, St, It), note that

s ≤ s′+α ≤ St +α. Thus −min{CS −St−α,CC} ≤ s ≤ min{St +α,CD}.
Hence (q′ + α− s+ s′, s, w) ∈ U(Qt + α, St + α, It). Thus:

v∗t (Qt + α, St + α + β, It)− v∗t (Qt, St + β, It)

≤ R(Qt + α, It, s, w) + E
[
v∗t+1(q, St + α + β − s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q − α + s− s′, St + β − s′, It+1)

]
≤ R(Qt + α, It, s, w) + E

[
v∗t+1(q′ + α− s+ s′, St + α + β − s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St + β − s′, It+1)

]
≤ R(Qt + α, It, s, w) + E

[
v∗t+1(q′ + α− s+ s′, St + α− s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ v∗t (Qt + α, St + α, It)− v∗t (Qt, St, It).

The second inequality above holds since v∗t+1(·, ·, It+1) satisfies property (c).

The third inequality above holds since v∗t+1(·, ·, It+1) satisfies property (b).

(b3) Suppose that s ≤ s′+α and α−s+s′ ≥ q−q′ > 0. Recall from scenario (b2)

that −min{CS −St−α,CC} ≤ s ≤ min{St +α,CD} and −min{CS −St−
β, CC} ≤ s′ ≤ min{St +β, CD}. Hence, (q, s, w) ∈ U(Qt +α, St +α, It) and

(q′, s′, w′) ∈ U(Qt, St + β, It). Thus:
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v∗t (Qt + α, St + α + β, It)− v∗t (Qt + α, St + α, It)

≤ R(Qt + α, It, s, w) + E
[
v∗t+1(q, St + α + β − s, It+1)

]
−R(Qt + α, It, s, w)− E

[
v∗t+1(q, St + α− s, It+1)

]
≤ E

[
v∗t+1(q, St + β + q − q′ − s′, It+1)

]
− E

[
v∗t+1(q, St + q − q′ − s′, It+1)

]
≤ R(Qt, It, s

′, w′) + E
[
v∗t+1(q′, St + β − s′, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ v∗t (Qt, St + β, It)− v∗t (Qt, St, It).

The second inequality above holds since v∗t+1(·, ·, It+1) satisfies properties

(a) and (b) (which together imply the concavity of v∗t+1(q, ·, It+1)). The

third inequality above holds since v∗t+1(·, ·, It+1) satisfies property (b).

(b4) Suppose that s ≤ s′+α and 0 ≥ q− q′. Since η∗t (Qt, St, It) = (q′, s′, w′), we

have

v∗t (Qt, St, It) = R(Qt, It, s
′, w′) + E

[
v∗t+1(q′, St − s′, It+1)

]
> R(Qt, It, s

′, w′) + E
[
v∗t+1(q, St − s′, It+1)

]
.

Since η∗t (Qt + α, St + α + β, It) = (q, s, w), we have

v∗t (Qt + α, St + α + β, It)

= R(Qt + α, It, s, w) + E
[
v∗t+1(q, St + α + β − s, It+1)

]
> R(Qt + α, It, s, w) + E

[
v∗t+1(q′, St + α + β − s, It+1)

]
.

The inequalities above imply that

E
[
v∗t+1(q′, St − s′, It+1)

]
− E

[
v∗t+1(q, St − s′, It+1)

]
> E

[
v∗t+1(q′, St + α + β − s, It+1)

]
− E

[
v∗t+1(q, St + α + β − s, It+1)

]
.

But this leads to a contradiction since v∗t+1(·, ·, It+1) satisfies property (a).

Hence this scenario is not possible.
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(b5) Suppose that s′+α < s and min{f(Wt), CT +CC} < CT +CS−St−α−β.

Lemma 4.3.3 implies that w = min{f(Wt), CT + CC} = w′. We show that

(q′, s′+α,w′) ∈ U(Qt+α, St+α, It): Since (q, s, w) ∈ U(Qt+α, St+α+β, It),

we have s′ + α < s ≤ CD. Since (q′, s′, w′) ∈ U(Qt, St, It), we have −CC <
−CC + α ≤ s′ + α and St − CS + α ≤ s′ + α ≤ St + α. Thus −min{CS −
St − α,CC} ≤ s′ + α ≤ min{St + α,CD}. Since E(·, w′) is an increasing

function, E(s, w) > E(s′ + α,w′) > E(s′, w′). Hence (q′, s′ + α,w′) ∈
U(Qt + α, St + α, It). We also show that (q, s − α,w) ∈ U(Qt, St + β, It):

Since (q′, s′, w′) ∈ U(Qt, St, It), we have −CC ≤ s′ < s−α. Since (q, s, w) ∈
U(Qt + α, St + α + β, It), we have St + β − CS ≤ s − α < s ≤ CD and

s−α ≤ St + β. Thus −min{CS − St− β, CC} ≤ s−α ≤ min{St + β, CD}.
Since E(·, w) is an increasing function, E(s, w) > E(s − α,w) > E(s′, w′).

Hence (q, s− α,w) ∈ U(Qt, St + β, It). Thus:

v∗t (Qt + α, St + α + β, It)− v∗t (Qt, St + β, It)

≤ R(Qt + α, It, s, w) + E
[
v∗t+1(q, St + α + β − s, It+1)

]
−R(Qt, It, s− α,w)− E

[
v∗t+1(q, St + α + β − s, It+1)

]
= αPt

= R(Qt + α, It, s
′ + α,w′) + E

[
v∗t+1(q′, St − s′, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ v∗t (Qt + α, St + α, It)− v∗t (Qt, St, It).

(b6) Suppose that s′+α < s and CT +CS−St−α−β ≤ min{f(Wt), CT +CC} <
CT + CS − St. Lemma 4.3.3 implies that w = CT + CS − St − α − β,

w′ = min{f(Wt), CT + CC}, s = St + α + β − CS ≤ 0, and E(s, w) = CT .

Thus, s′ < s−α < s ≤ 0 and s′+α < s ≤ 0. Let w′a = min{w′, CT−(s′+α)}
and wa = min{w′, w+α}. We show that (q′, s′+α,w′a) ∈ U(Qt+α, St+α, It):

Recall from scenario (b5) that −min{CS−St−α,CC} ≤ s′+α ≤ min{St+
α,CD} when s′ + α < s. If w′a = w′, then −CT ≤ s′ + w′ < s′ + α + w′ =

s′ + α + w′a ≤ s′ + α + CT − (s′ + α) = CT and 0 ≤ w′a = w′ ≤ f(Wt).

If w′a = CT − (s′ + α), then s′ + α + w′a = CT and 0 ≤ CT < w′a =

CT − (s′ + α) < w′ ≤ f(Wt). Hence (q′, s′ + α,w′a) ∈ U(Qt + α, St + α, It).
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We also show that (q, s−α,wa) ∈ U(Qt, St+β, It): Recall from scenario (b5)

that −min{CS − St − β, CC} ≤ s− α ≤ min{St + β, CD} when s′ + α < s.

Also, note that s − α + wa ≤ s + w ≤ CT . If wa = w′, then −CT ≤
s′ + w′ < s − α + wa and 0 ≤ wa = w′ ≤ f(Wt). If wa = w + α, then

−CT ≤ s+w = s−α+wa and 0 ≤ w < w+α = wa ≤ w′ ≤ f(Wt). Hence

(q, s− α,wa) ∈ U(Qt, St + β, It). Thus:

v∗t (Qt + α, St + α + β, It)− v∗t (Qt + α, St + α, It)

≤ R(Qt + α, It, s, w) + E
[
v∗t+1(q, St + α + β − s, It+1)

]
−R(Qt + α, It, s

′ + α,w′a)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ R(Qt, It, s− α,wa) + E

[
v∗t+1(q, St + α + β − s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ v∗t (Qt, St + β, It)− v∗t (Qt, St, It).

The second inequality above holds in each of the following four cases:

(1) Suppose that wa = w′ < w + α and w′a = w′ < CT − (s′ + α). Then,

R(Qt + α, It, s, w)−R(Qt + α, It, s
′ + α,w′a)

≤ R(Qt + α, It, s, w
′)−R(Qt + α, It, s

′ + α,w′)

= R(Qt, It, s− α,wa)−R(Qt, It, s
′, w′).

The inequality above holds since w ≤ w′ and R(Qt + α, It, s, ·) is an

increasing function.

(2) Suppose that wa = w′ < w + α and w′a = CT − (s′ + α) < w′. Then,

R(Qt + α, It, s, w)−R(Qt + α, It, s
′ + α,w′a) = 0

≤ R(Qt, It, s− α,wa)−R(Qt, It, s
′, w′).

The equality above holds since E(s, w) = E(s′+α,w′a) = CT . The in-

equality above holds since s′ < s−α and R(Qt, It, ·, w′) is an increasing

function.
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(3) Suppose that wa = w + α < w′ and w′a = w′ < CT − (s′ + α). Then,

R(Qt + α, It, s, w)−R(Qt, It, s− α,wa)

= αPt +R(Qt, It, s− α,w)−R(Qt, It, s, w)

≤ αPt = R(Qt + α, It, s
′ + α,w′a)−R(Qt, It, s

′, w′).

The inequality above holds since R(Qt, It, ·, w) is an increasing func-

tion.

(4) Suppose that wa = w + α < w′ and w′a = CT − (s′ + α) < w′. Then,

R(Qt + α, It, s, w)−R(Qt + α, It, s
′ + α,w′a) = 0

≤ R(Qt, It, s− α,wa)−R(Qt, It, s
′, w′).

The equality above holds since E(s, w) = E(s′ + α,w′a) = CT . The

inequality above holds since E(s− α,wa) = CT ≥ E(s′, w′).

(b7) Suppose that s′ + α < s and CT + CS − St ≤ min{f(Wt), CT + CC}.
Lemma 4.3.3 implies that w = CT +CS − St − α− β, s = St + α+ β −CS,

E(s, w) = CT , w′ = CT + CS − St, s′ = St − CS, and E(s′, w′) = CT . Note

that w′ = w+α+β. We show that (q′, s′+α,w′−α) ∈ U(Qt+α, St+α, It):

Recall from scenario (b5) that −min{CS−St−α,CC} ≤ s′+α ≤ min{St+
α,CD} when s′+α < s. Note that E(s′+α,w′−α) = E(s′, w′) = CT and 0 ≤
w < w′−α < w′ ≤ f(Wt). Hence (q′, s′+α,w′−α) ∈ U(Qt +α, St +α, It).

We also show that (q, s−α,w+α) ∈ U(Qt, St+β, It): Recall from scenario

(b5) that−min{CS−St−β, CC} ≤ s−α ≤ min{St+β, CD} when s′+α < s.

Note that E(s−α,w+α) = E(s, w) = CT and 0 ≤ w ≤ w+α < w′ ≤ f(Wt).

Hence (q, s− α,w + α) ∈ U(Qt, St + β, It). Thus:

v∗t (Qt + α, St + α + β, It)− v∗t (Qt + α, St + α, It)

≤ R(Qt + α, It, s, w) + E
[
v∗t+1(q, St + α + β − s, It+1)

]
−R(Qt + α, It, s

′ + α,w′ − α)− E
[
v∗t+1(q′, St − s′, It+1)

]
= R(Qt, It, s− α,w + α) + E

[
v∗t+1(q, St + α + β − s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ v∗t (Qt, St + β, It)− v∗t (Qt, St, It).
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The equality above holds since E(s, w) = E(s′ + α,w′ − α) = E(s′, w′) =

E(s− α,w + α) = CT .

(c) Finally we prove that v∗t (Qt + α + β, St + α, It)− v∗t (Qt + α, St + α, It) ≤
v∗t (Qt + β, St, It) − v∗t (Qt, St, It). Let η∗t (Qt + α + β, St + α, It) = (q, s, w) and

η∗t (Qt, St, It) = (q′, s′, w′). We consider the following three scenarios to prove the

statement:

(c1) Suppose that s′ + α ≥ s. Lemma 4.3.3 implies that w′ = min{f(Wt), CT +

min{CS−St, CC}} ≥ min{f(Wt), CT + min{CS−St−α,CC}} = w. Hence

w′ = w + δ for some δ ≥ 0. Note that (q, s, w) ∈ U(Qt + α, St + α, It) and

(q′, s′, w′) ∈ U(Qt + β, St, It). Thus:

v∗t (Qt + α + β, St + α, It)− v∗t (Qt + α, St + α, It)

≤ R(Qt + α + β, It, s, w) + E
[
v∗t+1(q, St + α− s, It+1)

]
−R(Qt + α, It, s, w)− E

[
v∗t+1(q, St + α− s, It+1)

]
= (α + β)Pt +R(Qt, It, s− α− β − δ, w′)− αPt −R(Qt, It, s− α− δ, w′)

≤ βPt +R(Qt, It, s
′ − β, w′)−R(Qt, It, s

′, w′)

= R(Qt + β, It, s
′, w′) + E

[
v∗t+1(q′, St − s′, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ v∗t (Qt + β, St, It)− v∗t (Qt, St, It).

The second inequality above holds since s′ ≥ s − α − δ and R(Qt, It, ·, w′)
is concave.

(c2) Suppose that s′ + α < s and min{f(Wt), CT + CC} ≤ CT + CS − St − α.

Lemma 4.3.3 implies that w = min{f(Wt), CT + CC} = w′. We show

that (q′, s′ + α,w′) ∈ U(Qt + α, St + α, It): Since (q, s, w) ∈ U(Qt + α +

β, St + α, It), we have s′ + α < s ≤ CD. Since (q′, s′, w′) ∈ U(Qt, St, It),

we have −CC < −CC + α ≤ s′ + α and St − CS + α ≤ s′ + α ≤ St +

α. Thus −min{CS − St − α,CC} ≤ s′ + α ≤ min{St + α,CD}. Since
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E(·, w′) is an increasing function, E(s, w) > E(s′+α,w′) > E(s′, w′). Hence

(q′, s′ + α,w′) ∈ U(Qt + α, St + α, It). We also show that (q, s − α,w) ∈
U(Qt+β, St, It): Since (q′, s′, w′) ∈ U(Qt, St, It), we have −CC ≤ s′ < s−α.

Since (q, s, w) ∈ U(Qt + α + β, St + α, It), we have s − α < s ≤ CD and

St − CS ≤ s− α ≤ St. Thus −min{CS − St, CC} ≤ s− α ≤ min{St, CD}.
Since E(·, w) is an increasing function, E(s, w) > E(s − α,w) > E(s′, w′).

Hence (q, s− α,w) ∈ U(Qt + β, St, It). Thus:

v∗t (Qt + α + β, St + α, It)− v∗t (Qt + α, St + α, It)

≤ R(Qt + α + β, It, s, w) + E
[
v∗t+1(q, St + α− s, It+1)

]
−R(Qt + α, It, s

′ + α,w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
= R(Qt + β, It, s− α,w) + E

[
v∗t+1(q, St + α− s, It+1)

]
−R(Qt, It, s

′, w′)− E
[
v∗t+1(q′, St − s′, It+1)

]
≤ v∗t (Qt + β, St, It)− v∗t (Qt, St, It).

(c3) Suppose that s′ + α < s and CT + CS − St − α < min{f(Wt), CT + CC}.
Lemma 4.3.3 implies that w = CT +CS−St−α and s = St+α−CS. Since

(q′, s′, w′) ∈ U(Qt, St, It), we have St−CS ≤ s′ < s−α = St−CS. But this

leads to a contradiction. Hence this scenario is not possible.

Hence v∗t (·, ·, It) satisfies properties (a), (b), and (c).

Proof of Theorem 4.3.1. Let η∗t (Qt, St, It) = (q, s, w) denote the optimal ac-

tion triplet in state (Qt, St, It). We consider the following four scenarios to char-

acterize the optimal state-dependent target storage level:

(i) Suppose that (Qt, St,Wt) ∈ Ψ0. Thus f(Wt) ≥ CT + min{CS − St, CC}.
Lemma 4.3.3 implies that w = CT +min{CS−St, CC} and s = −min{CS−
St, CC}. Hence Zt(Qt, St, It) = CS.

(ii) Suppose that (Qt, St,Wt) ∈ Ψ1. Thus CT + min{CS − St, CC} > f(Wt) ≥
Qt + min{CS − St, CC}. Lemma 4.3.3 implies that w = f(Wt). Since
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s ≥ −min{CS − St, CC}, note that E(s, w) = s + f(Wt) ≥ Qt. We then

consider the following problem:

max
(qt,zt)∈[−min{CC ,CT },CT ]×[0,CS ]

{
R(pi)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Note that
(
Y

(pi)
t (It), Z

(pi)
t (It)

)
yields the maximum value. Hence

Zt(Qt, St, It) = Z
(pi)
t (It).

(iii) Suppose that (Qt, St,Wt) ∈ Ψ2. Thus Qt + min{CS − St, CC} > f(Wt) ≥
Qt − min{St, CD}. Lemma 4.3.1 implies that CT ≥ Qt and Lemma 4.3.3

implies that w = f(Wt). We now consider the following two cases:

• Suppose that Qt ≤ E(s, w) = s+ f(Wt). Thus Qt − f(Wt) ≤ s. Since

Qt−f(Wt) > −CC , we have s > −CC . We then consider the following

problem:

max
(qt,zt)∈[−min{CC ,CT },CT ]×[0,St+f(Wt)−Qt]

{
R(pi)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(pi)(zt, It)+E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), note

that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

min{Z(pi)
t (It), St+f(Wt)−Qt}. Hence, Zt(Qt, St, It) = St+f(Wt)−Qt

if St + f(Wt)−Qt ≤ Z
(pi)
t (It) and Zt(Qt, St, It) = Z

(pi)
t (It) otherwise.

• Suppose that Qt > E(s, w) = s+ f(Wt). Thus s < Qt − f(Wt). Since

Qt − f(Wt) ≤ CD, we have s < CD. We then consider the following

problem:

max
(qt,zt)∈[−min{CC ,CT },CT ]×[St+f(Wt)−Qt,CS ]

{
R(ni)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(ni)(zt, It)+E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), note

that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

max{Z(ni)
t (It), St + f(Wt) − Qt}. Hence, Zt(Qt, St, It) = Z

(ni)
t (It) if

St + f(Wt) − Qt ≤ Z
(ni)
t (It) and Zt(Qt, St, It) = St + f(Wt) − Qt

otherwise.
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Combining all of the above observations, we obtain

Zt(Qt, St, It) =



Z
(ni)
t (It) if St ≤ Z

(ni)
t (It)− f(Wt) +Qt,

St + f(Wt)−Qt if Z
(ni)
t (It)− f(Wt) +Qt < St

and St ≤ Z
(pi)
t (It)− f(Wt) +Qt,

Z
(pi)
t (It) if Z

(pi)
t (It)− f(Wt) +Qt < St.

(iv) Suppose that (Qt, St,Wt) ∈ Ψ3. Thus Qt − min{St, CD} > f(Wt).

Lemma 4.3.1 implies that CT ≥ Qt and Lemma 4.3.3 implies that w =

f(Wt). Since s ≤ min{St, CD}, note that E(s, w) = s + f(Wt) < Qt. We

then consider the following problem:

max
(qt,zt)∈[−min{CC ,CT },CT ]×[0,CS ]

{
R(ni)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Note that
(
Y

(ni)
t (It), Z

(ni)
t (It)

)
yields the maximum value. Hence

Zt(Qt, St, It) = Z
(ni)
t (It).

We thus characterized the optimal state-dependent target storage level. We now

show that Z
(ni)
t (It) ≤ Z

(pi)
t (It): For simplicity, let u∗t (qt, zt) = E

[
v∗t+1(qt, zt, It+1)

]
.

By definitions of Z
(ν)
t (It) and Y

(ν)
t (It), the following inequalities hold.

u∗t

(
Y

(ni)
t (It), Z

(ni)
t (It)

)
−K+

n PtZ
(ni)
t (It) ≥ u∗t

(
Y

(pi)
t (It), Z

(pi)
t (It)

)
−K+

n PtZ
(pi)
t (It),

u∗t

(
Y

(pi)
t (It), Z

(pi)
t (It)

)
−K+

p PtZ
(pi)
t (It) ≥ u∗t

(
Y

(ni)
t (It), Z

(ni)
t (It)

)
−K+

p PtZ
(ni)
t (It).

The summation of the above inequalities implies that −K+
n PtZ

(ni)
t (It) −

K+
p PtZ

(pi)
t (It) ≥ −K+

n PtZ
(pi)
t (It) − K+

p PtZ
(ni)
t (It). Since K+

n > K+
p , Z

(ni)
t (It) ≤

Z
(pi)
t (It).

We next characterize the optimal energy storage action. For notational conve-

nience, we suppress the dependency of Zt on (Qt, St, It). We consider the following

three scenarios:
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(i) Suppose that CT ≤ w. If s > 0, then E(s, w) = s+w > CT . But this leads

to a contradiction since E(s, w) ≤ CT . Thus s ≤ 0. Since s+w ≤ CT , note

that St + w − CT ≤ St − s. We then consider the following problem:

max
(qt,zt)∈[−min{CC ,CT },CT ]×[St+w−CT ,CS ]

{
R(Qt, It, St − zt, w)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St− zt, w) +E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

max{Zt, St + w − CT}. We consider the following two cases:

• Suppose that St + w − CT < Zt. Then z∗t = Zt. Since −CT ≤ s + w,

note that s ≥ −(CT + w). Hence, taking into account the capacity

constraints, we obtain s = −min{Zt − St, CT + w,CC}.

• Suppose that Zt ≤ St +w−CT . Then z∗t = St +w−CT . Recall from

Lemma 4.3.3 that w = min{f(Wt), CT + min{CS − St, CC}}. Thus,

w ≤ CT +CC , that is, w−CT ≤ CC . Since s < 0, taking into account

the capacity constraints, we obtain s = −min{w−CT , CC} = CT −w.

(ii) Suppose that CT > w and s < 0. We consider the following problem:

max
(qt,zt)∈[−min{CC ,CT },CT ]×[St,CS ]

{
R(Qt, It, St − zt, w) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St− zt, w) +E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

max{St, Zt}. Since −CT ≤ s+w, note that s ≥ −(CT +w). Hence, taking

into account the capacity constraints, we obtain s = −min{Zt − St, CT +

w,CC} if Zt > St.

(iii) Suppose that CT > w and s ≥ 0. We consider the following problem:

max
(qt,zt)∈[−min{CC ,CT },CT ]×[0,St]

{
R(Qt, It, St − zt, w) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St− zt, w) +E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =
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min{Zt, St}. Since s + w ≤ CT , note that s ≤ CT − w. Hence, taking into

account the capacity constraints, we obtain s = min{St − Zt, CT − w,CD}
if Zt ≤ St.

Lastly, we consider the following problem to obtain the optimal energy com-

mitment action:

max
qt∈[−min{CC ,CT },CT ]

{
E
[
v∗t+1(qt, St − s, It+1)

]}
.

Note that Yt(St − s, It) yields the maximum value in this problem. Hence q =

Yt(St − s, It). We now show that Y
(ni)
t (It) ≤ Y

(pi)
t (It): By definitions of Z

(ν)
t (It)

and Y
(ν)
t (It), the following inequalities hold.

u∗t

(
Y

(ni)
t (It), Z

(ni)
t (It)

)
−K+

n PtZ
(ni)
t (It) ≥ u∗t

(
Y

(pi)
t (It), Z

(ni)
t (It)

)
−K+

n PtZ
(ni)
t (It),

u∗t

(
Y

(pi)
t (It), Z

(pi)
t (It)

)
−K+

p PtZ
(pi)
t (It) ≥ u∗t

(
Y

(ni)
t (It), Z

(pi)
t (It)

)
−K+

p PtZ
(pi)
t (It).

The summation of the above inequalities implies that

u∗t

(
Y

(ni)
t (It), Z

(pi)
t (It)

)
− u∗t

(
Y

(pi)
t (It), Z

(pi)
t (It)

)
≤ u∗t

(
Y

(ni)
t (It), Z

(ni)
t (It)

)
− u∗t

(
Y

(pi)
t (It), Z

(ni)
t (It)

)
.

Since Z
(ni)
t (It) ≤ Z

(pi)
t (It) from Theorem 4.3.1, Y

(ni)
t (It) ≤ Y

(pi)
t (It) by property

(a) in Proposition 4.3.1.
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Appendix C

Supplement to optimal policy

characterization in the presence

of efficiency losses

This chapter includes supplementary material for Chapter 5: Commitment and

Storage Problem of Wind Power Producers: Optimal Policy Characterization in

the Presence of Efficiency Losses.

Proof of Theorem 5.2.1. Let η∗t (Qt, St, It) = (q, s, w). Fix Qt, St, and It.

(i) Suppose that (Qt, St,Wt) ∈ Ψ0. Thus f(Wt) ≥ CT + min{CS − St, CC}/θ.
Lemma 4.3.3 implies that w = CT + min{CS − St, CC}/θ and s =

−min{CS − St, CC}. Hence Zt(Qt, St, It) = CS.

(ii) Suppose that (Qt, St,Wt) ∈ Ψ+
1 . Thus CT +min{CS−St, CC}/θ > f(Wt) ≥

CT , f(Wt) ≥ Qt/τ + min{CS − St, CC}/θ, and Qt ≥ 0. Lemma 4.3.3

implies that w = f(Wt). Note that f(Wt) ≥ CT ≥ Qt/τ . If s > 0,

then E(s, w) = (γs + f(Wt))τ > τCT . But this leads to a contradiction

since E(s, w) ≤ τCT . Thus s ≤ 0. Since s ≥ −min{CS − St, CC}, note

that s/θ + f(Wt) ≥ s/θ + Qt/τ + min{CS − St, CC}/θ ≥ Qt/τ . Thus
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E(s, w) = min{(s/θ + w)τ, (s/θ + w)/τ} ≥ min{Qt, Qt/τ
2} ≥ Qt ≥ 0. We

then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,CS ]

{
R(piCS)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), note

that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

max{Z(piCS)
t (It), St}. Hence, Zt(Qt, St, It) = Z

(piCS)
t (It) if St ≤ Z

(piCS)
t (It)

and Zt(Qt, St, It) = St otherwise.

(iii) Suppose that (Qt, St,Wt) ∈ Ψ−1 . Thus CT +min{CS−St, CC}/θ > f(Wt) ≥
CT , f(Wt) ≥ τQt+ min{CS−St, CC}/θ, and Qt < 0. Recall from the proof

of scenario (ii) that s ≤ 0 when f(Wt) ≥ CT . Since s ≥ −min{CS−St, CC},
note that s/θ + f(Wt) ≥ s/θ + τQt + min{CS − St, CC}/θ ≥ τQt. Thus

E(s, w) = min{(s/θ + w)τ, (s/θ + w)/τ} ≥ min{τ 2Qt, Qt} ≥ Qt. We now

consider the following two cases:

• Suppose that s/θ +w > 0. Thus 0 ≥ s > −θf(Wt). We then consider

the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,St+θf(Wt)]

{
R(piCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(piCS)
t (It), St + θf(Wt)} if St ≤ Z

(piCS)
t (It) and z∗t = St

otherwise.

• Suppose that 0 ≥ s/θ + w. Thus −θf(Wt) ≥ s. We then consider the

following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θf(Wt),CS ]

{
R(piCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where
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z∗t = Z
(piCP)
t (It) if St + θf(Wt) ≤ Z

(piCP)
t (It) and z∗t = St + θf(Wt)

otherwise.

Combining all of the above observations, we obtain

Zt(Qt, St, It) =



Z
(piCP)
t (It) if St ≤ Z(piCP)

t (It)− θf(Wt),

min{Z(piCS)
t (It), St + θf(Wt)} if Z

(piCP)
t (It)− θf(Wt) < St

and St ≤ Z(piCS)
t (It),

St if Z
(piCS)
t (It) < St.

(iv) Suppose that (Qt, St,Wt) ∈ Ψ+
2 . Thus CT +min{CS−St, CC}/θ > f(Wt) ≥

CT , Qt/τ+min{CS−St, CC}/θ > f(Wt), and Qt ≥ 0. Recall from the proof

of scenario (ii) that s ≤ 0 and f(Wt) ≥ Qt/τ when f(Wt) ≥ CT . We now

consider the following three cases:

• Suppose that s/θ + w ≥ Qt/τ > 0. Thus Qt ≤ E(s, w) and 0 ≥ s >

−θ(f(Wt)−Qt/τ). We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,St+θ(f(Wt)−Qt/τ)]

{
R(piCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(piCS)
t (It), St + θ(f(Wt) − Qt/τ)} if St ≤ Z

(piCS)
t (It) and

z∗t = St otherwise.

• Suppose that Qt/τ > s/θ+w > 0. Thus Qt > E(s, w) and −θ(f(Wt)−
Qt/τ) ≥ s > −θf(Wt). We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θ(f(Wt)−Qt/τ),St+θf(Wt)]

{
R(niCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(niCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where
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z∗t = min{Z(niCS)
t (It), St+θf(Wt)} if St+θ(f(Wt)−Qt/τ) ≤ Z

(niCS)
t (It)

and z∗t = St + θ(f(Wt)−Qt/τ) otherwise.

• Suppose that 0 ≥ s/θ +w. Thus Qt ≥ 0 ≥ E(s, w) and −θf(Wt) ≥ s.

We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θf(Wt),CS ]

{
R(niCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = Z
(niCP)
t (It) if St + θf(Wt) ≤ Z

(niCP)
t (It) and z∗t = St + θf(Wt)

otherwise.

Combining all of the above observations, we obtain

Zt(Qt, St, It) =



Z
(niCP)
t (It) if St ≤ Z(niCP)

t (It)− θf(Wt),

min{Z(niCS)
t (It), if Z

(niCP)
t (It)− θf(Wt) < St

St + θf(Wt)} and St ≤ Z(niCS)
t (It)− θ(f(Wt)−Qt/τ),

min{Z(piCS)
t (It), if Z

(niCS)
t (It)− θ(f(Wt)−Qt/τ) < St

St + θ(f(Wt)−Qt/τ)} and St ≤ Z(piCS)
t (It),

St if Z
(piCS)
t (It) < St.

(v) Suppose that (Qt, St,Wt) ∈ Ψ−2 . Thus CT +min{CS−St, CC}/θ > f(Wt) ≥
CT , τQt+ min{CS−St, CC}/θ > f(Wt), and Qt < 0. Recall from the proof

of scenario (ii) that s ≤ 0 when f(Wt) ≥ CT . Note that f(Wt) ≥ CT ≥ 0 >

τQt. We now consider the following three cases:

• Suppose that s/θ + w > 0. Thus E(s, w) > 0 ≥ Qt and 0 ≥ s >

−θf(Wt). We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,St+θf(Wt)]

{
R(piCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.
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Since R(piCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(piCS)
t (It), St + θf(Wt)} if St ≤ Z

(piCS)
t (It) and z∗t = St

otherwise.

• Suppose that 0 ≥ s/θ+w ≥ τQt. Thus Qt ≤ E(s, w) and −θf(Wt) ≥
s ≥ −θ(f(Wt)− τQt). We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θf(Wt),St+θ(f(Wt)−τQt)]

{
R(piCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(piCP)
t (It), St + θ(f(Wt)− τQt)} if St + θf(Wt) ≤ Z

(piCP)
t (It)

and z∗t = St + θf(Wt) otherwise.

• Suppose that 0 ≥ τQt > s/θ+w. Thus Qt > E(s, w) and −θ(f(Wt)−
τQt) > s. We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θ(f(Wt)−τQt),CS ]

{
R(niCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = Z
(niCP)
t (It) if St + θ(f(Wt) − τQt) ≤ Z

(niCP)
t (It) and z∗t = St +

θ(f(Wt)− τQt) otherwise.

Combining all of the above observations, we obtain

Zt(Qt, St, It) =



Z
(niCP)
t (It) if St ≤ Z(niCP)

t (It)− θ(f(Wt)− τQt),

min{Z(piCP)
t (It), if Z

(niCP)
t (It)− θ(f(Wt)− τQt) < St

St + θ(f(Wt)− τQt)} and St ≤ Z(piCP)
t (It)− θf(Wt),

min{Z(piCS)
t (It), if Z

(piCP)
t (It)− θf(Wt) < St ≤ Z(piCS)

t (It),

St + θf(Wt)}

St if Z
(piCS)
t (It) < St.
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(vi) Suppose that (Qt, St,Wt) ∈ Ψ+
3 . Thus CT > f(Wt), f(Wt) ≥ Qt/τ +

min{CS − St, CC}/θ, and Qt ≥ 0. Lemma 4.3.3 implies that w = f(Wt).

Since s ≥ −min{CS − St, CC}, note that E(s, w) = min{(γs+ w)τ, (s/θ +

w)τ, (s/θ + w)/τ} ≥ min{Qt, Qt/τ
2} ≥ Qt ≥ 0. We now consider the

following two cases:

• Suppose that s ≥ 0. We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[0,St]

{
R(piDS)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = St if St ≤ Z
(piDS)
t (It) and z∗t = Z

(piDS)
t (It) otherwise.

• Suppose that s < 0. We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,CS ]

{
R(piCS)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = Z
(piCS)
t (It) if St ≤ Z

(piCS)
t (It) and z∗t = St otherwise.

Combining all of the above observations, we obtain

Zt(Qt, St, It) =


Z

(piCS)
t (It) if St ≤ Z

(piCS)
t (It),

St if Z
(piCS)
t (It) < St ≤ Z

(piDS)
t (It)

Z
(piDS)
t (It) if Z

(piDS)
t (It) < St.

(vii) Suppose that (Qt, St,Wt) ∈ Ψ−3 . Thus CT > f(Wt), f(Wt) ≥ τQt +

min{CS − St, CC}/θ, and Qt < 0. Lemma 4.3.3 implies that w = f(Wt).

Since s ≥ −min{CS − St, CC}, note that E(s, w) = min{(γs+ w)τ, (s/θ +

w)τ, (s/θ + w)/τ} ≥ min{τ 2Qt, Qt} ≥ Qt. We now consider the following

three cases:
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• Suppose that s ≥ 0. We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[0,St]

{
R(piDS)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = St if St ≤ Z
(piDS)
t (It) and z∗t = Z

(piDS)
t (It) otherwise.

• Suppose that s < 0 and s/θ + w > 0. Thus 0 > s ≥ −θf(Wt). We

then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,St+θf(Wt)]

{
R(piCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(piCS)
t (It), St + θf(Wt)} if St ≤ Z

(piCS)
t (It) and z∗t = St

otherwise.

• Suppose that s < 0 and 0 ≥ s/θ + w. Thus −θf(Wt) ≥ s. We then

consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θf(Wt),CS ]

{
R(piCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = Z
(piCP)
t (It) if St + θf(Wt) ≤ Z

(piCP)
t (It) and z∗t = St + θf(Wt)

otherwise.

Combining all of the above observations, we obtain
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Zt(Qt, St, It) =



Z
(piCP)
t (It) if St ≤ Z(piCP)

t (It)− θf(Wt),

min{Z(piCS)
t (It), St + θf(Wt)} if Z

(piCP)
t (It)− θf(Wt) ≤ St

and St ≤ Z(piCS)
t (It),

St if Z
(piCS)
t (It) < St ≤ Z(piDS)

t (It),

Z
(piDS)
t (It) if Z

(piDS)
t (It) < St.

(viii) Suppose that (Qt, St,Wt) ∈ Ψ+
4 . Thus CT > f(Wt), Qt/τ + min{CS −

St, CC}/θ > f(Wt) ≥ Qt/τ , and Qt ≥ 0. Lemma 4.3.3 implies that w =

f(Wt). We now consider the following four cases:

• Suppose that s ≥ 0. Thus Qt ≤ E(s, w). We then consider the

following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[0,St]

{
R(piDS)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = St if St ≤ Z
(piDS)
t (It) and z∗t = Z

(piDS)
t (It) otherwise.

• Suppose that s < 0 and s/θ + w ≥ Qt/τ ≥ 0. Thus Qt ≤ E(s, w) and

0 > s ≥ −θ(f(Wt)−Qt/τ). We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,St+θ(f(Wt)−Qt/τ)]

{
R(piCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(piCS)
t (It), St + θ(f(Wt) − Qt/τ)} if St ≤ Z

(piCS)
t (It) and

z∗t = St otherwise.

• Suppose that s < 0 and Qt/τ > s/θ + w ≥ 0. Thus Qt > E(s, w) and

−θ(f(Wt) − Qt/τ) > s > −θf(Wt). We then consider the following

problem:
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max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θ(f(Wt)−Qt/τ),St+θf(Wt)]

{
R(niCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(niCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(niCS)
t (It), St+θf(Wt)} if St+θ(f(Wt)−Qt/τ) ≤ Z

(niCS)
t (It)

and z∗t = St + θ(f(Wt)−Qt/τ) otherwise.

• Suppose that s < 0 and 0 > s/θ + w. Thus Qt ≥ 0 > E(s, w) and

−θf(Wt) ≥ s. We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θf(Wt),CS ]

{
R(niCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = Z
(niCP)
t (It) if St + θf(Wt) ≤ Z

(niCP)
t (It) and z∗t = St + θf(Wt)

otherwise.

Combining all of the above observations, we obtain

Zt(Qt, St, It) =



Z
(niCP)
t (It) if St ≤ Z(niCP)

t (It)− θf(Wt),

min{Z(niCS)
t (It), if Z

(niCP)
t (It)− θf(Wt) < St

St + θf(Wt)} and St ≤ Z(niCS)
t (It)− θ(f(Wt)−Qt/τ),

min{Z(piCS)
t (It), if Z

(niCS)
t (It)− θ(f(Wt)−Qt/τ) < St

St + θ(f(Wt)−Qt/τ)} and St ≤ Z(piCS)
t (It),

St if Z
(piCS)
t (It) < St ≤ Z(piDS)

t (It),

Z
(piDS)
t (It) if Z

(piDS)
t (It) < St.

(ix) Suppose that (Qt, St,Wt) ∈ Ψ−4 . Thus CT > f(Wt), τQt + min{CS −
St, CC}/θ > f(Wt), and Qt < 0. Note that f(Wt) ≥ 0 > Qtτ . Lemma 4.3.3

implies that w = f(Wt). We now consider the following four cases:
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• Suppose that s ≥ 0. Thus Qt < 0 ≤ E(s, w). We then consider the

following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[0,St]

{
R(piDS)(zt, It) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = St if St ≤ Z
(piDS)
t (It) and z∗t = Z

(piDS)
t (It) otherwise.

• Suppose that s < 0 and s/θ + w ≥ 0. Thus Qt < 0 ≤ E(s, w) and

0 ≥ s > −θf(Wt). We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,St+θf(Wt)]

{
R(piCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(piCS)
t (It), St + θf(Wt)} if St ≤ Z

(piCS)
t (It) and z∗t = St

otherwise.

• Suppose that s < 0 and 0 > s/θ + w ≥ τQt. Thus Qt ≤ E(s, w) and

−θf(Wt) ≥ s ≥ −θ(f(Wt) − τQt). We then consider the following

problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θf(Wt),St+θ(f(Wt)−τQt)]

{
R(piCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(piCP)
t (It), St + θ(f(Wt)− τQt)} if St + θf(Wt) ≤ Z

(piCP)
t (It)

and z∗t = St + θf(Wt) otherwise.

• Suppose that s < 0 and 0 > τQt > s/θ + w. Thus Qt > E(s, w) and

−θ(f(Wt)− τQt) > s. We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θ(f(Wt)−τQt),CS ]

{
R(niCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.
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Since R(niCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = Z
(niCP)
t (It) if St + θ(f(Wt) − τQt) ≤ Z

(niCP)
t (It) and z∗t = St +

θ(f(Wt)− τQt) otherwise.

Combining all of the above observations, we obtain

Zt(Qt, St, It) =



Z
(niCP)
t (It) if St ≤ Z(niCP)

t (It)− θ(f(Wt)− τQt),

min{Z(piCP)
t (It), if Z

(niCP)
t (It)− θ(f(Wt)− τQt) < St

St + θ(f(Wt)− τQt)} and St ≤ Z(piCP)
t (It)− θf(Wt),

min{Z(piCS)
t (It), if Z

(piCP)
t (It)− θf(Wt) < St ≤ Z(piCS)

t (It),

St + θf(Wt)}

St if Z
(piCS)
t (It) < St ≤ Z(piDS)

t (It),

Z
(piDS)
t (It) if Z

(piDS)
t (It) < St.

(x) Suppose that (Qt, St,Wt) ∈ Ψ5. Thus CT > f(Wt) and Qt/τ > f(Wt).

Note that Qt > τf(Wt) ≥ 0. Lemma 4.3.3 implies that w = f(Wt). We

now consider the following four cases:

• Suppose that s ≥ 0 and γs + w ≥ Qt/τ . Thus Qt ≤ E(s, w) and

s ≥ (Qt/τ − f(Wt))/γ. We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[0,St−(Qt/τ−f(Wt))/γ]

{
R(piDS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = St− (Qt/τ −f(Wt))/γ if St− (Qt/τ −f(Wt))/γ ≤ Z
(piDS)
t (It) and

z∗t = Z
(piDS)
t (It) otherwise.

• Suppose that s ≥ 0 and γs + w < Qt/τ . Thus Qt > E(s, w) and

(Qt/τ − f(Wt))/γ > s ≥ 0. We then consider the following problem:
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max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St−(Qt/τ−f(Wt))/γ,St]

{
R(niDS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(niDS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

St if St ≤ Z
(niDS)
t (It) and z∗t = max{Z(niDS)

t (It), St− (Qt/τ−f(Wt))/γ}
otherwise.

• Suppose that s < 0 and s/θ + w ≥ 0. Thus, Qt > (s/θ + f(Wt))τ =

E(s, w) since f(Wt) < Qt/τ , and 0 > s ≥ −θf(Wt). We then consider

the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,St+θf(Wt)]

{
R(niCS)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(niCS)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = min{Z(niCS)
t (It), St + θf(Wt)} if St ≤ Z

(niCS)
t (It) and z∗t = St

otherwise.

• Suppose that s < 0 and 0 > s/θ + w. Thus Qt ≥ 0 > E(s, w) and

−θf(Wt) > s. We then consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θf(Wt),CS ]

{
R(niCP)(zt, It)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It) + E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where

z∗t = Z
(niCP)
t (It) if St + θf(Wt) ≤ Z

(niCP)
t (It) and z∗t = St + θf(Wt)

otherwise.

Combining all of the above observations, we obtain
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Zt(Qt, St, It) =



Z
(niCP)
t (It) if St ≤ Z(niCP)

t (It)− θf(Wt),

min{Z(niCS)
t (It), if Z

(niCP)
t (It)− θf(Wt) < St ≤ Z(niCS)

t (It),

St + θf(Wt)}

St if Z
(niCS)
t (It) < St ≤ Z(niDS)

t (It),

max{Z(niDS)
t (It), if Z

(niDS)
t (It) < St

St − (Qt/τ − f(Wt))/γ} and St ≤ Z(piDS)
t (It) + (Qt/τ − f(Wt))/γ,

Z
(piDS)
t (It) if Z

(piDS)
t (It) + (Qt/τ − f(Wt))/γ < St.

We next characterize the optimal energy storage action. For notational conve-

nience, we suppress the dependency of Zt on (Qt, St, It). We consider the following

three scenarios:

(i) Suppose that CT ≤ w. If s > 0, then E(s, w) = (γs + w)τ > τCT . But

this leads to a contradiction since E(s, w) ≤ τCT . Thus s ≤ 0. Since

s/θ + w ≤ CT , note that St + θ(w − CT ) ≤ St − s. We then consider the

following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St+θ(w−CT ),CS ]

{
R(Qt, It, St − zt, w)

+ E
[
v∗t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St− zt, w) +E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

max{Zt, St + θ(w − CT )}. We consider the following two cases:

• Suppose that St + θ(w − CT ) < Zt. Then z∗t = Zt. Since −τCT ≤
s/θ + w, note that s ≥ −θ(τCT + w). Hence, taking into account the

capacity constraints, we obtain s = −min{Zt − St, θ(τCT + w), CC}.

• Suppose that Zt ≤ St + θ(w−CT ). Then z∗t = St + θ(w−CT ). Recall

from Lemma 4.3.3 that w = min{f(Wt), CT + min{CS − St, CC}/θ}.
Thus, w ≤ CT + CC/θ, that is, θ(w − CT ) ≤ CC . Since s < 0, taking
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into account the capacity constraints, we obtain s = −min{θ(w −
CT ), CC} = −θ(w − CT ).

(ii) Suppose that CT > w and s < 0. We consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[St,CS ]

{
R(Qt, It, St − zt, w) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St− zt, w) +E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

max{St, Zt}. Since −τCT ≤ s/θ + w, note that s ≥ −θ(τCT + w). Hence,

taking into account the capacity constraints, we obtain s = −min{Zt −
St, θ(τCT + w), CC}.

(iii) Suppose that CT > w and s ≥ 0. We consider the following problem:

max
(qt,zt)∈[−min{CC/(θτ),CT },τCT ]×[0,St]

{
R(Qt, It, St − zt, w) + E

[
v∗t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St− zt, w) +E
[
v∗t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt),

note that (q∗t , z
∗
t ) yields the maximum value in this problem where z∗t =

min{Zt, St}. Since γs+w ≤ CT , note that s ≤ (CT −w)/γ. Hence, taking

into account the capacity constraints, we obtain s = min{St − Zt, (CT −
w)/γ, CD}.

Combining all of the above observations, we obtain

s =



−min{Zt − St, θ(τCT + w), CC} if CT ≤ w and St + θ(w − CT ) < Zt,

−θ(w − CT ) if CT ≤ w and Zt ≤ St + θ(w − CT ),

−min{Zt − St, θ(τCT + w), CC} if CT > w and St < Zt,

min{St − Zt, (CT − w)/γ, CD} if CT > w and Zt ≤ St.

We now show that Z
(niCP)
t (It) ≤ Z

(niCS)
t (It) ≤ Z

(niDS)
t (It) and Z

(piCP)
t (It) ≤

Z
(piCS)
t (It) ≤ Z

(piDS)
t (It): We fix It and suppress the dependencies of Y

(ν)
t and Z

(ν)
t
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on It for each ν ∈ {niCP, niCS, niDS, piCP, piCS, piDS} for notational convenience.

For simplicity, let u∗t (qt, zt) = E
[
v∗t+1(qt, zt, It+1)

]
. By definitions of Z

(ν)
t and Y

(ν)
t ,

the following inequalities hold.

u∗t (Y
(niCP)
t , Z

(niCP)
t )−K+

n PtZ
(niCP)
t /(θτ) ≥ u∗t (Y

(niCS)
t , Z

(niCS)
t )−K+

n PtZ
(niCS)
t /(θτ),

u∗t (Y
(niCS)
t , Z

(niCS)
t )− τK+

n PtZ
(niCS)
t /θ ≥ u∗t (Y

(niCP)
t , Z

(niCP)
t )− τK+

n PtZ
(niCP)
t /θ.

The summation of the above inequalities implies that K+
n (τ − 1/τ)Z

(niCP)
t /θ ≥

K+
n (τ−1/τ)Z

(niCS)
t /θ. Since K+

n > 0, 0 < θ ≤ 1, and 0 < τ ≤ 1, Z
(niCP)
t ≤ Z

(niCS)
t .

Again, by definitions of Z
(ν)
t and Y

(ν)
t , the following inequalities hold.

u∗t (Y
(niCS)
t , Z

(niCS)
t )− τK+

n PtZ
(niCS)
t /θ ≥ u∗t (Y

(niDS)
t , Z

(niDS)
t )− τK+

n PtZ
(niDS)
t /θ,

u∗t (Y
(niDS)
t , Z

(niDS)
t )− τγK+

n PtZ
(niDS)
t ≥ u∗t (Y

(niCS)
t , Z

(niCS)
t )− τγK+

n PtZ
(niCS)
t .

The summation of the above inequalities implies that K+
n τ(γ − 1/θ)Z

(niCS)
t ≥

K+
n τ(γ − 1/θ)Z

(niDS)
t . Since K+

n > 0, 0 < θ ≤ 1, and 0 < τ ≤ 1, Z
(niCS)
t ≤ Z

(niDS)
t .

Following similar steps, it can be shown that Z
(piCP)
t ≤ Z

(piCS)
t ≤ Z

(piDS)
t .

We next show that Z
(niCP)
t ≤ Z

(piCP)
t , Z

(niCS)
t ≤ Z

(piCS)
t , and Z

(niDS)
t ≤ Z

(piDS)
t :

By definitions of Z
(ν)
t and Y

(ν)
t , the following inequalities hold.

u∗t (Y
(niCP)
t , Z

(niCP)
t )−K+

n PtZ
(niCP)
t /(θτ) ≥ u∗t (Y

(piCP)
t , Z

(piCP)
t )−K+

n PtZ
(piCP)
t /(θτ),

u∗t (Y
(piCP)
t , Z

(piCP)
t )−K+

p PtZ
(piCP)
t /(θτ) ≥ u∗t (Y

(niCP)
t , Z

(niCP)
t )−K+

p PtZ
(niCP)
t /(θτ).

The summation of the above inequalities implies that (−K+
n + K+

p )Z
(niCP)
t ≥

(−K+
n +K+

p )Z
(piCP)
t . Since K+

n > K+
p , Z

(niCP)
t ≤ Z

(piCP)
t . Following similar steps,

it can be shown that Z
(niCS)
t ≤ Z

(piCS)
t and Z

(niDS)
t ≤ Z

(piDS)
t .
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Appendix D

Numerical results for the impact

of commitment decisions

We consider instances in which the planning horizon spans the first week of Au-

gust, N = 100, K+
p = K−n ∈ {0.7, 0.8, 0.9} and K+

n = K−p ∈ {1.1, 1.2, 1.3} (our

problem setting) or K+
p = K+

n = K−p = K−n = 1 (alternative problem setting [8]),

CS ∈ {0, 250, 500} (in MWh), CC = CD ∈ {40, 60} (in MWh), CT ∈ {100, 200}
(in MWh), NPF ∈ {0, 4.02%, 7.66%, 10.96%, 13.98%}, r ∈ {0.7, 0.8, 0.9, 1}, and

τ ∈ {0.95, 1}. We solve the recursion of our MDP to optimality in each instance,

calculating the following metrics:

• The percentage loss in the expected total cash flow due to the existence of

commitment decisions (TCF-Loss),

• The expected total amount of energy purchased in MWh (EP),

• The expected total amount of energy sold in MWh (ES),

• The expected total amount of energy stored by charging the battery in

MWh (ESC), and

• The expected total amount of energy generated by discharging the battery

in MWh (EGD).
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Table D.1: Numerical results when CS = 500, CC = CD = 40, CT = 200, NPF
= 4.02%, and r = 0.8.

τ K+
p = K−

n K+
n = K−

p TCF-Loss ES EP ESC EGD

1.1 5.04% 14014 437 2125 1886
0.7 1.2 6.37% 14001 435 2185 1933

1.3 7.15% 13977 431 2291 2018

1.1 4.06% 14010 435 2142 1900

0.95
0.8 1.2 5.13% 13988 434 2247 1983

1.3 5.71% 13962 431 2363 2075

1.1 2.76% 14006 435 2155 1910
0.9 1.2 3.40% 13978 432 2289 2016

1.3 3.75% 13958 429 2371 2081

1 1 0.00% 13998 437 2206 1949

1.1 4.97% 14764 430 2140 1898
0.7 1.2 6.31% 14739 418 2199 1945

1.3 7.09% 14711 413 2315 2036

1.1 4.01% 14759 428 2154 1909

1
0.8 1.2 5.09% 14725 417 2261 1994

1.3 5.68% 14695 413 2389 2095

1.1 2.74% 14751 424 2167 1919
0.9 1.2 3.39% 14713 415 2314 2036

1.3 3.74% 14697 414 2382 2089

1 1 0.00% 14764 446 2214 1956
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Table D.2: Numerical results when CS = 500, CC = CD = 40, CT = 200, NPF
= 4.02%, and τ = 0.95.

r K+
p = K−

n K+
n = K−

p TCF-Loss ES EP ESC EGD

1.1 5.02% 13870 472 2093 1668
0.7 1.2 6.40% 13832 470 2222 1760

1.3 7.23% 13805 469 2319 1828

1.1 4.03% 13878 473 2067 1650

0.7 0.8 1.2 5.16% 13828 469 2233 1767
1.3 5.81% 13798 470 2347 1848

1.1 2.72% 13873 472 2082 1660
0.9 1.2 3.42% 13850 468 2150 1709

1.3 3.84% 13825 469 2242 1774

1 1 0.00% 13844 475 2194 1740

1.1 5.04% 14014 437 2125 1886
0.7 1.2 6.37% 14001 435 2185 1933

1.3 7.15% 13977 431 2291 2018

1.1 4.06% 14010 435 2142 1900

0.8 0.8 1.2 5.13% 13988 434 2247 1983
1.3 5.71% 13962 431 2363 2075

1.1 2.76% 14006 435 2155 1910
0.9 1.2 3.40% 13978 432 2289 2016

1.3 3.75% 13958 429 2371 2081

1 1 0.00% 13998 437 2206 1949

1.1 5.03% 14214 402 2175 2179
0.7 1.2 6.37% 14210 400 2196 2199

1.3 7.06% 14196 396 2305 2297

1.1 4.05% 14204 401 2269 2264

0.9 0.8 1.2 5.08% 14198 398 2305 2296
1.3 5.60% 14188 394 2379 2363

1.1 2.72% 14193 398 2356 2342
0.9 1.2 3.29% 14182 396 2448 2425

1.3 3.60% 14179 394 2466 2441

1 1 0.00% 14209 406 2260 2255

1.1 5.02% 14404 378 2456 2683
0.7 1.2 6.37% 14400 373 2369 2596

1.3 7.01% 14397 370 2370 2597

1.1 4.01% 14403 377 2496 2723

1 0.8 1.2 5.03% 14397 370 2487 2714
1.3 5.52% 14395 368 2445 2672

1.1 2.65% 14402 377 2558 2785
0.9 1.2 3.19% 14396 370 2543 2769

1.3 3.50% 14397 370 2511 2737

1 1 0.00% 14407 382 2508 2735
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Table D.3: Numerical results when CS = 500, CC = CD = 40, CT = 200, r = 0.8,
and τ = 0.95.

NPF K+
p = K−n K+

n = K−p TCF-Loss ES EP ESC EGD

1.1 3.57% 14359 127 1960 1767
0.7 1.2 5.10% 14359 127 1959 1766

1.3 5.95% 14331 126 2093 1872

1.1 3.16% 14359 127 1962 1767

0 0.8 1.2 4.35% 14346 126 2023 1816
1.3 4.99% 14313 125 2180 1940

1.1 2.39% 14346 126 2021 1814
0.9 1.2 3.08% 14317 125 2161 1925

1.3 3.43% 14293 123 2276 2017

1 1 0.00% 14337 135 2109 1884

1.1 5.04% 14014 437 2125 1886
0.7 1.2 6.37% 14001 435 2185 1933

1.3 7.15% 13977 431 2291 2018

1.1 4.06% 14010 435 2142 1900

4.02% 0.8 1.2 5.13% 13988 434 2247 1983
1.3 5.71% 13962 431 2363 2075

1.1 2.76% 14006 435 2155 1910
0.9 1.2 3.40% 13978 432 2289 2016

1.3 3.75% 13958 429 2371 2081

1 1 0.00% 13998 437 2206 1949

1.1 6.42% 13705 722 2292 2009
0.7 1.2 7.59% 13688 721 2375 2076

1.3 8.30% 13672 720 2452 2137

1.1 4.91% 13703 723 2307 2021

7.66% 0.8 1.2 5.87% 13680 721 2416 2108
1.3 6.41% 13664 720 2490 2166

1.1 3.12% 13710 724 2271 1993
0.9 1.2 3.71% 13681 722 2410 2103

1.3 4.05% 13670 719 2457 2140

1 1 0.00% 13709 726 2287 2004

1.1 7.72% 13422 983 2469 2142
0.7 1.2 8.77% 13402 980 2554 2210

1.3 9.44% 13391 977 2597 2244

1.1 5.72% 13421 985 2480 2151

10.96% 0.8 1.2 6.59% 13399 982 2575 2226
1.3 7.12% 13390 979 2611 2255

1.1 3.46% 13430 986 2435 2115
0.9 1.2 4.01% 13407 982 2534 2193

1.3 4.35% 13403 981 2551 2207

1 1 0.00% 13425 985 2451 2127

1.1 8.94% 13154 1217 2653 2280
0.7 1.2 9.91% 13139 1212 2709 2325

1.3 10.56% 13133 1208 2720 2334

1.1 6.48% 13155 1217 2648 2277

13.98% 0.8 1.2 7.29% 13140 1214 2709 2325
1.3 7.81% 13135 1210 2719 2333

1.1 3.78% 13166 1217 2592 2232
0.9 1.2 4.31% 13154 1215 2644 2273

1.3 4.64% 13149 1212 2654 2281

1 1 0.00% 13169 1218 2574 2216
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Table D.4: Numerical results when CS = 500, CT = 200, NPF = 4.02%, τ = 0.95,
and r = 0.8.

CC = CD K+
p = K−

n K+
n = K−

p TCF-Loss ES EP ESC EGD

1.1 5.04% 14014 437 2125 1886
0.7 1.2 6.37% 14001 435 2185 1933

1.3 7.15% 13977 431 2291 2018

1.1 4.06% 14010 435 2142 1900

40
0.8 1.2 5.13% 13988 434 2247 1983

1.3 5.71% 13962 431 2363 2075

1.1 2.76% 14006 435 2155 1910
0.9 1.2 3.40% 13978 432 2289 2016

1.3 3.75% 13958 429 2371 2081

1 1 0.00% 13998 437 2206 1949

1.1 5.54% 14164 802 3020 2592
0.7 1.2 6.99% 14162 791 2983 2563

1.3 7.77% 14134 787 3109 2663

1.1 4.50% 14171 799 2969 2551

60
0.8 1.2 5.65% 14151 790 3031 2600

1.3 6.25% 14119 783 3165 2707

1.1 3.10% 14171 793 2945 2532
0.9 1.2 3.81% 14128 784 3117 2668

1.3 4.21% 14101 777 3220 2750

1 1 0.00% 14127 793 3169 2709
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Table D.5: Numerical results when CS = 500, CC = CD = 40, NPF = 4.02%,
τ = 0.95, and r = 0.8.

CT K+
p = K−

n K+
n = K−

p TCF-Loss ES EP ESC EGD

1.1 2.85% 12564 374 2394 1946
0.7 1.2 3.57% 12570 369 2387 1940

1.3 4.10% 12574 365 2383 1937

1.1 2.19% 12563 376 2386 1939

100
0.8 1.2 2.80% 12571 372 2380 1934

1.3 3.22% 12575 367 2372 1927

1.1 1.43% 12563 379 2375 1930
0.9 1.2 1.84% 12572 374 2362 1916

1.3 2.11% 12577 369 2353 1912

1 1 0.00% 12556 386 2371 1929

1.1 5.04% 14014 437 2125 1886
0.7 1.2 6.37% 14001 435 2185 1933

1.3 7.15% 13977 431 2291 2018

1.1 4.06% 14010 435 2142 1900

200
0.8 1.2 5.13% 13988 434 2247 1983

1.3 5.71% 13962 431 2363 2075

1.1 2.76% 14006 435 2155 1910
0.9 1.2 3.40% 13978 432 2289 2016

1.3 3.75% 13958 429 2371 2081

1 1 0.00% 13998 437 2206 1949
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Table D.6: Numerical results when CC = CD = 40, CT = 200, NPF = 4.02%,
τ = 0.95, and r = 0.8.

CS K+
p = K−

n K+
n = K−

p TCF-Loss ES EP ESC EGD

1.1 4.57% 13847 0 0 0
0.7 1.2 6.17% 13847 0 0 0

1.3 7.27% 13847 0 0 0

1.1 3.64% 13847 0 0 0

0
0.8 1.2 4.85% 13847 0 0 0

1.3 5.68% 13847 0 0 0

1.1 2.42% 13847 0 0 0
0.9 1.2 3.14% 13847 0 0 0

1.3 3.58% 13847 0 0 0

1 1 0.00% 13847 0 0 0

1.1 4.97% 13922 404 1943 1638
0.7 1.2 6.22% 13892 390 2032 1709

1.3 6.97% 13877 385 2084 1750

1.1 4.02% 13924 399 1913 1615

250
0.8 1.2 5.03% 13890 389 2038 1713

1.3 5.60% 13874 385 2098 1761

1.1 2.75% 13929 398 1884 1591
0.9 1.2 3.40% 13895 389 2012 1693

1.3 3.74% 13881 387 2073 1741

1 1 0.00% 13918 392 1907 1610

1.1 5.04% 14014 437 2125 1886
0.7 1.2 6.37% 14001 435 2185 1933

1.3 7.15% 13977 431 2291 2018

1.1 4.06% 14010 435 2142 1900

500
0.8 1.2 5.13% 13988 434 2247 1983

1.3 5.71% 13962 431 2363 2075

1.1 2.76% 14006 435 2155 1910
0.9 1.2 3.40% 13978 432 2289 2016

1.3 3.75% 13958 429 2371 2081

1 1 0.00% 13998 437 2206 1949
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