
Computers & Operations Research 36 (2009) 3088 -- 3096

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

A tabu-search based heuristic for the hub covering problem over incomplete hub
networks�

Hatice Cal�k, Sibel A. Alumur∗, Bahar Y. Kara, Oya E. Karasan
Department of Industrial Engineering, Bilkent University, 06800 Ankara, Turkey

A R T I C L E I N F O A B S T R A C T

Available online 24 December 2008

Keywords:
Hub location
Hub covering problem
Network design

Hub location problems deal with finding the location of hub facilities and with the allocation of demand
nodes to these located hub facilities. In this paper, we study the single allocation hub covering problem
over incomplete hub networks and propose an integer programming formulation to this end. The aim
of our model is to find the location of hubs, the hub links to be established between the located hubs,
and the allocation of non-hub nodes to the located hub nodes such that the travel time between any
origin–destination pair is within a given time bound. We present an efficient heuristic based on tabu
search and test the performance of our heuristic on the CAB data set and on the Turkish network.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Hub facilities serve as accumulation and distribution points in
many-to-many distribution networks. The flow is consolidated at the
hub facilities in order take advantage of the economies of scale. The
hub location problem includes the selection of the location of hub
facilities and the allocation of the demand nodes to these located hub
facilities. Such a location problem arises in airline, cargo delivery,
and telecommunication systems.

Considering how non-hub nodes are allocated to the located hub
nodes, two basic types of hub networks are defined in the literature:
single andmultiple allocation. In single allocation hub networks, each
non-hub node is allocated to exactly one hub; in multiple allocation
networks, a non-hub node can be allocated to more than one hub.

O'Kelly [1] originally introduced the hub location problem. Later,
O'Kelly [2] provided the first quadratic formulation for the single al-
location p-hub (median) location problem. The objective of his model
was to minimize the total transportation cost of flow. In order to
reflect the economies of scale in hub-to-hub connections, O'Kelly
introduced a constant discount factor, � ∈ [0,1], for using inter-hub
connections.

The rest of the literature on the hub location problem primar-
ily focused on the linearization of the quadratic model proposed
in O'Kelly [2], for example, Campbell [3], Ernst and Krishnamoor-
thy [4], O'Kelly et al. [5], and Skorin-Kapov et al. [6]. These studies

�This research is supported by Turkish Academy of Science.
∗ Corresponding author. Tel.: +903122901289; fax: +903122664054.
E-mail address: alumur@bilkent.edu.tr (S.A. Alumur).

0305-0548/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.11.023

introduce different mathematical formulations and solution proce-
dures for the minimization of the total transportation cost. One can
refer to Campbell et al. [7] and to Alumur and Kara [8] for recent
surveys on hub location problems.

Campbell [9] introduced different hub location problems (p-hub
center, hub covering) to the literature and considered different ob-
jective functions. In particular, the hub covering problem minimizes
the total cost of establishing hub facilities, so that the cost (or travel
time) between any origin–destination pair is within a given bound.
Campbell [9] provided quadratic as well as linear formulations for
both single and multiple allocation variants of the problem. The first
attempt to provide computational results for the single allocation
hub covering problem, however, was from Kara and Tansel [10].
They also suggested various linear formulations and proved the NP-
hardness of the hub covering problem. Ernst et al. [11] proposed a
better mathematical formulation for the hub covering problem using
the “radius” idea.

Most studies on hub location problems assume a complete hub
network, that is, every hub pair in the hub network is interconnected
with a hub link. One could justify the need to design incomplete hub
networks with various applications. For example, in cargo delivery
systems, sending separate trucks from a distribution center (hub) to
all other distribution centers is costly in terms of the investment in
the total number of trucks. Instead, forcing some trucks to visit more
than one distribution center, when there is enough capacity, may
decrease the total investment cost considerably. Similarly, in airline
applications, an airline company may want to schedule flights from
an airport to a large number of destinations. Assigning a separate
aircraft and separate air staff for each destination causes conges-
tion in airports and air networks as well as high investment and

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:alumur@bilkent.edu.tr


H. Cal�k et al. / Computers & Operations Research 36 (2009) 3088 -- 3096 3089

operating costs to the company. Additionally, in telecommunication
systems, connecting all terminals directly may become an unneces-
sary and expensive way of providing quality service to users. There-
fore, incomplete hub networks are important in practice.

Few studies in the literature consider hub location problems over
incomplete hub networks. For example, Nickel et al. [12] modeled a
problem for urban public transportation networks. They introduced
a fixed cost of locating hub arcs while minimizing the total trans-
portation cost in their network and modeled the multiple allocation
version of the problem. Later, Campbell et al. [13,14] introduced hub
arc location problems. Instead of locating hub facilities, these prob-
lems locate hub arcs with reduced unit costs. The resulting hub arc
network in these problems does not need to be connected.

Perhaps the most closely related study in the literature to our
problem is by Alumur and Kara [15]. They also considered the hub
covering problem over incomplete hub networks, while focusing on
cargo applications. They modeled a special structure of the incom-
plete hub network design problem, in which they allowed for vis-
iting at most three hubs on a route. The authors showed that even
for the tightest service-time requirements, in some cases, there is
no need for a complete hub network.

In this paper, we study the hub covering problem over incom-
plete hub networks. Our aim is to find the location of hubs, the hub
links to be established between the located hubs, and the allocation
of non-hub nodes to the located hub nodes such that the travel time
between any origin–destination pair is within a given time bound.
Similar to other hub location studies, we use a constant time dis-
count factor � ∈ [0,1] to represent the economies of scale in hub-to-
hub connections, and we do not allow direct connections between
the non-hub nodes. Unlike Nickel et al. [12], we consider the hub
covering version of the problem, and the objective of minimizing
the cost of establishing the hub network alone instead of minimiz-
ing the total cost of flow, and we model the single allocation case of
the problem. Unlike Campbell et al. [13,14] we do not locate a fixed
number of hub arcs and we force the hub arc network to be con-
nected. In contrast with Alumur and Kara [15], we do not impose
any structure on the hub network other than connectivity and do
not model the synchronization of trucks. Our integer programming
formulation involves O(n4) decision variables and O(n4) constraints.
In order to solve realistically sized instances, we present a heuristic
for this problem. In contrast to other hub location problems, con-
structing feasible solutions for the hub covering problem, especially
with tight time bounds, is a challenge.

Many studies in the literature apply different heuristic ap-
proaches to hub location problems, for example, the tabu search
heuristics proposed by Klincewicz [16] and Skorin-Kapov and
Skorin-Kapov [17], the simulated annealing heuristic by Ernst and
Krishnamoorthy [18], and the Lagrangean relaxation based heuristic
by Pirkul and Schilling [19] for p-hub median problems. Additional
contributions include a shortest-path based heuristic by Ebery et al.
[20], a genetic algorithm by Cunha and Silva [21], a hybrid heuristic
by Chen [22], and a dual-ascent heuristic by Cánovas et al. [23]
for hub location problems with fixed costs. Lastly, proposals for
p-hub center problems include a tabu search based heuristic by
Pamuk and Sepil [24] and a greedy heuristic by Ernst et al. [25].
The reader should note that, for hub location problems, nearest
allocation strategy (assigning a non-hub node to its nearest hub)
does not necessarily give optimum solutions for the hub location
problem [1].

In this paper, we relax the complete hub network assumption
in the hub covering problem and contribute a novel mathematical
formulation to the hub location literature. To be able to handle real
sized problems, we propose a tabu search based heuristic for our
problem. As will be apparent with the computational studies, the
heuristic behaves quite effectively. To the best of our knowledge,

both the formulation and the heuristic are new for the hub covering
problem.

We propose an integer programming formulation in the second
section of this paper. In the third section, we present and explain our
heuristic algorithm. The fourth section is dedicated to the computa-
tional analysis. We test and compare the performance of the heuris-
tic with the optimization solver CPLEX 10.1 on the well-known CAB
data set. Computational results of our heuristic on the Turkish net-
work of 81 nodes are also presented. The last section is devoted to
concluding remarks.

2. Mathematical formulation

We assume that there is a given node set N with n nodes and
a potential hub set H ⊆ N with h nodes. The mathematical model
locates hubs from the potential hub set, constructs the hub network,
and allocates the remaining nodes in set N to these hubs, such that
the travel time between any origin–destination pair is less than a
given time bound, T. The objective of our mathematical model is to
minimize the total cost of establishing hubs and hub links.

The parameters of the model are as follows. The parameter fij is
the fixed cost of opening a hub link between nodes i and j, fhk is the
fixed cost of opening a hub at node k, and tij is the travel time from
node i to node j. The parameter T is the given time bound, and � is the
time discount factor for hub-to-hub connections. The time discount
factor, � ∈ [0,1], is different and most likely to be higher than the
cost discount factor; it is expected to be a number close to 1.

We define the decision variables of the model as follows:

Xik = 1 if node i is allocated to a hub at node k; 0 otherwise.
Zij = 1 if there is a hub link between hub i and hub j (i< j); 0
otherwise.
Yijkl = 1 if the hub link {i,j} is used on the path from hub k to hub
l in the direction from i to j; 0 otherwise.
rk = radius of hub k.

More specifically, the allocation decisions are taken care by the
classical Xik variables. Consistent with the literature, if the variable
Xkk = 1 for some k ∈ H, it means that node k is a hub node. The
Zij variables indicate the existing links in the hub network to be
designed. Finally, the Yijkl variables are used to construct a directed
path from every hub node k, to every other hub node l using the
existing hub links. Each available hub link {i,j} can be used in either
orientation ((i,j) or (j,i)) as part of this path. Note that Y and Z variables
are defined only between the established hubs and Y variables are
directed while Z variables are not.

The objective of our mathematical model is to minimize the to-
tal cost of establishing hubs and hub links. With the previously de-
fined parameters and decision variables, the objective function is
expressed as follows:

Minimize
∑
i∈H

∑
j∈H:j>i

fijZij +
∑
k∈H

fhkXkk (1)

In the objective function, in the first term, we sum the individual
fixed costs of establishing hub links; in the second term, we calculate
the total cost of establishing hubs.

We group and explain the constraints of our mathematical model
as follows:

Standard single allocation hub constraints:
∑
k∈H

Xik = 1 ∀i ∈ N (2)

Xik�Xkk ∀i ∈ N, k ∈ H (3)

Xik ∈ {0, 1} ∀i ∈ N, k ∈ H (4)



3090 H. Cal�k et al. / Computers & Operations Research 36 (2009) 3088 -- 3096

Since we model the single allocation case of the problem, constraints
(2) and (4) ensure that every node is allocated to exactly one hub
node. Constraint (3) states that a node cannot be allocated to another
node unless that node is a hub node.

Hub link decision constraints:

Zij�Xii ∀i, j ∈ H, i< j (5)

Zij�Xjj ∀i, j ∈ H, i< j (6)

Ykl
ij + Ykl

ji �Zij ∀i, j, k, l ∈ H, i< j, k� l (7)

Ykl
ij ∈ {0, 1} ∀i, j, k, l ∈ H, i� j, k� l (8)

Zij ∈ {0, 1} ∀i, j ∈ H, i< j (9)

In order to establish a hub link {i,j}, both end nodes of that link,
i.e., nodes i and j, need to be hub nodes (constraints (5) and (6)). By
constraint (7) if a hub link is to be used as a part of the path to be
constructed for a given origin–destination hub pair, that hub link has
to be established. Constraint (7) also ensures that at most one of Yijkl

and Yjikl variables can be one because they need to provide a simple
directed path. Since Y variables are directed, while travelling from
any hub k to hub l, only one direction of link {i,j} may be utilized.
Constraints (8) and (9) force the path variables and the hub link
decision variables to be binary.

Flow balance constraints:

∑
j∈H:j� i

Yil
ij �Xii + Xll − 1 ∀i, l ∈ H, i� l (10)

∑
j∈H:j� i

Ykl
ji −

∑
j∈H:j� i

Ykl
ij = 0 ∀i, k, l ∈ H, i� k, i� l, k� l (11)

∑
j∈H:j� i

Yki
ji �Xii + Xkk − 1 ∀i, k ∈ H, i� k (12)

Ykl
ij + Ykl

ji �Xkk ∀i, j, k, l ∈ H, i< j, k� l (13)

Ykl
ij + Ykl

ji �Xll ∀i, j, k, l ∈ H, i< j, k� l (14)

Constraints (10)–(12) are the flow balance constraints in the hub
network. Via these constraints, every hub node sends and receives
one unit of flow, and the connectivity in the hub network is estab-
lished. By constraint (10), if both nodes i and l are hubs, then the
origin hub i sends one unit of flow to the destination hub l in the
hub network. By constraint (12), if nodes i and k are both hub nodes,
then the destination hub i receives one unit of flow from the origin
hub k in the hub network. When hub node i is neither the origin
nor the destination, then the incoming flow must equal the outgoing
flow, by constraint (11). We route the flow only in the hub network;
thus, we ensure, by constraints (13) and (14), that the origin and
destination nodes can only be hub nodes.

Time bound constraints:

rk� tikXik ∀i ∈ N, k ∈ H (15)

∑
i∈H

∑
j∈H:i� j

�tijYkl
ij + rk + rl�T ∀k, l ∈ H (16)

We define a decision variable, radius r, similarly to the one used
in Ernst et al. [11]. For each hub, by constraint (15), the r variable
calculates the maximum travel time between that hub and the nodes
that are allocated to it. Constraint (16) is the time bound constraint.
For each pair of hubs, the radii of these hubs plus the discounted

Fig. 1. The node set N.

Fig. 2. The resulting network of a solution.

total travel time of the path, chosen by the Y variables, between
these hubs using the established hub links must not be greater than
the given time bound, T.

In order to explain our mathematical model thoroughly we
present an example illustrated in Figs. 1 and 2.

Let Fig. 2 represent the resulting network of a potential solu-
tion regarding the node set in Fig. 1. According to this solution,
X33 = X44 = X66 = X77 = 1 implying that nodes 3, 4, 6, and 7 are cho-
sen as hub nodes. The variables X13 = X23 = X54 = X86 = X97 = 1 rep-
resent the allocations of the non-hub nodes to the hub nodes. More-
over, Z34 = Z36 = Z47 = Z67 = 1 indicate the constructed hub links. All
other X and Z variables have zero values at this solution.

By constraints (13) and (14), all of the Y variables associated with
the nodes 1, 2, 5, 8, and 9 are forced to be zero. By constraints
(10)–(12) each of the hub nodes sends one unit of flow to all other
hub nodes. Let us consider the flow from hub node 3 to hub node 7.
By constraint (10), hub node 3 sends one unit of flow to hub node
7 in the network. Thus either Y3437 or Y3637 must be equal to 1.
Similarly by constraint (12), hub node 7must receive one unit of flow
from hub node 3. Thus either Y4737 or Y6737 must be equal to 1. By
constraint (11), the incoming flowmust be equal to the outgoing flow
for rest of the Yij37 variables. Note that by constraint (7), for some
hub link {i,j}, either one of Yij37 and Yji37 can take on the value one.
Thus, there exist exactly two possible paths from hub node 3 to hub
node 7. First one is by using hub arcs (3,6) and (6,7) and the second
one is by using hub arcs (3,4) and (4,7). The model decides which
path to choose by using the time bound constraint (16). Assume that



H. Cal�k et al. / Computers & Operations Research 36 (2009) 3088 -- 3096 3091

�t34 + �t47 + r3 + r7>T and �t36 + �t67 + r3 + r7�T. Then the model
lets Y3637 = Y6737 = 1 and all other Yij37 variables to be zero.

Finally, the mathematical model we propose in this study consists
of the objective function (1) and the constraints (2)–(16). In the
worst case, h = n and the model has O(n4) binary variables and O(n4)
constraints. As expected, for greater values of n, the model results
in a large number of variables and constraints which will render
the solution to optimality extremely challenging. Consequently, to
be able to answer this specific hub covering problem on realistic
network dimensions, we introduce a tabu-based heuristic for our
model in the next section.

3. Tabu search based heuristic algorithm

It is hard to solvemost of the NP-complete problems to optimality
for realistically sized instances. For the problem at hand, even finding
a feasible solution is challenging. With this motivation, we decided
to develop a heuristic algorithm for our problem. We used ideas
from the well-known tabu search heuristic methodology in order to
avoid getting stuck at a local optimum solution.

Our heuristic involves construction and improving phases. The
algorithm starts with a set of initial hub locations determined with
a procedure that we developed. With the given set of hub loca-
tions, the algorithm allocates the rest of the nodes to these hubs
and constructs the hub network. In fact, the algorithm does not start
with a complete solution but with a partial solution, i.e., a set of
hubs, which does not guarantee a feasible allocation construction.
During the solution construction phase, three different construction
methods based on different allocation strategies are used. In each
of these allocation strategies, feasible solutions are searched for ini-
tially over complete hub networks. When a feasible solution is found,
in the improvement phase, hub links that do not lead to infeasi-
bility are removed from the hub network to obtain better feasible
solutions.

The construction phase is performed for a specified number (K)
of random neighbors of a set of hub locations. The feasible neighbor
with the best objective function value is selected for the next move.
If no feasible solution is produced within 2∗K neighbor traversals,
a neighbor is selected randomly and moved to even if it is infeasi-
ble. Thus, our algorithm allows moving to infeasible neighbors of a
solution.

The construction and improvement stages are performed at each
move and the best of the feasible solutions found by the algorithm
is reported. In summary, the algorithm seeks new solutions first
by changing the hub set, then by constructing the allocations, and,
finally, by reducing the hub connectivity.

In order to prevent cycling, we keep a list of tabu moves. In
moving to a neighbor, both worse and better feasible solutions are
accepted together with infeasible ones, unless they are tabu moves.
By accepting worse feasible solutions, we may avoid getting stuck
at a local optimum solution.

We provide formal and detailed descriptions of the steps of the
algorithm below:

Solution: In a solution, all hub locations and allocations are de-
termined, and the hub network is constructed, but its feasibility is
not guaranteed.

Feasible solution: A solution is feasible if it guarantees that the
shortest discounted travel time from each origin to each destination
is within the time bound.

Move: At each iteration of the tabu search, a base hub set is cho-
sen to detect the solutions that might be obtained from its neigh-
borhoods. As a first step, this hub set is chosen from the initial hub
locations set. During the following iterations, this hub set is chosen
from the neighborhood of the base hub set of the previous iteration,
with some criteria. The selection of the base hub set constitutes a
move in the algorithm.

Initial hub locations: Finding an initial feasible solution for the hub
covering problem is difficult for tight service time values. Therefore,
instead of starting with a feasible solution, a base hub set is selected
among several initial hub sets that are constructedwith the following
procedure, then, the feasible solutions are constructed by traversing
neighbors of the base hub set.

In order to determine the initial hub sets, first an n×n covermatrix,
C = [cij], is constructed as follows:

Cij =
⎧⎨
⎩
1 if tij�

T
2

0 otherwise

where T is the time bound. For each node i ∈ N, the following steps
are repeated: the node i is selected as a hub and the nodes that are
not covered by node i are collected in a set. Among the remaining
nodes, the node that covers the elements of this set the most is
selected as another hub (if more than one such node exists, the
remaining steps are followed for each case) and the covered elements
are removed from the set. Until all nodes are covered, the node
that most completely covers the uncovered set is selected as a hub
and the elements covered by this hub are removed from the set.
At the end of this process, at least one or more hub sets, which
possibly contain different number of nodes, are constructed. Among
the constructed hub sets, the one that contains theminimumnumber
of hubs are selected and included in the initial hub locations set, say
locationsSet, of the algorithm. Note that, for each of the elements of
this set, although the allocations to hubs are within the time bound,
the locations are not guaranteed to provide feasible solutions.

While the time limit is not exceeded, each hub set in locationsSet is
chosen as the base hub set of the algorithm. If the tabu iteration limit
is reached for a base hub set with no feasible solution, a randomly
selected node is added to this base hub set, increasing the set size by
one. The same steps are repeated until a feasible solution is obtained
unless the time limit is exceeded. If all the elements of locationsSet
are traversed before the time limit, the algorithm continues to select
them for one more time.

Solution construction: When the locations of the hubs are deter-
mined, in order to construct feasible solutions with this given set
of hubs, three different allocation strategies are performed: Types I,
II, and III allocation. During all the allocation strategies, the feasibil-
ity of the solutions is determined by checking the time bound con-
straints of the problem. At the beginning of each allocation strategy,
the hub network is assumed complete. As soon as a feasible solu-
tion is obtained at the end of any allocation strategy, the algorithm
focuses on the hub network. To obtain better feasible solutions with
the given allocations, hub links are removed randomly from the com-
plete hub network. If the removal of a link leads to infeasibility, that
link is added back to the solution, and another hub link is chosen,
again randomly, to be removed. The three allocation strategies are
described as follows:

(i) Type I allocation: In this strategy, as a starting point, the allo-
cations are determined using the nearest allocation heuristic
HEUR1 of O'Kelly [2], i.e., every non-hub node is allocated to
its nearest hub node. We then concentrate on the hub with the
largest radius, with respect to the nearest allocation strategy. All
non-hub nodes are allocated to the hub with the largest radius,
as long as this allocation does not increase the radius of this
hub. In this way, the radii of some hubs may decrease, while the
largest radius in the network stays constant, and the chance of
reaching feasible solutions increases. If no feasible solution can
be obtained with this procedure, two additional procedures are
performed, respectively: Initially, the radii of the remaining hubs
are calculated, and for each hub, the nodes allocated to it are
distributed to other hubs, as long as their radii do not increase.



3092 H. Cal�k et al. / Computers & Operations Research 36 (2009) 3088 -- 3096

Fig. 3. The flowchart of the heuristic algorithm.

In the second procedure, all the nodes are first allocated to their
nearest hubs, and the following procedure is repeated for each
hub h. The node i which determines the radius value of hub h
is discarded from the network. The feasibility of the network is
checked and if the network is feasible without the node i, then
node i is tried to be allocated to another hub without violating
the feasibility. If the network is still infeasible without node i,
then node j that now determines the radius value of hub h is
discarded from the network together with node i. If discarding
both of the nodes i and j does not yield a feasible solution, then
another hub is selected for the same process. Otherwise, both of

these nodes are tried to be allocated to different hubs without
violating the feasibility. If neither of them can be allocated to
new hubs, without violating the feasibility, then, another hub is
chosen for the same process. If no feasible solution is found at
the end of these processes in the Type I allocation strategy, the
algorithm continues with Type II allocation strategy.

(ii) Type II allocation: In this strategy, first, a value named the poten-
tial radius is calculated for each hub. The potential radius is the
maximum possible radius value for a hub node that will not ex-
ceed the given service time bound, T. In the beginning, without
any allocations, since a complete hub network is constructed,



H. Cal�k et al. / Computers & Operations Research 36 (2009) 3088 -- 3096 3093

the potential radius value of any hub is [T−�* (the maximum
travel time from that hub to another hub)]. Each non-hub node
is allocated, starting from the non-hub node with the smallest
index, to a randomly chosen hub to which the travel time is
no more than the calculated potential radius. When a non-hub
node is allocated to a hub, the potential radii of all other hubs
are updated accordingly. If, at some point there is no feasible
allocation for a non-hub node, we discontinue this strategy.

(iii) Type III allocation: In this strategy, all non-hub nodes are first
allocated to only one hub, say h1, in the hub set. If this allocation
is not feasible, the non-hub node that determines the radius of
h1 is allocated to another hub, h2. All non-hub nodes allocated
to h1 are selected one by one, in decreasing order of travel time
to hub h1, until the feasibility is reached or until all non-hub
nodes are allocated to h2. If feasibility is not achieved by any
allocation from h1 to h2, allocations from h1 to h3, h4, . . . , from
h2 to h3, h4, . . . and all other combinations are checked. Note
that the Type III allocation strategy restricts all allocations to, at
most, two hubs.

The preliminary experimentations we performed on the individ-
ual allocation strategies showed that the least time-consuming strat-
egy is Type I allocation, while the most time-consuming one is Type
II allocation. However, Types II and III allocations may produce feasi-
ble solutions when no feasible solution can be obtained with Type I
allocation. Therefore, in order to obtain good solutions in reasonable
amounts of time, we primarily perform Type I allocation for each
hub set (neighborhood). If no feasible solution is obtained by this
strategy, Type II allocation is applied. The Type III allocation strat-
egy is called for, only if feasibility is not achieved with the first two
strategies.

Neighborhood:We define neighborhoods of solutions over the hub
sets. A neighbor of a hub set Hi is another hub set Hj obtained by
exchanging the role of exactly one of the hubs of Hi with a non-hub
node. At each iteration of the algorithm, a specified number (NeighIt-
eration) of random neighbors of the related hub set are generated as
candidates for the next move.

Feasibility check: The feasibility of a constructed solution is
checked as follows: initially a configuration matrix corresponding
to the hub network of the solution is constructed. In this matrix,
the indices corresponding to the links opened between the hubs
have their time value multiplied by the discount factor, and the
other indices have an infinite value. Then, the radius values of the
hubs are calculated. Two conditions must be satisfied for a feasible
solution: (i) traversing any radius twice should take no more than
the time bound and (ii) for each hub pair hi and hj, the summation
of r(hi), r(hj), and the shortest path between hi and hj times � should
be no greater than the time bound T, where r(hi) is the radius value
of hub hi. The shortest path between hi and hi is calculated by
using the configuration matrix as the distance matrix in Dijsktra's
algorithm.

Tabu search iterations: The search starts with an initial hub set.
At any iteration, the algorithm moves to a neighbor hub set with
the best feasible solution. If no feasible solution is found within
NeighIteration neighbors of a hub set, another subset of NeighItera-
tion neighbors is generated and searched. If still no feasible solution
is found within these neighbors, a random infeasible neighbor is cho-
sen for the next hub set. In order to prevent cycling, the same node
exchanges are avoided for a certain number of iterations, which is
called tabu tenure in the literature. If no feasible solution is found
within the specified number of tabu iterations, another hub is ran-
domly added to the hub set, and the same steps are followed. The
algorithm continues to randomly select base hub sets and traverse
their neighbors until a specified time limit is reached.

We present a flow chart of the algorithm in Fig. 3.

4. Computational results

We first tested the performance of our model and heuristic on the
CAB data set introduced by O'Kelly [2]. No real time data is provided
for the CAB data set, thus, similar to other hub covering studies in the
literature, we took tij = dij, where dij is the distance between nodes
i and j. We took the fixed costs of opening hubs fhk = 100 and fixed
for all nodes [26].

Since we are building an incomplete hub network, we need fixed
costs for hub links as well. For many applications of the hub location
problem, this fixed cost value is dependent on both the travel dis-
tance and the flow between the nodes. Including flow in the fixed
cost value also accounts for operational costs. In fact, this fixed cost
value tends to be directly proportional to distance and inversely pro-
portional to flow. In order to reflect this fact and to introduce a more
realistic data set to the literature, we calculated and scaled the rel-
ative fixed costs of establishing hub links between the nodes of the
network as follows:

fij =
dij/flij

maxi,j
{
dij/flij

} × 100 for all i, j� i

where dij is the distance between nodes i and j, and flij is the flow
between nodes i and j.

For the CAB data set, we assumed that H = N in all of the tested
instances. For the rest of the parameters, we used the test bed shown
in Table 1. In order to test the performance of our heuristic, we tested
all possible � values reported in the literature for the hub covering
problem, with the CAB data set.

The values in the last five columns in Table 1 present the time
bounds, T. We tested both the tightest possible bounds for the given
n and � values reported in [10] and the average values within these
tightest bounds.

We solved our integer programming model by using CPLEX 10.1
on a personal computer with a 2.00GHz Intel Core 2 Duo processor
and 2GB of RAM.We solved ourmodel for all the CAB instances listed
in Table 1. While solving the model, we limited the CPU time to two
hours on CPLEX. In order to test the performance of our heuristic
algorithm we applied it to the same CAB instances.

The size of the tabu list we used in our computations with the CAB
data set was 5, the number of tabu iterations was 500, the number of
neighborhoods to be detected at each iteration (NeighIteration) was
50 and the time limit was 100 seconds for 10 node instances and
600 seconds for 15 and 20 node instances. Tables 2 and 3 report and
compare the results obtainedwith CPLEX and our heuristic algorithm
with 10 nodes and 15 nodes, respectively.

Table 1
Test bed for the CAB data set.

n � T

10 0.2 1425 1271.5 1118 975 832
0.4 1627 1406 1185 1077.5 970
0.6 1758 1572.5 1387 1267.5 1148
0.8 1758 1673.5 1589 1523 1457
1 1839 1815 1791 1778.5 1766

15 0.2 2004 1877 1750 1546 1342
0.4 2162 1961 1760 1598 1436
0.6 2214 2029 1844 1800 1756
0.8 2424 2294.5 2165 2122.5 2080
1 2611 2605.5 2600 2600 2600

20 0.2 1892 1720.5 1549 1452.5 1356
0.4 2162 1961 1760 1616.5 1473
0.6 2278 2137 1996 1915.5 1835
0.8 2508 2386 2264 2209 2154
1 2611 2605.5 2600 2600 2600



3094 H. Cal�k et al. / Computers & Operations Research 36 (2009) 3088 -- 3096

Table 2
Computational comparison of the IP model and the heuristic algorithm with n = 10.

Test bed CPLEX Heuristic

n � T Obj. CPU time (s) Obj. CPU time (s) Bcpu (s) Gap (%) Number of hub links

10 0.2 1425 206.374 1.892 206.374 100 0.141 0 1
0.2 1271.5 306.631 2.422 306.631 100 0.752 0 2
0.2 1118 308.195 1.070 308.195 100 0.327 0 2
0.2 975 413.927 1.827 413.927 100 1.805 0 3
0.2 832 423.804 2.380 423.804 100 0.248 0 4
0.4 1627 206.374 3.725 206.374 100 0.147 0 1
0.4 1406 306.631 2.576 306.631 100 2.152 0 2
0.4 1185 317.359 1.746 317.359 100 0.189 0 2
0.4 1077.5 413.927 1.836 413.927 100 3.431 0 3
0.4 970 435.865 2.637 435.865 100 1.961 0 4
0.6 1758 221.938 5.331 221.938 100 0.508 0 1
0.6 1572.5 308.195 4.151 308.195 100 2.857 0 2
0.6 1387 319.180 4.800 319.180 100 1.916 0 3
0.6 1267.5 435.865 15.409 435.865 100 6.345 0 4
0.6 1148 444.084 9.061 444.084 100 4.534 0 5
0.8 1758 221.938 2.838 221.938 100 0.147 0 1
0.8 1673.5 313.089 9.677 313.089 100 2.102 0 3
0.8 1589 319.180 8.314 319.180 100 1.977 0 3
0.8 1523 413.037 14.646 413.037 100 5.741 0 4
0.8 1457 453.790 19.630 453.790 100 5.586 0 6
1 1839 201.867 1.605 201.867 100 0.649 0 1
1 1815 306.828 6.466 306.828 100 1.929 0 3
1 1791 319.180 5.360 319.180 100 2.046 0 3
1 1778.5 413.037 11.694 413.037 100 5.987 0 5
1 1766 422.742 11.857 422.742 100 5.639 0 6

Average 5.879 100 2.365 0
Maximum 19.630 100 6.345 0

Table 3
Computational comparison of the IP model and the heuristic algorithm with n = 15.

Test bed CPLEX Heuristic

n � T Obj. CPU time (s) Obj. CPU time (s) Bcpu (s) Gap (%) Number of hub links

15 0.2 2004 221.938 46.122 221.938 600 0.251 0 1
0.2 1877 301.698 29.151 301.698 600 0.736 0 2
0.2 1750 307.941 48.007 307.941 600 4.264 0 2
0.2 1546 405.821 144.628 406.225 600 3.921 0.10 3
0.2 1342 413.026 108.052 413.026 600 57.378 0 3
0.4 2162 210.057 43.626 210.057 600 0.176 0 1
0.4 1961 301.265 26.515 301.265 600 5.263 0 2
0.4 1760 313.450 55.393 313.450 600 2.402 0 2
0.4 1598 408.281 202.490 408.281 600 3.185 0 3
0.4 1436 424.826 524.280 424.826 600 1.426 0 3
0.6 2214 210.057 39.990 210.057 600 0.179 0 1
0.6 2029 301.698 38.293 301.698 600 3.299 0 2
0.6 1844 323.578 728.059 323.578 600 1.079 0 3
0.6 1800 417.946 1148.998 417.946 600 6.618 0 4
0.6 1756 419.459 1118.715 423.162 600 6.433 0.88 5
0.8 2424 209.334 168.332 209.334 600 0.191 0 1
0.8 2294.5 311.362 223.915 311.362 600 3.290 0 3
0.8 2165 332.650 690.407 332.650 600 3.085 0 3
0.8 2122.5 424.225 2943.998 424.225 600 10.193 0 3
0.8 2080 427.929 1904.888 427.929 600 20.465 0 4
1 2611 202.814 49.559 202.814 600 0.184 0 1
1 2605.5 304.110 607.270 304.110 600 3.982 0 3
1 2600 304.110 1220.41 304.110 600 3.729 0 3

Average 526.569 600 6.162 0.04
Maximum 2943.998 600 57.378 0.88

In Tables 2 and 3, the columns under “CPLEX” present the opti-
mum objective function value and the CPU time requirement in sec-
onds, as reported by CPLEX. The columns under “Heuristic” report
the objective function value, the CPU time requirement in seconds,
and the gap of the heuristic. The column labeled Bcpu reports the

CPU time when the best solution is obtained by the heuristic algo-
rithm. The last column reports the number of hub links opened in
the best solution found by the heuristic. We also listed the average
and maximum CPU time requirements in seconds, for both CPLEX
and our heuristic, in the last two rows of Tables 2 and 3.



H. Cal�k et al. / Computers & Operations Research 36 (2009) 3088 -- 3096 3095

Table 4
Computational comparison of the IP model and the heuristic algorithm with n = 20.

Test bed CPLEX Heuristic

n � T Obj. CPU time (s) Gap (%) Lower bound Obj. CPU time (s) Bcpu (s) Gap (%) Number of hub links

20 0.2 1892 236.454 532.03 0 236.454 236.454 600 0.213 0 1
0.2 1720.5 338.609 515.991 0 338.609 338.609 600 5.580 0 2
0.2 1549 365.989 3196.707 0 365.989 365.989 600 0.405 0 3
0.2 1452.5 405.031 4281.201 0 405.031 408.281 600 47.784 0.80 3
0.2 1356 513.635 7200 21.42 403.624 415.621 600 131.648 2.89* 3
0.4 2162 247.777 2373.811 0 247.777 247.777 600 0.227 0 1
0.4 1961 303.825 917.251 0 303.825 303.825 600 13.463 0 2
0.4 1760 355.593 2494.244 0 355.593 355.593 600 2.516 0 2
0.4 1616.5 619.423 7200 44.85 341.644 416.408 600 9.529 17.95* 4
0.4 1473 858.353 7200 53.97 395.067 521.085 600 494.676 24.18* 6
0.6 2278 252.748 4552.373 0 252.748 252.748 600 0.216 0 1
0.6 2137 340.369 7200 22.40 264.115 340.369 600 7.208 22.40* 3
0.6 1996 497.862 7200 50.60 245.938 355.593 600 6.224 30.84* 2
0.6 1915.5 469.9047 7200 36.62 297.811 427.223 600 28.833 30.29* 2
0.6 1835 614.8686 7200 51.21 300.000 427.946 600 27.645 29.90* 4
0.8 2508 202.8139 2867.445 0 202.814 202.814 600 0.452 0 1
0.8 2386 306.5502 7200 34.51 200.753 302.896 600 9.750 33.72* 2
0.8 2264 560.239 7200 63.61 203.844 361.692 600 5.005 43.64* 3
0.8 2209 N/A 7200 N/A 200.000 406.064 600 13.579 50.75* 5
0.8 2154 N/A 7200 N/A 200.000 415.162 600 62.126 51.83* 4
1 2611 202.814 6714.423 0 202.814 202.814 600 0.212 0 1
1 2605.5 N/A 7200 N/A 200.000 304.110 600 5.266 34.23* 3
1 2600 N/A 7200 N/A 200.000 304.110 600 5.660 34.23* 3

Average 5306.325 19.96 600 38.851 17.72
Maximum 7200 63.61 600 494.676 51.83*

Note from Table 2 that CPLEX solved all the instances with 10
nodes optimally in an average of a little less than 6 seconds of CPU
time requirement. The maximum CPU time requirement by CPLEX
for this network was less than 20 seconds. Our heuristic was able to
solve all 10 node instances optimally. Observe from Table 2 that on
the average the heuristic is able to find the optimal solutions in less
than 3 seconds.

When the number of nodes becomes 15, the average CPU time
requirement of CPLEX goes up to 9 minutes, with a maximum value
of about 49 minutes. It is apparent from Table 3 that, even with a
small number of nodes, the model is hard to solve to optimality.
Our heuristic was able to obtain the optimal solutions at 21 out of
the 23 instances with 15 nodes. At the other instances, in which our
heuristic was not able to obtain the optimal solutions, the average
gap of the heuristic was 0.49%.

We also tested the 20 node instances from the CAB data set. The
results are reported in Table 4. CPLEXwas not able to obtain optimum
solutions in 2 hours of CPU time requirement in 13 out of the 23
instances with 20 nodes. In some of these instances, CPLEX could not
even find an initial feasible solution. For Table 4, we also show the
lower bound, the value of the best integer solution found, and its gap
reported by CPLEX. In the instances when CPLEX could not find the
optimum solution, we calculated the gap of our heuristic from this
lower bound. These estimated gaps, reported with an asterisk (*) in
Table 4, are naturally expected to be much higher than the actual
optimality gaps of the heuristic.

Note from Table 4 that CPLEX was able to solve 10 of the 23
instances with 20 nodes optimally in 2 hours. Our heuristic was able
to solve nine of these 10 instances optimally. In the other single
instance, the gap of our heuristic from the optimal value was 0.80%.
In the instances that we did not know the optimal solution, the
average gap of the heuristic from the lower bound was 31.30%.

From Tables 2–4, observe that our heuristic was able to find
optimal solutions for 55 of the 71 test instances. In three of the re-
maining instances in which CPLEX found the optimal solution, the
average gap of our heuristic was 0.59%. In the remaining 13 instances

Table 5
Computational results of the heuristic on the Turkish network.

T CPU time
(min)

Bcpu (min) Number
of hubs

Number of
hub links

1880 10 1.065 2 1
1870 10 1.115 2 1
1860 30 16.554 3 3
1850 30 3.266 3 2
1840 30 8.899 3 2
1830 30 28.751 3 2
1820 30 1.825 3 3
1810 60 23.244 3 3
1800 60 4.753 4 6
1790 60 52.824 5 7
1780 90 84.073 5 10
1770 90 7.356 5 8
1760 90 91.828 7 15

Average CPU
time (min)

47.692 25.043

we do not know if our heuristic was able to find the optimal solution
or exactly how close it is to optimal.

We have listed the number of hub links in the solutions in
Table 2–4 to observe the incomplete hub network solutions. Exclud-
ing the cases for p = 2, where an incomplete hub network solution
is not possible, we obtained incomplete hub networks at 39 of 71
instances. This result indicates that designing complete hub net-
works to provide service within a given service time bound is not
cost effective, in many instances.

In order to observe the performance of our heuristic on larger
networks, we tested the Turkish network. The Turkish network has
81 nodes, and we made all nodes candidate hub nodes. The time
discount factor on the Turkish network with ground transportation
was found to be 0.9 [27]. Thus, we took � = 0.9 for all of the Turkish
network instances. The fixed costs for opening hubs in the Turkish
network were also obtained from [27].



3096 H. Cal�k et al. / Computers & Operations Research 36 (2009) 3088 -- 3096

For the Turkish network, the size of the tabu list is taken as 5, the
number of tabu iterations as 200, and the number of neighborhoods
to be detected at each iteration (NeighIteration) as 100. All other
parameters of the test problems and the corresponding solutions are
listed in Table 5.

From Table 5, observe that for tighter values of time bounds,
we let the algorithm run longer since finding feasible solutions for
the problem gets harder. Also note that tighter time bounds result
in opening high number of hubs and hub links, but still the algo-
rithm results in designing incomplete hub networks in most of the
instances.

We were able to obtain solutions on the Turkish network in an
average of 25 minutes. Even though we do not know the quality of
our solutions on the Turkish network, this network is the largest
data set that has been tested with incomplete hub network design
problems. Obtaining optimal solutions even with complete hub net-
works is difficult on such a large network.

5. Conclusion

In this paper, we studied the single allocation hub covering prob-
lem over incomplete hub networks. We presented an O(n4) integer
programming formulation of the problem. In order to solve realisti-
cally sized instances, we proposed a tabu-based heuristic algorithm.
In contrast to other hub location problems, constructing feasible
solutions for the hub covering problem, especially with tight time
bounds, is challenging. Thus, we proposed and tested three different
allocation strategies for constructing feasible solutions. To the best
of the authors' knowledge, ours is the first heuristic in the literature
that is proposed for the hub covering problem.

We tested our heuristic algorithm both on the CAB data set and
the Turkish network. We compared the performance of our heuristic
with CPLEX on the CAB data set and found that our heuristic obtained
efficient solutions with less CPU time requirement than CPLEX. The
computational times of our heuristic on the Turkish network were
reasonable for such a large network, even with tight time bounds.
The Turkish network, with 81 nodes, is the largest data set in the
literature that is to be tested with incomplete hub network design
problems.

References

[1] O'Kelly ME. The location of interacting hub facilities. Transportation Science
1986;20:92–105.

[2] O'Kelly ME. A quadratic integer program for the location of interacting hub
facilities. European Journal of Operational Research 1987;32:393–404.

[3] Campbell JF. Hub location and the p-hub median problem. Operations Research
1996;44:923–35.

[4] Ernst AT, Krishnamoorthy M. Efficient algorithms for the uncapacitated single
allocation p-hub median problem. Location Science 1996;4:139–54.

[5] O'Kelly ME, Bryan D, Skorin-Kapov D, Skorin-Kapov J. Hub network design
with single and multiple allocation: a computational study. Location Science
1996;4:125–38.

[6] Skorin-Kapov D, Skorin-Kapov J, O'Kelly M. Tight linear programming
relaxations of uncapacitated p-hub median problems. European Journal of
Operational Research 1996;94:582–93.

[7] Campbell JF, Ernst AT, Krishnamoorthy M. Hub location problems. In: Drezner
Z, Hamacher HW, editors. Facility location: applications and theory. New York:
Springer; 2002. p. 373–407.

[8] Alumur S, Kara BY. Network hub location problems: the state of the art.
European Journal of Operational Research 2008;190:1–21.

[9] Campbell JF. Integer programming formulations of discrete hub location
problems. European Journal of Operational Research 1994;72:387–405.

[10] Kara BY, Tansel B. The single assignment hub covering problem. Journal of the
Operational Research Society 2003;54:59–64.

[11] Ernst AT, Jiang H, Krishnamoorthy M. Reformulations and computational
results for uncapacitated single and multiple allocation hub covering problems.
Unpublished Report, CSIRO Mathematical and Information Sciences, Australia;
2005.

[12] Nickel S, Schöbel A, Sonneborn T. Hub location problems in urban traffic
networks. In: Niittymaki J, Pursula M, editors. Mathematics methods and
optimization in transportation systems. Kluwer Academic Publishers; 2001. p.
1–12 [chapter 1].

[13] Campbell JF, Ernst AT, Krishnamoorthy M. Hub arc location problems: part
I—introduction and results. Management Science 2005;51(10):1540–55.

[14] Campbell JF, Ernst AT, Krishnamoorthy M. Hub arc location problems:
part II—formulations and optimal algorithms. Management Science
2005;51(10):1556–71.

[15] Alumur S, Kara BY. A hub covering network design problem for cargo
applications in Turkey. Journal of the Operational Research Society 2008,
doi:10.1057/jors.2008.92.

[16] Klincewicz JG. Avoiding local optima in the p-hub location problem using tabu
search and GRASP. Annals of Operations Research 1992;40:283–302.

[17] Skorin-Kapov D, Skorin-Kapov J. On tabu search for the location of interacting
hub facilities. European Journal of Operational Research 1994;73:502–9.

[18] Ernst AT, Krishnamoorthy M. Efficient algorithms for the uncapacitated single
allocation p-hub median problem. Location Science 1996;4(3):139–54.

[19] Pirkul H, Schilling DA. An efficient procedure for designing single allocation
hub and spoke systems. Management Science 1998;44(12):235–42.

[20] Ebery J, Krishnamoorthy M, Ernst A, Boland N. The capacitated multiple
allocation hub location problem: formulations and algorithms. European Journal
of Operational Research 2000;120:614–31.

[21] Cunha CB, Silva MR. A genetic algorithm for the problem of configuring a hub-
and-spoke network for a LTL trucking company in Brazil. European Journal of
Operational Research 2007;179:747–58.

[22] Chen JF. A hybrid heuristic for the uncapacitated single allocation hub location
problem. Omega 2007;35:211–20.

[23] Cánovas L, García S, Marín A. Solving the uncapacitated multiple allocation
hub location problem by means of a dual-ascent technique. European Journal
of Operational Research 2007;179:990–1007.

[24] Pamuk FS, Sepil C. A solution to the hub center problem via a single-relocation
algorithm with tabu search. IIE Transactions 2001;33(5):399–411.

[25] Ernst A, Hamacher H, Jiang H, Krishnamoorthy M, Woeginger G. Uncapacitated
single and multiple allocation p-hub center problems. Unpublished Report,
CSIRO Mathematical and Information Sciences, Australia; 2002.

[26] O'Kelly ME. Hub facility location with fixed costs. Papers in Regional Science
1992;71(3):293–306.

[27] Tan PZ, Kara BY. A hub covering model for cargo delivery systems. Networks
2007;49:28–39.

doi:10.1057/jors.2008.92

	A tabu-search based heuristic for the hub covering problem over incomplete hub networks62626262
	Introduction
	Mathematical formulation
	Tabu search based heuristic algorithm
	Computational results
	Conclusion
	References




