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ABSTRACT

COMPLETE INTERSECTION MONOMIAL CURVES
AND NON-DECREASING HILBERT FUNCTIONS

Mesut Sahin
P.h.D. in Mathematics
Supervisor: Assoc. Prof. Dr. A. Sinan Sertoz
July, 2008

In this thesis, we first study the problem of determining set theoretic complete
intersection (s.t.c.i.) projective monomial curves. We are also interested in finding
the equations of the hypersurfaces on which the monomial curve lie as set theoretic
complete intersection. We find these equations for symmetric Arithmetically

Cohen-Macaulay monomial curves.

We describe a method to produce infinitely many s.t.c.i. monomial curves in
P! starting from one single s.t.c.i. monomial curve in P*. Our approach has
the side novelty of describing explicitly the equations of hypersurfaces on which
these new monomial curves lie as s.t.c.i.. On the other hand, semigroup gluing
being one of the most popular techniques of recent research, we develop numerical

criteria to determine when these new curves can or cannot be obtained via gluing.

Finally, by using the technique of gluing semigroups, we give infinitely many
new families of affine monomial curves in arbitrary dimensions with Cohen-
Macaulay tangent cones. This gives rise to large families of 1-dimensional local
rings with arbitrary embedding dimensions and having non-decreasing Hilbert
functions. We also construct infinitely many affine monomial curves in A"+
whose tangent cone is not Cohen Macaulay and whose Hilbert function is non-

decreasing from a single monomial curve in A™ with the same property.

Keywords: monomial curves, complete intersections, toric varieties, tangent

cones, Hilbert functions.
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OZET

TEK TERIMLI TAM KESISIM EGRILERI VE
AZALMAYAN HILBERT FONKSIYONLARI

Mesut Sahin
Matematik, Doktora
Tez Yoneticisi: Dog. Dr. A. Sinan Sertoz
Temmuz, 2008

Bu tezde ilk olarak projektif uzaydaki tek terimli egrilerden geometrik tam
kesisim olanlar1 tespit etme problemi caligilmigtir. Ayrica bir egriyi geometrik
tam kesigim olarak veren hiperyiizeylerin denklemlerini bulma problemi ile de
ilgilenilmigtir. Simetrik tek terimli egrilerden aritmetik olarak Cohen-Macaulay
olanlarinin, iizerinde tam kesigim oldugu ytizeylerin denklemleri de bulunmustur.

Bunun yam sira, P™’deki bir geometrik tam kesigsim tek terimli egrisinden
P**de sonsuz tane geometrik tam kesisim tek terimli egri {ireten bir yontem
geligtirilmigtir. Bu yaklagimin avantaji, elde edilen yeni egrileri veren
hiperyiizeylerin denklemlerini bulmasidir. Uretilen egrilerin, son zamanlarin en
popiiler tekniklerinden biri olan yarigrup birlestirme metoduyla elde edilip edile-
meyecegini kontrol etmek icin de sayisal bir olciit verilmistir.

Son olarak, yarigrup birlegtirme metodu kullanilarak, teget konisi Cohen-
Macaulay olan sonsuz yeni afin tek terimli egri meydana getirilmistir. Boylece,
Hilbert fonksiyonu azalmayan bir boyutlu yerel halkalar elde edilmistir. Buna
ek olarak, A™’deki Hilbert fonksiyonu azalmayan tek terimli bir egriden A"*!'de
ayni ozellige sahip ama teget konu Cohen-Macaulay olmayan sonsuz tek terimli

egri uretilmigtir.

Anahtar sozcikler: tek terimli egriler, tam kesisimler, torik varyeteler, teget koni-

leri, Hilbert fonksiyonlari.
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Chapter 1
Introduction

Let K be an algebraically closed field and K[x| be the polynomial ring
Klzy,...,z,). To any algebraic variety V' of dimension d in A", one can as-
sociate a prime ideal I(V) C KI[x] to be the set of all polynomials vanishing on
V. The arithmetical rank of V', denoted by p(V), is the least positive integer
r for which I(V) = rad(fi,..., f;), for some polynomials fi,..., f. or equiva-
lently V- = Hi()---()H,, where Hy,...,H, are the hypersurfaces defined by
fi=0,---, f. = 0, respectively. We denote by u(I(V)) the minimal number r
for which I(V') = (f1,..., f.), for some polynomials fi,..., f. € R. These invari-
ants are known to be bounded below by the codimension of the variety (or height

of its ideal). So, one has the following relation:

n—d<p(V)<pV))

Although p(I(V)) has no upper bound (see e.g. [2, 14]), an upper bound for
(V) is provided to be n in [20] via commutative algebraic methods. See [71]
for a survey on the problem of determining the minimal number of polynomial

equations needed to define an algebraic set, which dates back to Kronecker (1882).

The variety V' is called a complete intersection if u(1(V')) = n—d. It is called
an almost complete intersection, if instead, one has p(I(V)) =n —d+ 1. When

the arithmetical rank of V' takes its lower bound, that is u(V') = n—d, the variety

1



CHAPTER 1. INTRODUCTION 2

V' is called a set-theoretic complete intersection, s.t.c.i. for short. It is clear that
complete intersections are set-theoretic complete intersection. But the converse
statement is false as the projective twisted cubic curve is a s.t.c.i. but not a
complete intersection curve (cf.[71, Section 4.3.] for details). The corresponding
question for almost complete intersection varieties is answered affirmatively in a
series of papers by Eto [22, 23, 24] in the case of affine and projective monomial
curves over an algebraically closed field of characteristic zero, leaving the general

case widely open.

Complete intersection varieties are very special not only because they are the
simplest generalizations of hypersurfaces but also they have very special prop-
erties. For instance, complete intersection varieties have Gorenstein coordinate
rings which are very special Cohen-Macaulay rings. In addition to this, they
have proven themselves to be easy to work with. For example, the canonical
sheaf of a complete intersection variety V' is given easily by a simple formula
wy = Oy(>_d; —n — 1), where d;’s are the degrees of the hypersurfaces that
cut out the variety V. The multiplicity of the coordinate ring of V' has also a
simple formula like [[d;. Another example of this sort is that free resolutions
of complete intersections are computed easily via Koszul complexes. So, Hilbert
polynomial and genus of a complete intersection variety is estimated rather eas-
ily, see [6]. As a special case, if the smooth curve C' C P3 is a complete inter-
section of the smooth surfaces of degrees a and b, then the genus of C' is given
by ¢(C) = %ab(a + b —4) + 1. Therefore, it is worthwhile to investigate which
varieties are set theoretic complete intersections including the class of complete

intersection varieties.

Determining set-theoretic complete intersection varieties is a classical and
longstanding problem in algebraic geometry. Even more difficult is to give explic-
itly the equations of the hypersurfaces involved. It is believed that the equations
of these hypersurfaces or information about them will shed some light on the
problem. This is justified by the arose of this kind of papers. For instance, it
is shown in [9] that if the hypersurfaces that cut out a s.t.c.i. toric variety are
all binomial then the variety is a complete intersection, see also [74]. Another

example is that irreducible s.t.c.i. curves on smooth surfaces in P are in fact
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complete intersections [60]. We know also that if C C A® is a smooth curve, then

its defining ideal I(C) is generated by minors of a matrix of the form

a ¢ d
b d e

and C is a set theoretic complete intersection of the surfaces given by ce —d? = 0
and a(ae — bd) + b(bc — ad) = 0, cf. [70]. There are other papers which provide
equations or discuss certain properties of the hypersurfaces whose intersection is
the variety V, see [7, 8, 35, 42, 48, 72, 68, 76, 78|.

There are varieties which are not set theoretic complete intersection. The
Segre variety S = P! x P? C P’ is an example for this situation which is given in
[43]. Let t < r < s be positive integers, char(K) = 0 and K[z;;] be a polynomial
ring in rs variables. Then for any ¢, we have an ideal I; which defines a non-s.t.c.i.
variety, where I; is the ideal generated by the ¢ x t minors of the r x s matrix

(x;;), see introduction of [81].

The state of art can be summarized in the most general case as follows. We
know that any curve in A" is a s.t.c.i. over a field of positive characteristic [16].
In the characteristic zero case, we know only that smooth (more generally locally
complete intersection) curves in A" are s.t.c.i., see [27, 44]. The same is true
for varieties in A™ if their normal bundles are trivial [10]. It is still an open
problem to show that locally complete intersection varieties in A™ are s.t.c.i. In
the projective case, it is known that varieties of dimension at least one which are
not connected are not s.t.c.i. [34]. Therefore, the problem is open even for curves

in A® and for connected curves in P3.

To study this problem one inevitably tends to choose a special class of (so
called toric) varieties. In this case, it is known that all simplicial toric varieties
with full parameterization are s.t.c.i. over a field of positive characteristic [8, 35,
48]. On the other hand, nobody knows whether or not the same question has
an affirmative answer in the characteristic zero case. However, there are many
partial results in this case [11, 12, 25, 36, 39, 52, 58, 62, 63, 77, 78, 79]. In fact,

even the case of symmetric monomial curves in P? is still mysterious.
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We are also interested in determining basic properties of the Hilbert function
of local rings associated with affine monomial curves. This is worth studying
because it gives information about the singularity of the curve. Not much is
known about Hilbert functions in the local case. We do not know even when it
is non-decreasing. This basic question is studied by several mathematician and
Sally states a conjecture saying that one dimensional Cohen-Macaulay rings with
small enough embedding dimension have non-decreasing Hilbert functions, [66].
The conjecture is straightforward in the embedding dimension one case, since in
this case the local ring is regular and its Hilbert function takes the same value,
one, for each variable. The case of embedding dimension two is not trivial and
settled by Matlis in [45]. Finally, the case of embedding dimension three, has
been proved by Elias in [21]. There are counterexamples to the conjecture in
the case of embedding dimension greater than three. The first examples of local
rings whose Hilbert function is not non-decreasing were given by Herzog-Waldi
[37] and Eakin-Sathaye [19]. These rings are the local rings of affine monomial
curves in ten and twelve dimensional spaces respectively. Later, existence of
one-dimensional local rings of any embedding dimension greater than four whose
Hilbert function is not non-decreasing is proved by Orecchia in [57]. The work
[29] of Gupta and Roberts revealed that there are also counterexamples in the
case of embedding dimension four. These counterexamples show that the Cohen-
Macaulayness of a one-dimensional local ring with embedding dimension greater
than three does not guarantee that its Hilbert function is non-decreasing. How-
ever, it is a conjecture due to M. E. Rossi, that a one-dimensional Gorenstein local
ring (a Cohen-Macaulay ring of type 1) has a non-decreasing Hilbert function.
Arslan and Mete has recently proved this conjecture in [4] for Gorenstein local
rings with embedding dimension four associated to Gorenstein monomial curves
in affine 4-space under a suitable condition. Together with Arslan and Mete, we
are interested here in both conjectures in the case of local rings associated to

affine monomial curves in any dimensional space.
The organization of the thesis is as follows.

In chapter 2, we introduce a very special family of varieties, so-called toric

varieties, which includes affine and projective monomial curves. We discuss some
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properties of the concepts of projection of toric ideals, gluing toric varieties and

extensions of monomial curves, which will be used in the following chapters.

In chapter 3, we pay attention to the symmetric monomial curves in P? and
classify all arithmetically Cohen-Macaulay monomial curves among them. And
then, we give an elementary proof of the fact that they are set theoretic complete
intersection by providing explicitly the equations of the surfaces that cut out the

curve.

In chapter 4, we develop a method for producing set theoretic complete in-
tersection monomial curves in any dimensional projective space. The method
starts with a single s.t.c.i. monomial curve in P" and it produces infinitely many
new s.t.c.i. monomial curves in P"!. It gives the equations of the hypersurfaces
on which new curves lie as s.t.c.i. based on the information provided by the

hypersurfaces that defines the curve at the beginning.

In chapter 5, we study the Hilbert function of local rings associated to affine
monomial curves. Namely, we use the technique of gluing semigroups to obtain
new monomial curves in any dimensional affine space whose Hilbert functions are

non-decreasing.

In chapter 6, we discuss some possible continuations of the research carried

out in the thesis.



Chapter 2

Toric Varieties and Monomial

Curves

Toric varieties arise from different areas of mathematics. They provide a link be-
tween Algebraic Geometry, Commutative Algebra, Algebraic Statistics, Number
Theory, Graph Theory and Combinatorics. They are important for both theo-
retical and practical reasons. This is simply because they serve as examples to
check validity of many conjectures about more general algebraic varieties. More-
over, the theory of toric varieties provides nice applications to a broad area of
mathematics. Certain properties of toric ideals which arise from Graph Theory
and Root systems are studied by Ohsugi and Hibi in [53, 54, 55, 56]. Toric vari-
eties coming from Singularity Theory are the subject of the work of Altinok and
Tosun in [1] and [80]. Toric varieties arising from Algebraic Statistics are studied
by Diaconis and Sturmfels in [18]. For the interaction between Combinatorics

and toric varieties, see also [47].

Being a nice and important object, we define and study basic properties of

toric varieties in this chapter which will be used later on.
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2.1 Toric Variety vs. Toric Set

Let A = (ai;) be a d x n matrix with integer entries whose columns are non-
zero. Denote by a; = (ay, . . ., aq;) the transpose of the i-th column of A and let

A={ay,...,a,} C Z% be the set of these vectors.

For the sake of simplicity let us denote the polynomial ring K|xy,...,z,] by
K[x] and the power series ring K[ty,...,t4,t;",...,t;'] by K[t,t7!]. Then, the
toric ideal I4 (or I,4) associated to the matrix A (or the set A, respectively) is

defined to be the kernel of the following K-algebra epimorphism:
¢: K[x] — K[t,t7'], oé(z;) =t forall i=1,...,n.

The toric ideal I4 is prime, and thus define an irreducible algebraic set V4 in A",
called the affine toric variety corresponding to A. The dimension of this variety

equals the rank of the matrix A.

There are three important algebraic and combinatorial structures related to
the toric variety V4, namely the semigroup NA, the group Z.A and the rational
polyhedral cone 04. We recall that these objects are defined as the sets of vectors

which are N-linear, Z-linear and Q>(-linear combinations of elements of A, i.e.
NA = {p1a; + -+ ppan| where p; € N},

ZA ={zas + - -+ z,a,| where z; € Z} and

oyp = pOSQ(A) = {Q]_a]_ + -+ qTLan| Where qi S QZO}

The polynomial ring K[x] is multigraded, i.e. it has more than one grading.
One of them is the most natural one where deg(z;) =1, foralli=1,... n. If I4
is homogeneous with respect to this grading, the variety V4 that it defines lies in

P"~1 hence the name projective toric variety. The other natural grading is defined

Un

as deg 4(z;) = a; € A. In this case A-degree of a monomial x" := z{* ... 2"

becomes a vector:

deg 4 x" == wjay + - -+ + uya, € NA.
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The toric ideal [ 4 is A-homogeneous, that is, all monomials of a polynomial in I 4
have the same A-degree. There are also other types of gradings on the polynomial
ring K[x]. Indeed, any set B = {by,...,b,} C Z% can be used to grade K[x] in
such a way that degg(z;) = by, fori=1,... n.

There is a strong relation between the elements of the group (or the lattice)
ZA and the generators of the toric ideal I4. More precisely, I4 is generated by
binomials x"* — xV, where u —v € ZA. In terms of Linear Algebra, it can be said
that I4 is generated by binomials x" — xV, where u — v is an integer vector in
the null space of A. Hence, integer matrices whose null spaces contain the same
integer vectors give rise to the same toric variety. For a more detailed discussion

on generators and Grobner bases of toric ideals, we refer the reader to [69].

Associated to the matrix A is the toric set
L(A) = {(t2, .. %) = (¢ - tg™, ot t™) |ty ta € K}

We first note that T'(A) C Vy, since f(t?1,... . t?) =0, for any f € [x = Ker(¢).
But, in general, the toric set does not parameterize the toric variety, i.e. I'(A) #

V4. For instance, take

1 2 3 1 2
A= and B = s .
2 3 4 01 2

Then, it is clear that 4 = (23 — z123), since Vy is a toric (hyper)surface in A3.
Obviously, T'(A) = (3,133, t3t3) and T'(B) = (s1, s1s9, 5553), for t1,t9, 81,52 €
K. We claim that T'(A) # ['(B) # Va4 # I'(A). Observe first that (0,0,z) € Vj4
but it is not an element of the toric sets I'(A) and I'(B), if z # 0. Similarly
(x,0,0) is an element of I'(B) but not an element of I'(A), if  # 0. Hence, a
natural question is to determine the conditions under which V4 = I'(A). This
is first studied by E. Reyes, R. Villarreal and L. Zarate in [59]. Related to this
question is to find a suitable matrix B such that V4 = I'(B). Existence of such
a matrix is shown by A. Katsabekis and A. Thoma in [40, 41]. An algorithm is
also provided to find a suitable B.

We say that the set A is a configuration if the elements a; of A lie on a

hyperplane in R?. Configurations correspond to projective toric varieties. For
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instance, consider the set A = {(0,a), (1,b),(2,¢)}. This set is a configuration if
and only if the points (0,a), (1,b),(2,c) are collinear, i.e. they lie on the same
line in R%. Hence, A is a configuration if and only if @ = 2b — ¢. For any integers
b and ¢, we have different configurations Ay, . = {(0,2b — ¢),(1,b), (2,¢)} but we
have a unique toric ideal 14 = (23 — x173). Parameterization of the toric variety

V4 is given by the configuration Aj .

There is a special class of toric varieties which are defined and parameterized

by the same matrix A, i.e. V4 = I'(A). The form of this matrix is as follows:

air - 0 @@y 0 Qi
A=
0 -+ @Gga Qd@+1) " Qdn
. . . a a
and the parameterization of Vy is  (#{M, ... e 1 g A0 qiin o glin)
where ayy, ..., aqq are positive and the others are non-negative integers, see [40,

Corollary 2].

2.2 Monomial Curve

We start with the definition of affine monomial curves. Classically, an affine
monomial curve in the affine n-space A", denoted by C(my,...,m,), is defined
parametrically by (¢™,... t"), for some positive integers m; < --- < m,, with
ged(my,...,my,) = 1. This means that if A is a row matrix defined by A =
(my---my ) then I, = I(C(my,...,my,)). Monomial curves are simplicial toric
curves which are parameterized by their toric sets, see [59, Proposition 2.9.].
The condition ged(my, ..., m,) = 1 is to ensure that different parameterizations
give rise to different toric curves. At the first sight one might think that the
parameterization (91 ... t9™) defines a simplicial toric curve for each g. But
it defines a unique monomial curve C'(my,...,m,). To clarify this ambiguity
we always assume that ged(my, ..., m,) = 1 whenever we talk about monomial
curves. The other assumption m; < --- < m, in the definition is needed to

determine the embedding dimension of the monomial curve, i.e. the dimension
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of the smallest affine space in which the monomial curve lives. In fact, order of
the numbers m; is not important, the crucial thing here is that they must be
different from each other. For instance, embedding dimension of C' = C(1,2,2)
is two, since C'is a curve in the plane zy = z3 inside A3. So, the smallest affine
space containing C' is A?. Besides, there is no difference between the curves
C(1,2) and C(2,1), since their geometric properties are the same. Therefore,

these assumptions do not harm the generality.

Under the same assumptions on mq, ..., m,, a projective monomial curve in

P", denoted by C(my,...,m,), is defined parametrically by

(Smn’ Smn_mltm1’ o ’Smn_mnfltmnfl’ tmn)
Note that C(my,...,m,) is the projective closures of the affine curves
C(ma,...,my,) and C(m, —my,_1, ..., my—my, my). Projective monomial curves

can be regarded as simplicial affine toric surfaces which are parameterized by

their toric sets, see [59, Proposition 2.7.].

2.3 Projection of Toric Ideals

First of all, we introduce the geometric notion of projection of rational polyhedral
cones and then define the algebraic notion of projection of toric ideals. Let A
and B be two integer matrices of size ¢ x n and d x n. Assume that dim o, <
dim op for the corresponding rational convex polyhedral cones o4 and op. If
A={ay,...,a,} and B = {by,...,b,} are the sets of the column vectors of A
and B, then one can define a projection m : op — o4 of cones via 7(b;) = aj,
for i = 1,...,n. For instance, take A = {3,5,8} and B = {(1,2),(2,1),(3,3)}.
Then the map 7(y1, y2) = (Ty1 +y2)/3 defines a projection of the two dimensional
polyhedral cone o onto the one dimensional polyhedral cone o 4. It is not difficult
to see that Ip = (v129 — 13), I4 = (v1709 — 23,27 — 23) and Iz C I4. This is not

surprising as the following theorem reveals:

Theorem 2.1 [39, Theorem 2.2] With the preceding notation, the following are

equivalent:
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o [pC Iy
e cvery B-homogeneous ideal in K[x] is also A-homogeneous

e there is a projection of cones w:op — o4 given by w(b;) = a;,

forallt=1,....,n

e there is a ¢ X d matriz D with rational entries such that DB = A

Inspired by the projection of the corresponding cones, Katsabekis in [39] in-
troduced the algebraic notion of projection. So, we say that [4 is a projection of
Ip if Iy C I4. One can study certain algebraic and geometric properties of the
toric variety V4 realizing it as a projection of another toric variety Vz. A nice
example for this situation has been provided in the same paper [39]. For instance,
he used the projection of cones 7 : o — 04 and the fact that Vj is a set-theoretic
complete intersection to show that V4 is also a set-theoretic complete intersec-
tion, where A = {a, a + 2b,2a + 3b, 2a + 5b} and B = {(5,0), (1,2), (4, 3),(0,5)}.
Katsabekis has studied projections of toric ideals set theoretically. Namely he
studied the question of finding suitable polynomials fi,..., f, € I4 such that
rad(l4) = rad(Ig + (fi,...,fr)). Hence the problem is open ideal theoret-
ically. More precisely, we do not know whether or not we have polynomials
fi,-- fr € Ly such that T4 = I + (f1,..., fr), where r = pu(la) — pu(Ip).

2.4 Gluing Toric Varieties

Now, we introduce the concept of gluing semigroups. This concept has been
introduced for the first time by J. C. Rosales in [65] and used by several authors
to produce new examples of set-theoretic and ideal-theoretic complete intersection

affine or projective varieties (for example [52], [79]).

Let A be a subset of Z¢ such that A = A, | | A, for some subsets A; and As,.
We say that NA is a gluing of NA; and NA, if there exists a nonzero element
a € NA; (NA,; such that ZA, (ZA; = Za. Sometimes we say that the set A

is a gluing of its subsets A; and A, in the same situation. The crucial benefit of
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this definition is that we have the following relation between the corresponding

toric ideals:
In= 14, + 14, + (Go)

where G, = M7 — M is the relation polynomial and M; involves variables corre-

sponding to A;, for details see [79].

Example 2.2 Let A be the following matriz

(p+1)ms 0 0 (p+1)(msz—my) (p+1)(mz—my) 0
0 (p + 1)m3 0 ma mo ms
0 0 (p+ 1)ms Py PMs pms

and A be the set of its column vectors, where 0 < my < mgy < mg are integers

with ged(my, ma,mg) = 1 and p is any integer.

Set Ay = {(0, (p + 1)ms,0), (0,0, (p + 1)m3)} and Ay = A — Ay. Then the

matrices Ay and As corresponding to Ay and Ay are as follows:

0 0
Ar=1 (p+1)ms 0 and
0 (p+1)ms

(p+1Dmz (p+1)(mz—mi) (p+1)(ms—m2) 0
Ay = 0 myq Mo ms
0 pmy pms pmg
Note that the null space of Ay is trivial, so I4, = 0. On the other hand null space

of Ay is the same with the null space of the following matriz

ms (m3 — ml) (m3 — m2> 0
B = 0 mq meo ms and Vg = a(ml, ma, TTL3> C P3.

0 0 0 0
We observe that ZA, (\ZAy = Za and the vector « is in NA; (\NAy, where
a=(0,(p+ 1)ms,p(p+ 1)ms). Hence NA is a gluing of NA; and NAs. If z; is

the variable corresponding to the i-th column vector of A then we have

Ly = La, + Lay + (w22} — a8™) = Ip + (202f — 281,
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Thus, if C(my, mg,m3) C P> is a s.t.c.i. on the surfaces X and Y, it readily
follows that the toric surface V4 C P° is a s.t.c.i. on the hypersurfaces X, Y and

1 .
woxh = x5, for any integer p.

2.5 Extensions of Monomial Curves

Finally, we introduce the concept of extension of monomial curves. This concept
is introduced for the first time by Arslan and Mete in [4] in the case of affine
monomial curves. Later in [73] we adopt it to the projective case. Thus this

section reflects the second and the third sections of [73].

Let m be a positive integer in the numerical semigroup generated by

M, ..., My, .. m = smy+ -+ s,m, where sq,...,s, are some non-negative
integers. Note that in general there is no unique choice for sy, ..., s, to represent
m in terms of my, ..., m,. We define the degree 6(m) of m to be the minimum of

all possible sums s; + - -+ + s,,. If £ is a positive integer with ged(¢,m) = 1, then
we say that the monomial curve C(¢fmy, ..., ¢m,,m) in P"*! is an extension of
C =C(my,...,m,). We similarly define C(¢my,...,¢m,, m) to be an extension
of C. We say that an extension is nice if §(m) > ¢ and bad otherwise, adopting

the terminology of [4].

When the integers my, ..., m, are fixed and understood in a discussion, we
will use C,,, to denote the extensions C(¢my, . .., ¢m,,m) in P"*! and use Cy,,
to denote the extensions C'(¢my, ..., ¢m,, m) in A",

Extension in the affine case is a special case of gluing. More precisely, if Cy,,
is an extension of C', then the numerical semigroup < ¢mq,...,¢m,,m > is a
gluing of < ¢my,...,lm, > and < m >, as Z{lmy,...,lm,} (Z{m} = Z{¢m}
with ¢m €< my,...,¢m, > ] < m >. Thus, we have

I(Copm) =1(C) + (x* - - — xf;H).

n

A quick consequence of this is that Cy,, C A" is a s.t.ci. when C' C A™ has

the same property.
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In the projective case, extension is not always a special case of gluing. There
are many projective monomial curves whose underlying affine semigroups can not
be obtained by gluing its subsemigroups. This will be studied in details in the
section 2.5.2. Now we give a more geometric proof of the fact that extensions of

affine s.t.c.i. monomial curves are s.t.c.i. too.

2.5.1 Extensions of Monomial Curves in A"

Let C' = C(my,...,my) be a s.t.ci. monomial curve in A”. In this section, we
show that all extensions of C' are s.t.c.i. For this we first define, for any ideal
I C K[zy,...,2n11], ['e(I) to be the ideal which is generated by all polynomials
of the form I'y(g), where Ty(g(z1,. .., Tnt1)) = g(x1, ..., Tn, x5 4), for all g € I.
We use the following trick of M. Morales:

Lemma 2.3 ([51, Lemma 3.2]) Let Y; be the monomial curve denoted by
Clmy, ... . 0my,mpy1) in A" Then 1(Y;) = Ty(1(Y1)).

For any extension of C' of the form Cj,,, we obviously have I(C) C I(Cy,,)
and 1(Cy,,) N Klzy,...,2,] = I(C). The exact relation between the ideals of C

and Cy,, are given by the following lemma.

Lemma 2.4 Let m = symy + -+ + s,m,. For any positive integer { with
ged(6,m) =1 we have I1(Cy) = 1(C) + (G), where G = x1°* -+ @, — .

Proof:

Case ¢ = 1: We show that I(Cy,,) = I(C) + (1% -+ 2,5 — 2 11).
For any polynomial f € K|zy,...,%,1], there are polynomials g € K[z, ..., z,]
and h € K[xy,...,2,+1] such that

flzr, .o xn1) = flor,. . T, Tpyy — 2yt - + ]t - ar)

Sn

= g(xy,...,xn) + (27 -2 — xpp)h(xy, . Tpg).
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This identity implies that f € I(C},,) if and only if g € I(C).
Case ¢ > 1: Applying Lemma 2.3 with Y; = C} ,, we have

I(Com) = Ty(I(Cim)), by Lemma 2.3
= I'y(I(C)+ (x7'---x," — x,11)) by the first part of this lemma

This lemma provides an alternate proof to the following theorem which is a

special case of [79, Theorem 2].

Theorem 2.5 If C C A" is a s.t.c.i. monomial curve, then all extensions of

the form Cy,, C A" are also s.t.c.i. monomial curves.

Proof: Since I(Cy,,) = 1(C) + (G) by Lemma 2.4, it follows that

Z(I(Com)) = Z(I(C)+(G))

where Z(-) denotes the zero set as usual. Hence Cy,,, is a s.t.c.i. if C is. O

2.5.2 Extensions That Can Not Be Obtained By Gluing

If C(myq,...,mpy1) is a monomial curve in P**! then there is a corresponding

semigroup N7’ where

T = {(Mny1,0), (Mpy1 —my,my), ..., (Mpp1 — My, my), (0,mp41)} C N2,

Let T' = Ti| |T, be a decomposition of T into two disjoint proper subsets.
Without loss of generality assume that the cardinality of 77 is less than or equal to
the cardinality of T5. NT'is called a gluing of NT} and NT5 if there exists a nonzero
a € NT| (NT5 such that Za = ZT, () ZT5,. Following the literature we write I(7')

for the ideal of the toric variety corresponding to the affine semigroup NT'. Note
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that if N7 is a gluing of N7} and NTy then we have I(T) = I(T1) + [(T3) + (G.),

where G, is the relation polynomial, see [79].

We note that the condition Za = ZT) () ZT5 is not fulfilled when T} is not a

singleton. Hence we formulate this observation to be the following

Proposition 2.6 If T} is not a singleton then NT is not a gluing of N1} and
NT5.

Proof: If T; is not a singleton, then neither is 7, by the assumption on the
cardinalities of these sets. Thus Z7T; and ZT, are submodules of Z? of rank two
each. It is elementary to show that their intersection has rank two. For instance,
let  and t be generators of ZT}, then the images of r and ¢ have finite order in the
finite group Z?2/ZT5, meaning that ar and bt are in ZT5 for some positive integers
a and b. Then the rank two Z-module generated by ar and bt is contained in the

intersection ZT, N ZT, which must be of rank two itself being a submodule of Z2.

Hence the intersection cannot be generated by a single element. Thus N7 is
not a gluing of N77 and NT5. OJ

This proposition means that the only way to show that an extension in P*+!
is a s.t.c.i. via gluing is to apply the technique to a projective monomial curve in
P™. Thus we discuss the case where T} is a singleton. But if 77 is {(m,+1,0)} or
{(0,mp41)} then NT; NT; = {(0,0)}. So it is sufficient to deal with the case

where T} is of the form {(m,+1 —m;, m;)}, for some i € {1,...,n}.

From now on, A; denotes the greatest common divisor of the positive inte-
gers My, ..., M, ..., Myuy1 (m; is omitted), for ¢ = 1,...,n. Note that we have

ged(A;,m;) =1, for all i = 1,... n, since ged(my,...,my1) = 1.

Proposition 2.7 If T} = {(m,41 — mj,, my,)} for some fived iy € {1,...,n},
then NT' is a gluing of NT1 and NT if and only if there exist non-negative integers

d;, forj=1,... ,?0, ...,n+ 1, satisfying the following two conditions:
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n+1 n+1
(I) Ajymy, = Z dym;, and (II) A;) > Z d;.
J=1(j#io0) J=1(j#io0)

Proof: Let a = A;j(mpy1 — myy, my,). We first show that ZT) (N ZT, =
Zo.  Since A, = ged(my, ..., M, ...,Mpy1), there are z; € Z, for j =
1,...ig,...,n+ 1, such that A, = D jsio M- S0, Djgmiy = 3 Mg zim;
which implies that

Ny (M1 = Mg, mig) = Y mig 2 (mngr = my,my) + (Dgy — > miy2) (M1, 0).
j#i0 j#io

Thus o = Aio (mn+1 — My, mio) < ZTl m ZTQ 1mplylng Zo g ZTl ﬂ ZTQ

For the converse inclusion, take c¢(myy1 — mg,, mq,) € ZT) () ZT5, for some
¢ € Z. Then, obviously we have ¢(m, 1 — m;,, m;,) € ZT5 which implies that
cmiy € Z({ma, ..., Mgy ... yMmpy1}) = ZA;,. So, A, divides emy,. If Ay > 1,
then A;, divides ¢, since it does not divide m;, (remember that ged(A;,, m;,) = 1).
If A;, =1, obviously A;, divides ¢. Thus, ¢(m,+1 — m4,, m;,) is a multiple of «
and ZT) N ZT; C Z«.

Since ZT1 (ZTs = Z«, it will follow by definition that NT' is a gluing of NT;
and NT; if and only if o € NT} (\NT3. But, if a € NT; (N7, then there exists

non-negative integers d; and d for which we have

Nig (M1 = mig,miy) = > di(mpys —my,m;) + d(mp 1, 0)
J#io
(Ajgmpi1 — Dygmig, Aygmy,) = ([d+ Z dilmp41 — Z d;m;, Z djm;).
J#io J#i0 J#i0
Thus, Aiymi, = 3,4, dym; and d = Ay, — > ., d;. Since d > 0, we see that
the conditions (I) and (II) hold. On the other hand, if (I) and (II) hold then
we observe that o € NT;[|NT;, by the equalities above. Thus, the condition
a € NT; (N7} is equivalent to the existence of the non-negative integers d;
satisfying (I) and (II). O

As a direct consequence of Proposition 2.7 we get the following
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Corollary 2.8 If A;, = 1, for some fized iy € {1,...,n}, then NT cannot be
obtained as a gluing of NT| and NTy, where Ty = {(my 1 — miy, miy)} and Ty =
T-—"1T;.

Proof: We apply Proposition 2.7. If (I) does not hold, we are done. If it

n+1 n+1
holds, then we have two cases: either Z d; =1or Z d; > 1. The first
J=1(j#i0) J=1(j#i0)

case forces m;, = m; for some j # iy, from (I), but this contradicts the way we

choose m}s. The second case causes (II) to fail, as A;, = 1. O

Example 2.9 If we consider the curve C(2,3,4,8) C P4 and take iy = 2, then
the conditions (1) and (I1) of the above proposition hold. Thus this curve can be
obtained by gluing.

But if we consider the monomial curve C(2,4,7,8) C P, then for every choice
of 1y, either Ay, = 1, or else condition (I1) of the above proposition fails. Hence

this curve cannot be obtained by gluing.

Corollary 2.10 Let Cy,, C P! be a bad extension of C = C(my,...,m,), i.e.

¢ > §(m). If C is a s.t.ci. on the hypersurfaces fi = --- = fo_1 = 0, then
Cym can be shown to be a s.t.c.i. on the hypersurfaces fy = -++ = fno_1 = 0
and F = $fz+1 — xf;_é(m)x‘il --xyn = 0 by the technique of gluing, where m =

s1mi + -+ Spmy and s1 4 -+ s, = 6(m).

Proof: Since my < --- <m, and m = symy + -+ - + s,m,, < d(m)m,, < lm,, it
follows that ¢m,, is the biggest number among {¢my, ..., ¢m,, m}. The extension
C'y.m corresponds to the semigroup NT', where T' = Ty | Ty, Ty = {(¢m,, —m,m)}
and Ty = {(¢my,0), (fm, —lmy, lmy), ..., (my,—ECmy_1,0m,_1), (0,¢m,)}. Since
ged(fmy, ..., tmy) = £, lm = s1(fmy) + -+ + s,(¢my,) and € > §(m), NT is a
gluing of N7} and NT3, by Proposition 2.7. Since I(T) = I(Ty) + I(T3) + (F),
the claim follows from [79, Theorem 2]. O



Chapter 3

Symmetric Monomial Curves in
IP)B

The purpose of this chapter is to give an alternative proof of the fact that symmet-
ric monomial curves in P? which are arithmetically Cohen-Macaulay are s.t.c.i.
by elementary algebraic methods inspired by [11]. The proof is constructive and

provides the equations of the hypersurfaces cutting out the curve.

Let p < ¢ < r be some positive integers. Recall that a monomial curve
C(p,q,r) in P? is given parametrically by
(w,z,y,z) = (u", u" PoP u" " ")
where (u,v) € PL. It can be seen that C(p, ¢, r) is a smooth curve if and only if it
is of the form C(1,q,q + 1). No smooth curve of this form is known to be s.t.c.i.

except the twisted cubic (for which ¢ = 2). They can not be s.t.c.i. on smooth

surfaces, see [38].

We say that the monomial curve C(p, q,r) is symmetric if p+ ¢ = r. In this

case the parametric representation of the curve C(p, ¢,p + q) becomes

(up-i-q’ U‘ZUP7 upvq, UP-HI).

It is known that all monomial curves are s.t.c.i. in P3, if the base field K is

19
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of positive characteristic, [35]. But, no one knows whether even the symmetric
monomial curves are s.t.c.i. in P? in the characteristic zero case. To address
this case, we work with an algebraically closed field K of characteristic zero,

throughout the chapter.

It is not difficult to show that symmetric monomial curves C(p, q,p+¢q) C P3
can not be s.t.c.i. on the smooth quadric () : xy = zw. We will achieve this result
by showing that C'is of type (p,q) on @ and that complete intersections on @ is
of type (d, d), for some d.

Claim: C = C(p,q,p+ q) C P3 is of type (p,q) on Q.

Proof: Recall that @Q is the Segre embedding of P! x P! in P3, see [33,
Ex.1.2.15]. More precisely, it is the image of the following map:

¢ : Pl X Pl - ]P)37 1/1((@0, a’l) X (b07 bl)) = (a’ObOJ a0b17 alb(b albl)'
We have two families of lines L and M on @, defined by:

L, = 1/)((0, 1) X (bo,bl)) = (0,0,bo,bl)
Ly = ¢((1,t) X (bo, b1)) = (bo, b1, tho, tb1), where t€ K.

and

Moo = w((ao,al) X (O, 1)) = (O,aO,O,al)
M, = ¥((ag,a1) x (1,u)) = (ap, uag, a,ua;), where u € K.

Picard group of @) is generated by L and M, so type of a curve on () is determined
by the intersection of the curve with L and M. To see that C is of type (p,q),
we need to observe that C'- M, =p and C - L, = q.

Note that (Pt ulP uPvl vPT1) = (b, by, thy, tby) is a point of the intersection
C' (N L;. Since (bg, b1) # (0,0), we have u = 1 and thus by = 1and¢ = v9. Thus we

have a point (1, 0P, v9, vPT9) = (1, by, t, thy) in the intersection with multiplicity gq.

Similarly, (uP*9, u9vP uPvi, vP*9) = (ag, uag, ai, uay) is a point of the intersec-
tion C'( M,. Since (ag,a;) # (0,0), we have u = 1 and thus ay = 1andu = v?.
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Thus we have a point (1,v?,v?, vP*?) = (1,u,as,ua;) in the intersection with

multiplicity p. O

The following more general result implies that complete intersections on
is of type (d,d), since H has type (1,1), where H is the hyperplane defined by
r=0.

Proposition 3.1 C' is the complete intersection of the smooth surface X of
degree s and the surface Vy of degree d if and only if C' ~ dH, where H is a
hyperplane section of X.

Proof: Let us assume that C is a complete intersection of X, and V,. Since
Vg~ dP? and H = X, (P2, it follows that

O:XsﬂvdesﬂdIP’deH.

On the other hand, if C' ~ dH then obviously C' is a complete intersection of

X, and Vj. To see this consider the following exact sequence:
0 — Qps(d —s) — Qps(d) — Qx(d) — 0
By taking the cohomology of each term, we get the following long exact sequence:
0 — H(Qps(d — 5)) — H(Qp2(d)) — H'(Qx(d)) —

— H'(Qps(d — 5)) — H'(Qps(d)) — H' (Qx(d)) — ...
Since H*(IP%,Qps(d)) = 0 for 0 < i < 3 and d € Z, it follows that

0 — H(Qrs(d — 5)) — H"(Qp2(d)) — H'(Qx(d)) — 0
i.e HO(Qps(d)) — H°(Qx(d)) is surjective.
Thus a section f, defining the curve C' ~ dH, is the restriction of a section F

on X,. If Vy; = Z(F), C is the complete intersection X[ V. O

Corollary 3.2 C(p,q,p+q) CP? can not be s.t.c.i. on Q : xy = zw.
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Proof: Assume that C' = C(p,q,p + q) is a s.t.c.i. of @ and V. Then we have
QN Vs = kC, for some k. Since type of the complete intersection @ () Vy is (d, d)
and the type of C is (p,q), we have (d,d) = k(p, ¢), which has no solution for k.
Contradiction. O

A minimal system of generators for the ideal of symmetric monomial curves

in P? is given in [13] as follows:

f=2y—wz and F;= wq_p_iyp” —x77 forall 0<i<gqg-— p.

Recall that a monomial curve C(p, q,7) C P? is called Arithmetically Cohen-
Macaulay (ACM) if its projective coordinate ring is Cohen-Macaulay. In the same
article [13], it is also proven that a monomial curve in P? is ACM if and only if
its ideal is generated by at most 3 polynomials. Now, if the ideal of a symmetric
monomial curve C(p,q,p + q) is generated by two polynomials it would follow
that p = ¢. But, this contradicts with the assumption that p < ¢ < r. So, the
ideal of an ACM symmetric monomial curve C(p, q,p + ¢) is generated by three
polynomials and hence p = ¢ — 1, where necessarily ¢ > 1. Thus, all symmetric
ACM monomial curves in P are of the form C'(q¢— 1, q,2¢ — 1) and their defining

ideals are generated minimally by the following three polynomials:

f = xy— 2w,
= —F=x"12—y,

= —Fy=az—yw.

The fact that C(¢ — 1,¢,2¢ — 1) is a s.t.c.i. curve was shown in [63], but the
equation of the second surface was not given. Here, we give an alternative proof
that constructs the polynomial G such that the symmetric ACM monomial curve
is the intersection of the surface G = 0 and a binomial surface defined by one of
f,g and h. We construct G by adding z%g to the ¢-th power of f and dividing

the sum by z. Hence we get the following theorem in [72]:

Theorem 3.3 Any symmetric Arithmetically Cohen-Macaulay monomial curve

in P3, which is given by C(q — 1,q,2q — 1) for some q > 1, is a set-theoretic
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complete intersection of the following two surfaces

g=a"'2—y'=0 and

g |
G = 201 4 ) q xq—kyq—kzk—lwk 0.
kz_;( ) (g —k)k!

Proof: Note first that zG = f? 4 z7g. Take a point (wy,xo, Yo, 20) from

Z(f,g,h). Then, by 20G(wo, zo, Yo, 20) = f¥(wo, Zo, Yo, 20) +x{g(wWo, To, Yo, 20) = 0
we observe that either G(wy, xq, Yo, 20) = 0 or zy = 0.

If G(wo,x0,Y0,20) = 0 then (wo, zo,Y0,20) € Z(g9,G). If zg = 0 then by
g(wo, Zo, Yo, 20) = 0 we get yo = 0, and by h(wo, To, Yo, 20) = 0 we get zo = 0.
Thus (wo, o, Yo, 20) = (1,0,0,0) which is in Z(g, G).

Let us now take a point (wo, o, Y0, 20) € Z(g,G). Then either zy = 0 or
we can assume zo = 1. If zg = 0 then by g(wo, xo,yo,20) = 0 we get yo = 0,
and by G(wo, Zo, Yo, 20) = 0 we obtain zy = 0 in this case. Thus we get the
point (wo, o, Yo, 20) = (1,0,0,0) which is in Z(f,g,h). On the other hand, if
2o = 1 then by G = f?+ xzlg we see that f(wo,zo,%0,20) = 0. Moreover, we

1

have xoyo = wo and 23"~ = y in this case. Hence we obtain the following

q __ qg—1 __ q __ qg—1 __ g—1 : _
xd = xoxd = woys = Toyoys = = woyy , meaning that h(wo, zo, Yo, 20) = 0. O

Note that the symmetric ACM monomial curves above are s.t.c.i. on the
binomial surface ¢ = 0. This is not true for symmetric non-ACM monomial
curves, that is, they can never be a s.t.c.i. on a binomial surface, [75, Theorem
5.1]. Thus it is very difficult to construct hypersurfaces on which symmetric non-
ACM monomial curves in P? are s.t.c.i. with the simplest open case being the

Macaulay’s quartic curve C(1,3,4).



Chapter 4

Producing S.T.C.I. Monomial

Curves in P"

The aim of this chapter is to study nice extensions of projective monomial curves
and follows the fourth and the fifth section of [73]. Since the relation between
the ideal of the curve and that of its nice extensions are not known explicitly, we
use the information provided by their affine parts here. So we need frequently to

refer to the Section 2.5. Let us recall the notation there.

Throughout the chapter, K will be assumed to be an algebraically closed field
of characteristic zero. By an affine monomial curve C(my,...,m,), for some
positive integers m; < --- < m, with ged(ms,...,m,) = 1, we mean a curve
with generic zero (v™!,... v™") in the affine n-space A", over K. By a projective

monomial curve C(my, ..., m,) we mean a curve with generic zero

in the projective n-space P", over K. We use the fact that C'(my,...,m,) is the

projective closure of C'(my, ..., my).

Whenever we write C C P™ to simplify the notation, we always mean a mono-
mial curve C(my,...,m,) for some fixed positive integers m; < --- < m,, with

ged(my, ... ,my,) = 1.

24
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Let m be a positive integer in the numerical semigroup generated by
M, ..., My, i.e. m = smy + -+ s,m, where sq,...,s, are some non-negative
integers. We define the degree d(m) of m to be the minimum of all possible sums
$1+ -+ s, If £is a positive integer with ged(¢,m) = 1, then we say that the
monomial curve C(¢my, ..., ¢m,,m) in P"*! is an exstension of C. An extension

is nice if §(m) > ¢ and bad otherwise.

Recall that Cy,,, denotes the extensions C(¢my, . .., {m,,m) in P"*1 and Cy,,

denotes the extensions C'(¢my, ..., ¢{m,,m) in A",

4.1 Nice Extensions of Monomial Curves

Since bad extensions are shown to be a s.t.c.i. by the technique of gluing (see
Corollary 2.10), we study nice extensions of monomial curves in this section. By
using the theory developed in section 2.5.2 one can check which of these extensions

can be obtained by the technique of gluing semigroups.

Throughout this section we will assume that

e C=C(my,...,my) CP"isastcionfy=---=f, 1=0
e m = symy+---+ s,m, for some nonnegative integers si, ..., s, such that

s1+ -+ s, =6(m)
e ( is a positive integer with ged(¢,m) =1

e 0(m) > L.

Remark 4.1 Since C is s.t.ci. on fi = -+ = fo_1 = 0, its affine part C is
st.ci. on gy = -+ = gp1 = 0, where gi(x1,...,2,) = fi(L,z1,...,2,) is the
dehomogenization of f;, i =1,...,n— 1. It follows from Theorem 2.5 that Cy,,
1s a s.t.c.i. on the hypersurfaces g; = 0 and G = x° -+ z,°" — a:fH_l = 0.
So, the ideal of the affine curve Cy,, contains g;’s and G. Hence the ideal of

the projective closure of Cy,, must contain (at least) f;’s and F, where F is
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the homogenization of G. Now, since fi,..., fn_1,F € I(@g,m), we always have

Coan € Z(fr- s faos F).

4.1.1 Special Extensions of Arbitrary Monomial Curves

In this section we assume that m is a multiple of m,, i.e. m = s,m, where s,
is a positive integer. Note that (s1,...,8,-1) = (0,...,0) and d(m) = s, in this

case. This special choice enable us to prove the following

Theorem 4.2 Let C C P" be a s.t.c.i. on the hypersurfaces fy = -+ = fn_1 =0,
gcd(l, symy,) =1 and s, > (. Then, the nice extensions @,snmn C P are s.t.c.i.

onfi=-=fo1=F=0where F = a5 —ay 'zl ;.

Proof: The fact that these nice extensions are s.t.c.i. can be seen easily by
[77, Theorem 3.4] taking by = my,...,by—1 = mp_1, d =m, and k = (s, — {)m,,.
In addition to this, we provide here the equation of the binomial hypersurface

F = 0 on which these extensions lie as s.t.c.i. monomial curves.

Since 6475nmn C Z(fiy---y fu1, F), we need to get the converse inclu-
sion. Take a point P = (po, ..., Pn,Pns1) € Z(f1,---, fa_1,F). Then, since
fi € K|xqg,...,z,], we have f;(P) = fi(po,...,pn) =0, foralli=1,...,n— 1.
Since Z(f1,..., fa_1) = C in P" by assumption, the last observation implies that

Mmnp—m1 ,Uml umn*mnfl,umnfl ,Umn>
) ? *

<p07 S Jpn) = (umnau’

PRI

If po = 0 then u = 0, yielding that (po,...,Pn-1,P2) = (0,...,0,p,). Since
sp > £, we have also p, = 0, by F(0,...,0,pn, Pns1) = " —pg”_gpflﬂ =0. So
we observe that (po, . .., Pn,Pnt1) = (0,...,0,1) which is on the curve Cy, pm, . If
po =1 then (1,p1,...,Pn,Pns1) € Z(g1, ..., gn-1,G) by the assumption, where g;
and G are polynomials defined in Remark 4.1. Since C g, p,, is a s.t.c.i. on the
hypersurfaces g; = -+- = g,_1 = 0 and G = 0 it follows that (1, p1,...,Dn, Pni1) €
Cosnmn C Closrmn- O
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Since Arithmetically Cohen-Macaulay monomial curves are s.t.c.i. in P? (see

[63]), we get the following corollary as a consequence of Theorem 4.2.

Corollary 4.3 Let C(my, ma, ms3) be an Arithmetically Cohen-Macaulay mono-
mial curve in P2. Let m = s3mg, gcd({,m) = 1 and 6(m) = s3 > {. Then the

nice extensions Cygyms = C(€my, lma, lmg, s3ms) are all s.t.c.i. in P4 O

Remark 4.4 There are very few examples of s.t.c.i. monomial curves in P",
where n > 3. We know that rational normal curve C(1,2,...,n) is a s.t.c.i. in
P, for any n > 0, (see [62, 77]). Applying Theorem 4.2 to C(1,2,...,n) C P,

we can produce infinitely many new examples of s.t.c.i. monomial curves in P"T!:

Corollary 4.5 For all positive integers £, n and s with gcd(¢, sn) = 1, the mono-

mial curves C(£,2(, ... nl,sn) C P" are s.t.c.i.

Proof: Let m = sn. Clearly 6(m) = s. If s < ¢, then the monomial curves
Com = C,20,...,nl,sn) C P"! are bad extensions of C(1,2,...,n) C P
Hence they are s.t.c.i. by Corollary 2.10. If s > ¢, then these curves are nice
extensions of C(1,2,...,n) C P". Therefore they are s.t.c.i. by Theorem 4.2. O

In [52], all (ideal theoretic) complete intersection (i.t.c.i.) lattice ideals are
characterized by gluing semigroups. But, for a given projective monomial curve
it is not easy to find two subsemigroups whose ideals are complete intersection.
So, as another application of Theorem 4.2 we can produce infinitely many i.t.c.i.

monomial curves:

Proposition 4.6 If C C P" is an i.t.c.i., then the nice extensions Cyg,m, C

Pt are i.t.c.i. for all positive integers £ and s, with s, > {, gcd(, s,my,) = 1.

Proof: Since C'is a s.t.c.i. on the binomial hypersurfaces fi =--- = f,_.1 =0,
it follows from Theorem 4.2 that U&Snmn isast.cion fi=---=f,.1=0and
F(xo,. .., Tn1) = x5 —x5 x| = 0. Since these are all binomial, the monomial

curves Cy,, m, are i.t.ci. on the same hypersurfaces, by [9, Theorem 4]. O
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Corollary 4.7 The monomial curves U(Eml, lmea, somy) are i.t.c.i. in P2, for all

positive integers my, ma, £ and sy with sy > €, ged({, somy) = 1.

Proof: Let m = symy. Then §(m) = sy and Cy,, = C(fmy, fmy, symy)
is a nice extension of C'(my,my), by the assumption sy > ¢. Since C(my,ms)
is an i.t.ci. on x7? — xy”? ™y = 0, it follows from Proposition 4.6 that
the nice extensions C(¢my,{my, somy) are i.t.c.i. on 2" — 27 ™2y = 0 and

82 so—L 0 _

To produce infinitely many examples of i.t.c.i. curves, our method starts
from just one i.t.c.i. curve, whereas semigroup gluing method produces only one

example starting from one i.t.c.i.. The following example illustrates this point.

Example 4.8 From Corollary 4.7, we know that C(1,2,4) is an i.t.c.i. on
fi :ZL’%—ZC().’L'QZO and fo :xg—xoxg =0.

Take two positive integers £ and s with s > ¢, ged(¢,4s) = 1. Then the monomial
curves C((,20,40,4s) C P* are nice estensions of C(1,2,4) C P3. Thus, by

Proposition 4.6, the monomial curves C(€,2(,4(,4s) are i.t.c.i. on

flzxf—xoxzz(), fgzxg—xoazgzo and F:xé—xg_gxi:O.

The nice extensions C({,20,4(,4s) can also be obtained by gluing subsemigroups
generated by Ty = {(4s—,0)} and Ty = {(4s,0), (4s—2¢,20), (4s—4¢,40),(0,4s) }.
But, in this case one has to know that C(£,2(,2s) is an i.t.c.i. for each { and s.
In other words, starting with the fact that C(1,2,4) is an i.t.c.i., gluing method

can only produce C(1,2,4,8) as an i.t.c.i. monomial curve.

4.1.2 Arbitrary Extensions of Special Monomial Curves

Assume now that m is not a multiple of m,, i.e. (s1,...,8,-1) # (0,...,0).
Recall that we choose sq, ..., s, in the representation of m = symy +--- + s,m,
in such a way that s; + --- + s, is minimum, i.e. s; + -+ s, = d(m). First we

prove a lemma where no restriction on the f; is required.
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Lemma 4.9 Let C C P" be a s.t.c.i. on fi = -+ = foo1 = 0 and 6(m) >
(. Then, Z(fi,..., fo1, F) = Cppp UL C P where F = x,% -+ x,% —
2™l and L is the line xg = - = 21 = 0.

Proof: We first prove Cy,|JL C Z(f1,..., fu—1, F). By the light of Re-
mark 4.1, it is sufficient to see that L C Z(fi,..., fo_1, F). For this, we take
a point P = (po,...,pns1) on the line L, ie., P = (0,...,0,pn, Pnt1). Since
(s1,.+-y8n—1) # (0,...,0) and d(m) > ¢, we see that F(P) = 0. Letting
v € K be any m,-th root of p,, we get (0,...,0,p,) = (0,...,0,v™) € C =
Z(fi,..., fa_1). Since the polynomials f; are in K|z, ...,x,], it follows that
fi(P) = fi(0,...,0,p,) =0, foralli=1,...,n—1. Thus P € Z(f1,..., fo1, F).

For the converse inclusion, take P = (po, ..., Pn,Pnt1) € Z(f1,. -, fa1, F).
Then, for all i = 0,...,n— 1, we get fi(po,-..,pn) = fi(P) = 0 implying that

Mp,—m1, M1

L e L B

(p07 s 7pn) = (umnvu

If pg = 0 then u = 0, yielding that (po,...,pn) = (0,...,0,p,). Thus, we get
P = (po,-- sPn;Pnsr1) = (0,...,0,pp,Pns1) € L. If py = 1 then by assumption
we know that P = (1,p1,...,Pn,Pnt1) € Z(91,---,9n-1,G). Since Cy,, is a

s.t.c.i. on the hypersurfaces gy = -+ = ¢g,_1 = 0 and G = 0 it follows that
P=1,p1,...,pn,Pns1) € Com CU&m. O
To get rid of L in the intersection of the hypersurfaces f{ = --- = f,_1 = 0 and

F =0, we modity the F' = z;° -+ z,,°" —:Eg(m)_szlﬂ of the Lemma 4.9, as in the

work of Bresinsky (see [11]), for some special choice of fi,..., f,—1. In this way
we construct a new polynomial F* from F such that Z(fi,..., fo 1, F*) = Cpm,

where F™* is a polynomial of the form

F* = xﬁ—kxgH(xo,...,mnH),

where (3 is a positive integer.

Note that when xy = 0, the vanishing of F* implies that x,, = 0. It follows
from the last part of the proof of Lemma 4.9 that this property of F* ensures
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that we have a point at infinity, in the intersection of f{ = --- = f,_1 = 0 and

F* =0, instead of a line.

The construction of F* can be described as follows. We first assume that

_bi:r;l;;’ = 0, where a; > b; are positive integers, forallt =1,... ,n—1.

fi = ai — g’
Let p=ay---a,_1 and p; = %p, fori=1,...,n— 1. Take the p-th power of F'
and for every occurrence of x}" substitute mgi_bixf;’, foralli=1,....,n—1. Then

we have

FPo= 202+ 20" H(xg, ..., 2ns1) mod(fi,. .., fa1)

= 2z + 22" H g, . wns1)] mod(fi, ..., fai)
where v = Z;:ll (p — pi)si, @ = ps, + Z?:_ll pis; and H is a polynomial. Letting
F*(20, .. tns1) = 2% + 20 ™ T H(zg, ..., 0 p1)
we observe that

FP(xg,... 2np1) = 20 F (20, ..., Tny1) mod(fy, ..., fuo1). (4.1)

Recall that m is an element of the numerical semigroup generated by
My .., My, 1.6 m = symy + -+ + $,my, with s; +---+ s, = d(m). If m is
large enough that s, > ¢+ Z?:_ll (p—pi —1)s; (or equivalently §(m) — ¢ —~v > 0)
then F™* is the required polynomial. (Otherwise, F* may not be a polynomial.)

Hence we conclude the following

Theorem 4.10 Let p, p;, fi and F* be as above. Assume that m is chosen so
that s, > (+ 31— (p — pi — 1)s;. Then, for all £ < 5(m) with ged(¢,m) =1, the

nice extensions Cyy, C P+ are s.t.c.i. on fi == f,_1 =0 and F* = 0.

Proof: We will show that 6“,1 is a s.t.ci. on f; = --- = f,_1 = 0 and
F* = 0. To do this, take a point P = (pg,...,Pn+1) € Com. Then, F(P) =0
and fi(P) =0, foralli =1,...,n— 1, since Z(f1,..., fo-1, F) = Com UL, by
Lemma 4.9. From equation (4.1) it follows that F*(P) = 0 or pyp = 0. Since P is

a point on the monomial curve Cy,,, it can be parameterized as follows:

m . m——{mq U@ml

('U, U mfémnvémn7 Um)

ey U
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So if pg = 0, we get u = 0 and thus p; = 0, for all « = 1,...,n. Therefore
P =(0,...,0,1) and hence F*(P) = 0 in any case.

Conversely, let P = (po,...,pas1) € Z(f1,-- fuo1, F*). If po = 0, then
pi =0by f;(P)=0,forall:=1,...,n — 1. Since §(m) — ¢ —~ > 0, we have
pn=0Dby F*(P) =0. Thus P = (0,...,0,1) which is always on the curve C,,.
If po = 1 then C is a s.t.c.i. on the hypersurfaces given by ¢, = z}* — :Efjrl =0,
for i =1,...,n — 1, by the assumption. Hence, Theorem 2.5 implies that Cj,,
isastci onggp=---=g¢g,.1=0and G = 21 -+ 2,° — xﬁH = 0. Thus

P=(1,p1,....pnt1) € Com C Cupm. 0J

Remark 4.11 The nice extensions in Theorem 4.10 can also be shown to be
s.t.c.i. by using [77, Theorem 3.4]. But to show that the hypotheses of [717,
Theorem 3.4] are satisfied by these extensions is much more difficult than the
proof here. As a byproduct we also constructed here the hypersurface F* = 0 on

which these nice extensions are s.t.c.i.

Example 4.12 We start with C = C(3,4,6) C P3. Let £ =1 and m = 6s + 7,
for some positive integer s. Then 6(m) = s+ 2, s1 = s5 = 1 and s3 = s.
Thus we get the nice extensions 61,65” = 5(3,4,6,63 +7) C P Since A =
gcd(4,6,6s +7) =1, Ay = gcd(3,6,65 +7) =1 and Az = ged(3,4,6s+7) =1 it
follows from Corollary 2.8 that these curves can not be obtained by gluing. Using
the software Macaulay [30], it is easy to see that the ideal of 61765” 1s minimally
generated by the polynomials

fo= @] — zoxs,

f2 - x% - JZOZL‘g,

fg = l’§+3 — I‘Sill’ll’glq
fo = moxi™ — ajway,
fs = ;a5 —airia,
F = rjzoxs — x8+1x4.

Since C(3,4,6) C P3 is a s.t.c.i. on the surfaces fi = 0 and fy = 0, it follows
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from Theorem 4.10 that C 6547 @s a s.t.c.i. on f1 =0, fo =0 and
* 65+T7 s 2, 5st4 ds+d 2 35+3,.3
F* = a3 6x0 T1T5T5 " T4+ 15x0 Ty — QOxO 175 4t

+15zg rsas oy — 6ad z woxia + 23l = 0

provided that s > 2.

Recall that our method starts with a monomial curve C' = Z(fi,..., fo1)
in P" and produces infinitely many nice extensions @,m =Z(f1,-., fno1, F*) in
P+, Since the construction of F* depends on the choice of fi, ..., fu_1, it is pos-
sible to start with another curve C' = Z(fi,..., fu_1) in P" and obtain new fam-
ilies of nice extensions. Now we provide two examples of this sort. For instance,
if we assume that C is a s.t.c.i. on the hypersurfaces f; = 2 — xgi_b"xf;l =0,
where a; > b; are positive integers, i = 1,...,n — 1, then under some suitable
conditions we obtain other families of s.t.c.i. nice extensions. Let p =a;---a,_1,
Go=0b--b,1and ¢g=ay---a;bjs1---b,_1,i=1,...,n— 2. The first variation

is the following

Theorem 4.13 Let p,qo,...,q,—2 be as above. For all m which give rise to
Sn > L4+ 3 2 (p—qi — V)siy1 and for all € with ¢ < §(m) and ged(¢,m) = 1, the
nice extensions C'g,m C P are s.t.ci. on fy == fo_1 = F*=0.

Proof: Let FF = z% ... x,°" — %(m) ! ﬁ+1 Taking the p-th power and

a;—b;

replacing x;" by x; xfjrl foreacht=1,...,n — 1 we get the following

FP = xjal +x§(m) H(zg,...,xny1) mod(fi,..., fn-1)
= 21z + 2™ H (xo, . .. wng1)] mod(fy, ..., fat)

where v = Z?;(?(p — ¢;)Sit1, @ = pSp + Z;:(? ¢isi+1 and H is a polynomial.
Letting

F*(zo,...,xpe1) = 20 —i—xo(m) “TH(zo, ..., Tpin)

we observe that

FP(xo, ..., Zns1) = 2 F (20, ...y xpy1) mod(fi, ..., fno1)-
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The proof of the claim that Ugm isast.cion fi=---=f,_1 =F"=0can be
done as in the proof of the Theorem 4.10. O
Now, we give another variation where m = s;m; + s;m;, for i,5 € {1,...,n}.

For the notational convenience we take : = 1 and j = n.

Theorem 4.14 Let C C P" be a s.t.c.i. on the hypersurfaces given by

o a a—b b __
fi = of—a5 7z, =0

fi = x?i_{_l’giA(le"._’gjn)—|—ZL'?B(.T2,---,$TL) :()7

where a, b, a — b, a;, b;, and c; are positive integers, fori=2,....,n—1, A and
B are some polynomials. For all m which give rise to s, > {+ (a —b—1)s; and
for all £ with £ < §(m) and ged(¢,m) = 1, the nice extensions Cy,, C P"*! are
s.t.ci. on f=---=f,1=F"=0.

Proof: Let F = z,%x," — x5! t*n ‘2! . Then it is easy to see the following

F* = g% (0. zns1) (mod fi)  where

% _ bsitasn (1+b—a)s14sn—E k@ s1_. spya—k (s1+sn—€)(k—1) ke
F* =, + T (-1) (27 ") T Lpit-

k
k=1
The proof of the claim that ég’m isast.cionfi=---=f,_1=F=0can be
done as in the proof of the Theorem 4.10. O

Example 4.15 Consider the monomial curve C(3,5,9,9s + 5) C P*, for all
s > 2. Since gcd(5,9,95+5) =1, ged(3,9,95+5) = 1 and ged(3,5,95+5) =1 it
follows from Corollary 2.8 that these curves can not be obtained by gluing. Using
the software Macaulay [30], it is easy to see that the ideal of C(3,5,9,9s + 5) is

minimally generated by the polynomials

.3 2 .3 2 512 s—2 2 _ s s
fi=a) —xgrs, fo = a5 — xix3, f3 = 0577 — 2 “w10504, f1 = ToT5 — T4
and F = 225" — x3xdz,. Since C(3,5,9) C P? is a s.t.c.i. on the surfaces

fi =0 and fo =0, it follows from Theorem 4.14 that Cy 9515 = C(3,5,9,9s + 5)

is a s.t.ci. on f =0, fo =0 and

* _ _3s+4 s—2 2 2 2542 25—2 4 s+1_2 3s—2_ 6.3 __
F* = 2577 — 3y “wiw5a5” “xg + 3vg” “miapxy wy — xy” “xgwy = 0.
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Example 4.16 By Corollary 4.7, we know that C(1,2,4) C P3 is an i.t.c.i. on
fi =22 —woxe = 0 and fo = 23 — xox3 = 0. In this example, we show that the
monomial curve C(1,2,4,m) C P4 is a s.t.c.i. for any m #5,7. Clearly m is 0,
1,2 or 3 (mod 4). The case m = 4s is investigated in Example 4.8. In the case
of m = 4s + 1, we have the monomial curve C(1,2,4,4s 4+ 1) C P* whose ideal is

generated by the following set of generators

_ S s—1 _ s+l s—2 _ s S
Jis Jo, [3 = woxy — wy wiwy, fa = 237 — xg Tmxexy, B = 1113 — 324

Since m = 4s + 1, this means that s; = 1, s5 = 0 and s3 = s in Theorem 4.135.
In the theorem we assume that s3 = s > { + 2s1 + s9 = 3 but this is not sharp.

Indeed, the construction of F* work if s > 1. The construction is as follows:

4 S s 4 4 _4s 3,.35 .8 2 2s_.2s_2 s .35 .3 4s 4
F* = (xy25 — xgwq)” = 223’ — dajas’siay + 6r7a5 vy vy — dvywixy’ sy + xy’xy.

Since x2 = xore mod(fi) and x3 = xors mod(fy), it follows that we have

xf = xdxi = x3xs mod(fi, fo). Thus, we get F* = x3(F*) mod(fi, f2), where

ds+1 -2 3 25-2 25 2 35—3 3 453 4
F* = 23" — day 2wy mon’ ey + 615" Cwonsty; — dxy Py + 1" 1.

Thus, the curve C(1,2,4,45+1) CP* is a s.t.c.i. on fi =0, fo =0 and F* = 0.

In the case where s = 1, F* is not a polynomial since x3_2$1x2x§5x4 s not a

monomial. That’s why our method does not apply here.

If m = 4s +2, we have the monomial curve C(1,2,4,4s+2) C P* whose ideal

1s generated by the following set of generators
fi, fo, fa = a5t — i wgzy, F = 2975 — 274

In this case we take sy =0, ss =1 and s3 = s > 2 to apply Theorem 4.13, which
yields F* = 22(F*) mod(fi, f2), where

* 4542 s—1 s 2s—1_.2\2
F* = (3% — 228 woxiwy + a5’ wy)”.

Thus, the curve C(1,2,4,4s5+2) C P4 is a s.t.c.i. on fi =0, fo =0 and F* = 0.
Indeed, we could apply Theorem 4.14 here with s > 1 and in this case we get a
quadric G* instead of a quartic F* above. We take 2nd power of F and mode it
by fo to get:

F? = 2523° — 208 xoxiny + xg°a] = 10G*  where
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*x _ _2s+1 s—1 s 2s—1_.2
G* = 3" — 2] "wexixy + 137 T,

Note that F* = (G*)? and C(1,2,4,4s5 +2) C P* is a s.t.c.i. on fi =0, fo =0
and G* = 0.

If m = 4s +3, we have the monomial curve C(1,2,4,4s+3) C P* whose ideal

is generated by the following set of generators
_ _s+1 s—1 . S s+1
J1, fos fa =237 —ay wiwy, F = wymeny — ay” g,

Now, we need to take sy =1, s =1 and s3 = s > 4 to apply Theorem 4.13, but
the same happens to be true for any positive integer s. As before, we have the

following relation F* = z3(F*) mod(fi, f2), where
* _ _4s+3 s—1 35+2 2s—1 2s+1 2 3s—2 s .3 4s—1, .4
F* = a3 —dxg x125" " wy 4+ 6257 wexs” T xy — 4ay” “Tmixexsyy + 257 .

Thus, the curve C(1,2,4,4s+1) C P4 is a s.t.c.i. on fi =0, fo =0 and F* = 0.

So the missing integers are m = 5,6,7 corresponding to s = 1.

When m = 6, we use Theorem 4.2 with { = 2, s3mz = 1 and the fact that
C(3,2,1) is a s.t.c.i. on x2 = zoxy and 3 — 2717973 + Tz = 0. So C(6,4,2,1)
is a 8.t.c.i. on X3 = ToTy, T3 — 211793 + Toxt = 0 and x3 = woxs implying that

C(1,2,4,6) is a s.t.c.i. on x5 = Tox3, T5 — 2T9w374 + Tox3 = 0 and 12 = xoTs.

Thus the only open cases that the technique of this thesis does not apply are

m =25 and 7 for this example.



Chapter 5

Hilbert Function of Monomial

Curves

In this chapter, we study the Hilbert functions of local rings associated to mono-
mial curves. Our aim is to obtain large families of one dimensional local rings
with arbitrary embedding dimension whose Hilbert function is non-decreasing.
This will be achieved by producing affine monomial curves whose tangent cones
are Cohen-Macaulay by using the technique of gluing numerical semigroups. The
Cohen-Macaulayness of the tangent cones of monomial curves has been studied
by many authors, see [2], [4], [15], [28], [49], [50], [61] and [67]. To check the
Cohen-Macaulayness, we first present an easy and efficient criterion by using the
standard basis theory. This new criterion refines the given one in the literature.
We use this criterion and the technique of gluing to obtain infinitely many new
families of monomial curves in arbitrary dimensions with Cohen-Macaulay tan-
gent cones. In this way, we generalize the results in [2] and [4] given for nice
extensions, which are in fact special types of gluings. In doing this, we also give
the definition of a nice gluing which is a generalization of a nice extension defined
in [4]. The content of this chapter is a fruit of our joint work with Feza Arslan and
Pinar Mete, see also [5]. We encourage the reader to consult [3] for fundamental
facts about tangent cone of a monomial curve and its Cohen-Macaulayness and
to [46] for their Hilbert functions.

36
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Let S be a polynomial ring K[xq,...,xx] over a field K. If M is a finitely
generated N-graded S-module, i.e. M = @MT, then the Hilbert function of

reN
M is defined to be Hy(r) = dimgM,, where the graded modules M, are finite

dimensional vector spaces over K. The Hilbert series H Py(y) of M is defined to
be the power series Z Hy(r)y". For example, the Hilbert function and Hilbert

reN
series of S itself are given by the following combinatorial formulas:

i) = (1) e mr = (1)

reN

Let C = C(nq,...,n;) be a monomial curve corresponding to the numeri-
cal semigroup < nq,...,n; > minimally generated by ni,...,ng. It is known
that the coordinate ring K[C] of C' is isomorphic to the affine semigroup ring
K[tm,... t"].  Clearly, K[t™, ..., t"] = @ K[t'] and dimgK[t'] = 1 if

reN
r €< ny,...,ng > and dimgK[t"] = 0 if r ¢< nq,...,n, >. Thus, Hilbert

function of the coordinate ring of C' takes only two values 0 and 1:

Hyge)(r) =1 if re<ng,...,np > and Hge)(r) =0 if » €<ng, ... g > .
If ¢ is the Frobenius number of the semigroup < ny,...,n; >, i.e. the largest
number not belonging to < ny,...,n; >, then Hilbert function is constant
(Hgqey(r) = 1) for all » > ¢ since in this case r €< nq,...,n; >. Thus, it is

non-decreasing in this case. If ny = 1, then r is always in the semigroup, and
thus Hgqe)(r) = 1, for any r € N. But if ny # 1, then there are certainly gaps, i.e.
r &< ny,...,n, >, for which Hgc)(r) = 0. Therefore, in this case, Hilbert func-
tion is NOT non-decreasing. For example, if C' = C(3,5,7), then the numerical

semigroup generated minimally by 3,5, 7 is
<3,5,7>=1{0,3,5,6,7,8,9,...} and gaps are {1,2,4} with c¢=4.

Hence, the Hilbert function of the coordinate ring of C' = C(3,5,7) is given by
the following sequence of numbers Hgje) = {1,0,0,1,0,1,1,1,...} and clearly
decrease at some points. Therefore we can conclude this paragraph by stating
that Hilbert function of the coordinate ring of C(ny,...,n;) is non-decreasing if

and only if ny = 1.
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If (R,m) is a local ring with maximal ideal m, then the Hilbert function of

R is defined to be the Hilbert function of its associated graded ring
grm(R> = @ mr/mr—&—l‘

Therefore,

Hg(r) = dimg(m"/m"*).
If (R,m) is a one dimensional Cohen-Macaulay local ring with embedding

dimension d := Hpg(1), the following are known about the conjecture of Sally

saying that the Hilbert function Hg(r) is non-decreasing:

e d =1, obvious as Hg(r) =1,

d = 2, proved by Matlis (1977) [45],

d = 3, proved by Elias (1993) [21],

d = 4, a counterexample is given by Gupta-Roberts (1983) [29],

e d > 5, counterexamples for each d are given by Orecchia(1980) [57].

The first counterexamples were the local rings associated to monomial curves.
Herzog and Waldi [37] in 1975 were the first who consider the monomial curve
C(30,35,42,47,148,153,157,169, 181,193) in A'® and its associated local ring
(R,m). They show that the Hilbert function of R is NOT non-decreasing by

explicitly writing it down:
Hgr =1{1,10,9,16,25,...}.
Later, Eakin and Sathaye [19] in 1976 took the monomial curve in A'? de-

fined by C'(15,21, 23, 47,48, 49, 50,52, 54, 55, 56, 58) and studied its associated lo-
cal ring (R, m). Hilbert function of R is NOT non-decreasing as it is given by

Hp={1,12,11,13,15,...}.
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5.1 An Effective Criterion for Checking the

Cohen-Macaulayness

In this section, we give a refinement of the criterion for checking the Cohen-
Macaulayness of the tangent cone of a monomial curve given in [2, Theorem 2.1].
This criterion uses the theorem of Garcia saying that a monomial curve C' =
C(n,...,nk) with ny smallest among the integers ny, . .., nj has Cohen-Macaulay
tangent cone if and only if " is not a zero divisor in gr,(k[[t™,...,t"]]) (or
equivalently, 1 is not a zero divisor in the ring K[zy,...,z%]/1(C).) [28]. In
[2, Theorem 2.1], first the generators of the defining ideal of the tangent cone
are computed by a Grobner basis computation and then from these generators
another Grobner basis is computed in order to check whether z; is not a zero
divisor. The advantage of this new criterion presented below is that, instead
of computing another Grobner basis after finding the generators of the defining
ideal of the tangent cone, it needs only a computation of the standard basis of the
generators of the defining ideal of the monomial curve with respect to a special
local order. Recall that a local order is a monomial ordering with 1 greater than

any other monomial. For the examples and properties of local orderings, see [32].

Lemma 5.1 Let < ny,...,ni > be a numerical semigroup minimally generated
by the integers ny, . ..,ng among which ny is the smallest. Let C' = C(nq,...,ng)
be the associated monomial curve and G = {f1,..., fs} be a minimal standard
basis of the ideal I1(C) C K|xq,...,xx] with respect to the negative degree reverse
lexicographical ordering that makes x1 the lowest variable. C' has Cohen-Macaulay
tangent cone at the origin if and only if x1 does not divide LM(f;) for 1 <i <k,
where LM( f;) denotes the leading monomial of a polynomial f;.

Proof: Recalling that f. is the homogeneous summand of the polynomial
f of least degree, if z; divides LM(f;) for some ¢, then either f;, = zym or
fi. = xym + > ¢;m;, where m;’s are monomials having the same degree with
rim and ¢;’s are in K. In the latter case, x; must divide each m;, because

we work with the negative degree reverse lexicographical ordering that makes
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21 the lowest variable. This implies that in both cases f;, = x;9 where g is a
homogeneous polynomial. Moreover, g € I(C),. If g € I(C),, then there exists
f € I(C) such that f. = g so LM(f) = LM(g). Since the ideal generated by the
leading monomials of the elements in I(C') (with respect to the negative degree
reverse lexicographical ordering which makes z; the lowest variable) is equal to
the ideal generated by the leading monomials of the elements in G, there exists
an f; € G such that LM(f;) divides LM(f) = LM(g) and this contradicts with
the minimality of G. Thus, x19 € I(C)., while g & I(C)., which makes z; a
zero-divisor in K{[zi,...,z¢]/I(C).. Hence, the tangent cone of the monomial
curve C'is not Cohen-Macaulay. Conversely, if K|x1, ..., zx]/I(C), is not Cohen-
Macaulay, then x; is a zero-divisor in K[xq,...,x%]/I(C).. Thus, xym € I(C),,
where m is a monomial and m ¢ I(C).. The ideal generated by the leading
monomials of the elements in (C') obviously contains xym. Since G is a standard
basis, there exists f; € G such that LM(f;) = zym/, where m/ divides m and
m’' & I(C)., because m ¢ I(C),. This completes the proof. O

In this way, checking the Cohen-Macaulayness of the tangent cone of a mono-
mial curve has been just reduced to a computation of a standard basis with
respect to the negative degree reverse lexicographical ordering that makes z; the
lowest variable and checking whether any of the leading monomials of this basis

contains x.

Example 5.2 Let C' be the monomial curve given by C = C(6,7,15). The ideal
I(C) is generated by the set G = {x% — x% xyx3 — 23}, which has a minimal
standard basis with respect to the negative degree reverse lexicographical ordering
with x5 > w3 > 11 given by the set G' = {x} — 22, v1w3 — 23, 2303 — 2§, 25 — 27}
From 5.1, since x1 divides LM(z23 — x%) = x1x3, the monomial curve C does

not have a Cohen-Macaulay tangent cone.

5.2 Gluing and Cohen-Macaulay Tangent Cones

In this section, we first give the definition of gluing for numerical semigroups.



CHAPTER 5. HILBERT FUNCTION OF MONOMIAL CURVES 41

Definition 5.3 [65, Lemma 2.2] Let Sy and Sy be two numerical semigroups
minimally generated by my < --- < my and ny < --- < ny respectively. Let
p=bm+---+bm €5 and g = a1ny + -+ + apng € Sy be two positive
integers satisfying ged(p, q) = 1 withp & {ma,...,my} and q & {nq,...,ni}. The
numerical semigroup S =< qmy,...,qmy, pny,...,pn, > s called a gluing of the

semigroups S1 and Ss.

This definition of gluing is different from the one we gave before. In fact S
above is the gluing of its subsemigroups ¢S; and pSs. Since the monomial curve

defined by ¢S} is nothing but the one defined by S we prefer to use this definition

here.
Thus, the monomial curve C' = C(gmy,...,qmy,pni,...,pny) can be inter-
preted as the gluing of the monomial curves C; = C(my,...,m;) and Cy =

C(ny,...,nk), if p and ¢ satisfy the conditions in Definition 5.3. Moreoever, if
the defining ideals I(C}) C Klzy,...,2;] of Cy and I(Cs) C Ky1,...,yx] of Cy
are generated by the sets G = {f1,..., fs} and Gy = {g1,..., 9} respectively,
then the defining ideal of I(C) C K{z1,..., 2,1, ..., yx] is generated by the set

b a a
G:{flv"wfsagla-"?gt?m?l-"mll _yll"-ykk}

We first answer the following question: If C; and Cy have Cohen-Macaulay
tangent cones, is the tangent cone of the monomial curve C' obtained by gluing
these two monomial curves necessarily Cohen-Macaulay? The following example

shows that the answer is no.

Example 5.4 Let C) and Cy be the monomial curves Cy = C(5,12) and Cy =
C(7,8). Obviously, they have Cohen-Macaulay tangent cones. By a gluing of
Cy and Cy, we obtain the monomial curve C' = C(21.5,21.12,17.7,17.8). The
ideal 1(C') is generated by the set G = {x1? — 25,95 — ys, x129 — Y3}, which has a
minimal standard basis with respect to the negative degree reverse lexicographical
ordering with Ty > ys > y1 > x1 given by the set G' = {x1x9 — y3, 25 — 112, Y1 —
1T ys — ¥ wyyd — 13 adyb — it 23y — 215, 2oyl? — 218}, From Lemma 5.1, since

xy divides xyzo which is the leading monomial of the element T1xo —y3 € G', the



CHAPTER 5. HILBERT FUNCTION OF MONOMIAL CURVES 42

monomial curve C obtained by a gluing of Cy and Cy does not have a Cohen-

Macaulay tangent cone.

This example leads us to ask the following question:

Question. If two monomial curves have Cohen-Macaulay tangent
cones, under which conditions does the monomial curve obtained by
gluing these two monomial curves also have a Cohen-Macaulay tan-

gent cone?

To answer this question partly, we first give the definition of a nice gluing,

which generalizes the definition of a nice extension given in [4].

Definition 5.5 Let S; =< my,...,m; > and Sy =< nq,...,n, > be two nu-
merical semigroups minimally generated by my < --- < my and ny < --- < ny
respectively. The numerical semigroup S =< qmq,...,qmg, pni,...,pny; > ob-

tained by gluing S1 and Sy is called a nice gluing, if p = bymy + -+ -+ bym; € 5
and q = aing € Sy with a; < by + -+ + by.

Remark 5.6 Notice that a nice extension defined in [4] is exactly a nice gluing

with So =< 1 >.

Remark 5.7 [t is important to determine the smallest integer among the gener-
ators of the numerical semigroup S =< qmy,...,qm;, pny,...,pn > obtained by
gluing, since this is essential in checking the Cohen-Macaulayness of the tangent
cone of the associated monomial curve. The condition a1 < by + --- + b, with

my < ---<my, ng <--- <ng and ged(p, q) = 1 implies that
gmy = agnymy < (by + -+ b)mamy < pny = (bymy + - - + bymy)ny

and gqmy is the smallest integer among the generators of S.

We are now ready to state the following:
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Theorem 5.8 Let S7 =< mq,...,m; > and Sy =< nq,...,np > be two nu-
merical semigroups minimally generated by my < --- < my and ny < -+ < ng,
and let S =< qmq,...,qmi,pny,...,pn, > be a nice gluing of S and Sy. If
the associated monomial curves C; = C(myq,...,my) and Cy = C(ny,...,ng)
have Cohen-Macaulay tangent cones at the origin, then the monomial curve C' =
C(gmay,...,qmy,pny,...,png) has also Cohen-Macaulay tangent cone at the ori-
gin, and thus, the Hilbert function of the local ring K [[t?™, ... 9™ P . P

15 non-decreasing.

Proof: By using the notation in [32], we denote the s-polynomial of the poly-
nomials f and g by spoly(f, g) and the Mora’s polynomial weak normal form of f
with respect to G by NF(f|G). Let Gy = {f1,..., fs} be a minimal standard ba-
sis of the ideal I(Cy) C K[y, ...,x;] with respect to the negative degree reverse
lexicographical ordering with 5 > --+ > 2; > z; and Gy = {g1, ..., ¢:} be a mini-
mal standard basis of the ideal I(Cy) C Klyi, ..., yx] with respect to the negative
degree reverse lexicographical ordering with yo > -+ > y, > y;. Since C} and Cy
have Cohen-Macaulay tangent cones at the origin, we conclude from Lemma 5.1
that x1 does not divide the leading monomial of any element in G; and y; does
not divide the leading monomial of any element in G5 for the given orderings. The
defining ideal of the monomial curve C obtained by gluing is generated by the set
G={fi,-- [, 01, G, xlfl .. .:r;” —y{'}. Moreover, this set is a minimal stan-
dard basis with respect to the negative degree reverse lexicographical ordering
with yo > -+ >y, > y1 > x9 > -+ > 2 > w1, because NF(spoly(fi, g;)|G) =0,
NF(spoly(fi, 2 ... 2% — y)|G) = 0 and N F(spoly(g;, 2 ... 2l — 42)|G) = 0
for 1 <i<sand1<j <t Thisis due to the fact that NF(spoly(f,g)|G) =0,
if lem(LM(f), LM(g)) = LM(f) - LM(g). From Remark 5.7, gm; is the smallest
integer among the generators of G. Thus, C' has Cohen-Macaulay tangent cone
at the origin if and only if x;, which corresponds to ¢gmq, is not a zero-divisor
in K[x1,...,2,91,-..,9]/I(C)s. Since x; does not divide the leading monomial
of any element in Gy and Gy, and LM(2? ... 20 — y9) = y$*, z; does not di-
vide the leading monomial of any element in G, which is a minimal standard
basis with respect to the negative degree reverse lexicographical ordering with

Yo > - > Yp > Yy > Tg > --- > x;p > x7. Thus, from Lemma 5.1, C' has
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Cohen-Macaulay tangent cone at the origin. O

Remark 5.9 From Remark 5.6, every nice extension is a nice gluing. Thus, if
the monomial curve C' = C(my,...,my) has a Cohen-Macaulay tangent cone at
the origin, then every nice extension C' = C(qmq,...,qmy,bymy + -+ 4+ bymy) of
C has also Cohen-Macaulay tangent cone at the origin. Therefore, Theorem 5.8

generalizes the results in [2, Proposition 4.1] and [, Theorem 3.6].

Example 5.10 Let Cy and Cy be the monomial curves C; = C(my, my) with
my < my and Cy = C(ny,ng) with ny < ny. Obuiously, they have Cohen-
Macaulay tangent cones. From Theorem 5.8, every monomial curve C =
C(gmq, gms, pny, png) obtained by a nice gluing with ¢ = ayny, p = bymy + bameo,
ged(p,q) = 1 and a; < by + by has Cohen-Macaulay tangent cone at the ori-
gin, so the local ring R = K[t t™2 tP™ tP"2]] associated to the monomial
curve C' has a non-decreasing Hilbert function. Thus, by starting with fixed
my, Mo, Ny and Ny, we can construct infinitely many families of 1-dimensional lo-
cal rings with non-decreasing Hilbert functions. For example, consider the mono-
mial curves Cy = C(2,3) and Cy = C(4,5). By choosing ¢ = 2ny = 8 and
p = (2r)my + mg = 4r + 3, for any r > 1, we obtain the monomial curve
C(16,24,16r 4+ 12,207 + 15), which is a nice gluing of Cy and Cy. Since C' is also
a complete intersection monomial curve having a Cohen-Macaulay tangent cone,
the associated local rings are Gorenstein with non-decrasing Hilbert functions, and
that supports Rossi’s conjecture saying that a one-dimensional Gorenstein local

ring has a non-decreasing Hilbert function [4].

This example shows that gluing is an effective method to obtain new families
of monomial curves with Cohen-Macaulay tangent cones. Especially in affine 4-
space, nice gluing is a very efficent method to obtain large families of complete
intersection monomial curves with Cohen-Macaulay tangent cones, since every

monomial curve in affine 2-space has a Cohen-Macaulay tangent cone.



CHAPTER 5. HILBERT FUNCTION OF MONOMIAL CURVES 45

5.3 A Conjecture

It is also possible to construct large families of gluings, which are not nice, but still
give families of monomial curves with associated local rings having non-decreasing

Hilbert functions.

Example 5.11 Let C; and Cy be the monomial curves C; = C(5,12) and
Cy = C(7,8). Obviously, they have Cohen-Macaulay tangent cones and thus
their associated local rings have non-decreasing Hilbert functions. The family of

monomial curves
C=C(5B-7-(2d+1),12-7-(2d+1),7-17-d,8-17-d)

for d > 1 and d not divisible by 7 is a gluing, but not a nice gluing, of Cy and
Cy. Computations with Singular [31] show that, for 1 < d < 4, C' does not
have a Cohen-Macaulay tangent cone, but its associated local ring has a non-
decreasing Hilbert function. (Note that d =1 gives Example 5.2.) For d > 5 and
d not divisible by 7, the generator set G = {x1? — 23, y% — y5 yI?t! — o2 T92d—5}
of 1(C) is a minimal standard basis with respect to the negative degree reverse
lexicographical ordering with x1 < yo < y1 < x9. Since x1 does not divide the
set {x3,y5, Yyt of leading monomials of the polynomials in the set G, C' has
Cohen-Macaulay tangent cone at the origin by Lemma 5.1. As a result, the Hilbert
function of the local ring R = K [[t>7 Q4+ 127-2d+1) 3717d 3817d)] qs50ciated to
the monomial curve C is non-decreasing for d > 1 and d not divisible by 7.
Again notice that for each d, C' is a complete intersection monomial curve, and

this result also supports Rossi’s conjecture.

All these results and computations give examples of local rings, which have
non-decreasing Hilbert functions and which are associated to monomial curves
obtained by a gluing or a nice gluing of two monomial curves with associated
local rings having non-decreasing Hilbert functions. Thus, depending on this

idea, we formulate the following conjecture:

Conjecture 5.12 If the Hilbert functions of the local rings associated to two
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complete intersection monomial curves are non-decreasing, then the Hilbert func-
tion of the local ring associated to the monomial curve obtained by gluing these

two monomial curves is also non-decreasing.

We know that every monomial curve in affine 2-space is obtained by gluing two
complete intersection monomial curves Cy = C(1) and Cy = C(1) both having
Cohen-Macaulay tangent cones obviously, and it is easy to check that every local
ring associated to a monomial curve in affine 2-space has a non-decreasing Hilbert
function. In affine 3-space, every monomial curve is not obtained by gluing,
but every local ring associated to a monomial curve in affine 3-space has also a
non-decreasing Hilbert function. This follows from the important result of Elias
saying that every one-dimensional Cohen-Macaulay local ring with embedding
dimension three has a non-decreasing Hilbert function [21]. Thus, the answer to
the above conjecture is positive for the monomial curves in affine 2-space and
3-space, which are obtained by gluing, while the conjecture is open even for the
complete intersection monomial curves in 4-space, which are obtained by gluing.
What makes this question important is that, if the answer is affirmative, it will
have been proved that the Hilbert function of every local ring associated to any
complete intersection monomial curve is non-decreasing. This will be due to a
result of Delorme [17], which is restated by Rosales in terms of gluing and says that
every complete intersection numerical semigroup minimally generated by at least
two elements is a gluing of two complete intersection numerical semigroups [65,
Theorem 2.3]. Considering that it is still not known whether the Hilbert function
of local rings with embedding dimension four associated to complete intersection
monomial curves in affine 4-space is non-decreasing, this will be an important step
in proving the conjecture due to Rossi saying that a one-dimensional Gorenstein

local ring has a non-decreasing Hilbert function.

5.4 Hilbert functions via Free Resolutions

In this section we give an approach to study Hilbert functions using free reso-

lutions. The advantage of this is that one can still get non-decreasing Hilbert
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function in the case where the tangent cone is NOT Cohen-Macaulay.

Let R be an N-graded ring. Given a finitely generated N-graded module M
over R, the Hilbert function of M is defined to be Hy/(r) = dimg(M,), for all
r € N.

If M has a minimal finite graded free resolution
0—Fyj—-—F—-F—-M-=—0

then the Hilbert Function of M is given by Hy (1) = 32 Hp,(r), where the free
modules F; = P,y R(—j)%i, for all i = 0,...,d = projdim(M). Moreover the
Hilbert series of M is given by [} ., (" 1>, (1) Bigt].

n—1

One can use this approach to show that nice extensions of monomial curves
with non-decreasing Hilbert functions have non-decreasing Hilbert function as
well. For instance, if C' = C(6q, 7q, 15¢, m) is a nice extension of C'(6,7,15), that
is m = 6b; +7by+ 15b3 and g < by + by + b3, then we show that its Hilbert function
is non-decreasing. Note that tangent cones of these monomial curves are NOT

Cohen-Macaulay.

Hilbert functions of certain extensions can be computed using a computer
program such as Macaulay and Singular. For instance, the following sequence of

numbers describe the Hilbert function of extensions where 1 < ¢ < 7:
1,4,7,9,10,11,12,12,12,12,12, . ..
1,4,8,12,14,16,17,18, 18,18, 18, ...
1,4,8,13,17,20,22,23,24,24,24, . ..

1,4, 8,13, 18,23, 26, 28, 29, 30, 30, . ..
1,4,8,13,18,24,29,32, 34, 35,36, . ..

Obviously, they are non-decreasing. For the extensions where ¢ > 7, we use free

resolutions of their tangent cones.

Let R = K[y, xa, 3, 4] and M = R/I(C)*. A minimal free resolution of M
is as follows
0—-Fy—>Fs—>FK—>F —>F—>M-—>0
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it () (-0~ (3)- (3
O 6

= [r+1+r+3r—3+r—4

= [6r — 6], for all r < ¢, which is non-decreasing.

When r > g + 4 we similarly find that
s = ()« (D)) ()39 (3)-
- [Q(T—g+1)+(r—(11+1>]+<7“;q)+<r—g—2)_
)1
e (- (3)
. [(T;S)_<T;4)]_(T_q+1)_[<r—g+1)_(r;q)]_
- [(r—g—i-l)_(r—g—2>]_[(r—g—3>_(r—g—él)}_

= [6r — 6] — [6r — 6q — 6] = 6¢, for all > q+ 4,

which is non-decreasing as well. One can compute the following values directly

using the formula of Hilbert function above:

Hu(q) = 69—7, Hy(g+1) = 6g—4, Hyr(g+2) = 6¢—2, and Hyr(g+3) = 6g—1.
Hence, Hilbert functions of all nice extensions C' = C(6q, 7q, 15, m), for all ¢ > 7,

are non-decreasing.



Chapter 6

Conclusion

We studied certain properties of monomial curves in this thesis. Namely, we inves-
tigate if they are set theoretic complete intersection and if their Hilbert function
is non-decreasing. We introduce and discuss certain properties of extensions of
monomial curves. We have seen that the algebraic structure of affine extensions
are easy to determine contrary to the case of projective extensions. That is why
we have used affine parts of the projective extensions to conclude that they are
set theoretic complete intersections, a geometric property. This is also valid for
projection of toric ideals, that is, the relation between the toric ideals in ques-
tion is mysterious in general. Our experiences with gluing technique suggest that
knowing the algebraic description of the ideal helps to understand the geometry
of the toric variety. Therefore, a logical continuation may be to find the exact
relation between a toric ideal and its projections. More precisely, it would be
interesting to extend a minimal basis of a toric ideal to a minimal basis of its

projection.

We have stated a conjecture saying that a gluing of two monomial curves
whose Hilbert functions are non-decreasing has a non-decreasing Hilbert function.
And we have shown particularly that the conjecture is true for nice extensions,
a special type of gluing. Hence, another very natural continuation is to prove
the conjecture which will imply that Hilbert functions of complete intersection

monomial curves are non-decreasing.

20
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