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ABSTRACT

TEXT CATEGORIZATION AND ENSEMBLE
PRUNING IN TURKISH NEWS PORTALS

Çağrı Toraman

M.S. in Computer Engineering

Supervisor: Prof. Dr. Fazlı Can

August, 2011

In news portals, text category information is needed for news presentation. How-

ever, for many news stories the category information is unavailable, incorrectly

assigned or too generic. This makes the text categorization a necessary tool

for news portals. Automated text categorization (ATC) is a multifaceted diffi-

cult process that involves decisions regarding tuning of several parameters, term

weighting, word stemming, word stopping, and feature selection. It is important

to find a categorization setup that will provide highly accurate results in ATC for

Turkish news portals. Two Turkish test collections with different characteristics

are created using Bilkent News Portal. Experiments are conducted with four clas-

sification methods: C4.5, KNN, Naive Bayes, and SVM (using polynomial and

rbf kernels). Results recommend a text categorization template for Turkish news

portals. Regarding recommended text categorization template, ensemble learning

methods are applied to increase effectiveness. Since they require many compu-

tational workload, ensemble pruning strategies are developed. Data partitioning

ensembles are constructed and ranked-based ensemble pruning is applied with

several machine learning categorization algorithms. The aim is to answer the fol-

lowing questions: (1) How much data can we prune using data partitioning on the

text categorization domain? (2) Which partitioning and categorization methods

are more suitable for ensemble pruning? (3) How do English and Turkish differ

in ensemble pruning? (4) Can we increase effectiveness with ensemble pruning

in the text categorization? Experiments are conducted on two text collections:

Reuters-21578 and BilCat-TRT. 90% of ensemble members can be pruned with

almost no decreasing in accuracy.

Keywords: Text Categorization, News Portal, Ensemble Learning, Ensemble

Pruning.
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ÖZET

TÜRKÇE HABER PORTALLARINDA METİN
SINIFLANDIRMA VE TOPLULUK BUDAMA

Çağrı Toraman

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Fazlı Can

Ağustos, 2011

Haber portalları vb. sistemlerde haberlerin otomatik olarak sınıflandırılması

gerekmektedir. Ancak birok haberin kategori bilgisi bulunmamakta, yanlış

atanmş olmakta ya da kapsamlı olmaktadır. Bu durum otomatik haber kate-

gorizasyonunu gerekli kılmaktadır. Otomatik yazı sınıflandırma (OYS) parame-

tre ayarlama, terim ağırlıklandırma, kelime kökü bulma, ortak kelimeleri yok

etme, ve özellik seçme gibi kararları içeren çok yönlü bir işlemdir. OYS’de

yüksek doğruluk sonuçları sağlayan bir kategorizasyon ayarlaması yapmak Türkçe

haber portalları için önemlidir. Bilkent Haber Portalı kullanılarak farklı karak-

terlere sahip iki Türkçe veri kümesi yaratılmıştır. Deneyler dört kategorizasyon

yöntemiyle yapılmıştır: C4.5, KNN, Naive Bayes, ve SVM (polynomial ve rbf

çekirdekleri kullanılarak). Sonuçlar Türkçe haber portalları için bir yazı kate-

gorizasyonu şablonu önermektedir. Tavsiye edilen yazı kategorizasyonu şablonu

göz önünde bulundurarak etkililiği arttırmak için topluluk öğrenme yöntemleri

kullanılmaktadır. Ancak bu yöntemler çok fazla hesaplama iş yükü gerek-

tirdiğinden topluluk budama stratejileri geliştirilmiştir. Veri ayırma topluluk-

ları oluşturulmuş ve sıralamaya dayalı topluluk budama çeşitli otomatik öğrenme

kategorizasyon algoritmalarıyla uygulanmıştır. Amaç şu soruları yanıtlamaktır:

(1) Yazı kategorizasyon alanında veri ayırma kullanılarak ne kadar veriyi bu-

dayabiliriz? (2) Hangi veri ayırma ve kategorizasyon yöntemleri veri budama

için daha uygundur? (3) İngilizce ve Türkçe dillerde topluluk budama ne kadar

fark etmektedir? (4) Yazı kategorizasyonu alanında topluluk budama ile etkililiği

arttırmak mümkün müdür? Deneyler iki veri kmesinde yapılmıştır: Reuters-

21578 ve BilCat-TRT. 90% oranında topluluk üyesi hassasiyette hemen hemen

hiç eksilme olmadan elenmektedir.

Anahtar sözcükler : Yazı Sınıflandırma, Haber Portalı, Topluluk Öğrenme, Toplu-

luk Budama.
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Chapter 1

Introduction

It is easy to reach news from various resources like news portals today. In news

portals news categorization makes the news articles more accessible. (In the thesis

“news,” “news article,” “news story,” and “document” are used interchangeably.)

Manual news categorization (classification) is slow, expensive and inconsis-

tent [19]. Therefore automated text categorization (ATC) is one of the primary

tools of news portal construction. Figure 1.1 shows the main page of Bilkent

News Portal (http://139.179.21.201/PortalTest/). It is a typical news portal sys-

tem that displays numerous news articles coming from several RSS resources.

It has been active since 2008 and provides links to more than 1.5 million news

articles. (In the thesis “automated news categorization,” “news categorization,”

“text categorization,” and “text classification” are used interchangeably.)

The aim of news categorization is to assign pre-defined category labels to

incoming news articles. New documents are assigned to pre-defined categories

by using a training model which is learned by a separate training document

collection. This machine learning mechanism is illustrated in Figure 1.2. Text

categorization process is handled by a classifier which is the output of a machine

learning categorization algorithm. The categorization algorithms used in this

study are explained in the third section. Classifier then uses the training model

to classify a new document.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Bilkent news portal.

When there are more than one classifiers to make category decisions, the

system is called ensemble of classifiers. Ensemble of classifiers are known to

perform better than individual classifiers when they are accurate and diverse

[13]. In text categorization, they are proven to perform better in some cases [14].

Ensemble of classifiers is hard to construct, train, and use when training data

is huge. Ensemble pruning (selection) methods are used for removing as many

classifiers as possible from ensemble of classifiers. Ensemble clustering [54] is a

similar problem that is beyond the scope of this study.

1.1 Motivations

News categorization is important in the implementation of news portals (news

aggregators) since they usually provide a categorized presentation of news sto-

ries. News articles coming from RSS resources include category tags; however, in



CHAPTER 1. INTRODUCTION 3

Figure 1.2: News categorization based on machine learning.

several cases these tags are empty, incorrect, or too generic. For example “last

minute (son dakika)” is used very frequently as a news category. Furthermore,

news category information is also valuable for other related applications such as

information filtering and novelty detection [6] since they also benefit from news

category information.

There are several classification methods in the literature. Applying ATC is a

complex process. Their success varies according to decisions regarding different

aspects of text categorization such as parameter tuning, term weighting, prepro-

cessing in terms of word stemming and word stopping, and feature selection. It

is important to make accurate decisions on these aspects. Since there are various

resources feeding news portals in long periods and number of aggregated news

changes according to recent news agenda it is important to choose a proper train-

ing set size for ATC. Furthermore, training data should be a good representative

of the recent news agenda. In practice training dataset will be automatically cre-

ated from the tagged current news articles received from reliable news resources.

Training with too many or too few most recent news stories can affect the catego-

rization process in a negative way since both cases misrepresent the current news

agenda. Therefore, it is important to have an accurate categorization template

for effective results in Turkish news portals.

Ensemble learning is known to increase effectiveness of text categorization
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[14]. It is also used for reducing errors occurred by noises in data [73]. Ensemble

of classifiers are not efficient due to the computational workload. Construction

of base classifiers, training them, and getting predictions from each of them re-

quire too much time in text categorization when there are huge numbers of text

documents. For instance, in news portals, it is a burden to train a new ensemble

model or test new documents. There is a need for pruning as many base classi-

fiers as possible. Parallel computing strategies can be applied in order to reduce

time computational workload of ensemble learning [16]. But it is not the scope

of this study. Various ensemble selection methods are proposed to overcome this

problem [9]. The main idea is to increase the efficiency by reducing the size of en-

semble without hurting the effectiveness. Besides, it can increase the effectiveness

if selected classifiers are more accurate and diverse than base classifiers.

By using ensemble methods we aim to maximize the correctness of news cate-

gories and by ensemble pruning we aim to minimize the time cost of this effort. In

this study, we examine ensemble pruning in text categorization by applying dif-

ferent data partitioning methods for construction of base classifiers and popular

classification algorithms to train them. We select a simple ranked-based ensem-

ble pruning method in which base classifiers are ranked (ordered) according to

accuracy performance in a separate validation set and then pruned predefined

amounts.

1.2 Contributions

The contributions of this thesis are the followings. We:

• recommend a comprehensive ATC template for Turkish news articles.

• examine impacts of ATC-issues (size and robustness of training set) on news

portals.

• create two new datasets including Turkish news articles labeled with cate-

gory information.
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• answer the following four questions about ensemble pruning in news cate-

gorization:

– how much data can we prune without hurting the effectiveness using

data partitioning?

– which partitioning and categorization methods are more suitable for

ensemble pruning in the text categorization domain?

– how do English and Turkish differ in ensemble pruning?

– if we can increase effectiveness with ensemble pruning in the text cate-

gorization domain and which combination of partitioning method and

categorization algorithm gives the highest accuracy?

1.3 Overview of the Thesis

This study examines two main topics: developing a ATC template for Turkish

news portals and studying ensemble pruning in news categorization. The organi-

zation of this study is the following:

• Chapter 2 summarizes the studies on Turkish ATC and ensemble selection.

• Chapter 3 explains categorization algorithms used in this study and catego-

rization template details. Subsequently chapter 4 gives a brief introduction

to ensemble of classifiers and ensemble pruning.

• Chapter 5 gives the experimental designs.

• Chapter 6 gives the experimental results.

• Chapter 7 concludes this study and gives some future research pointers.



Chapter 2

Related Work

2.1 Text Categorization

In early literature, automated text categorization has been implemented with

knowledge engineering [52]. For each category label, experts define a set of

rules and then new document is assigned according to these rules. However,

this method requires much work and time load. Moreover, changes in definitions

of categories or domain result in re-construction of the system.

Studies on machine learning emerge new techniques for text categorization.

Instead of defining a set of rules by experts, documents are automatically trained

to create these rules. This machine learning paradigm is implemented with vari-

ous classifier algorithms. The most popular classifiers are probability-based clas-

sifiers [40], decision trees [3], regression models [69], neural networks [65], nearest

neighbors [29], and support vector machines [23].

There are several studies that examine different classification algorithms. For

instance, Lewis and Ringuette [30] work on probability-based Bayesian models

and decision trees. The works by Yang and Liu [70] and Sebastiani [52] are

comprehensive studies regarding various classifiers and their performances.

6
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Studies on Turkish text categorization are limited. Güran et al. [18] analyze

text categorization methods in Turkish texts to see the effect of n-gram models.

Another work by Amasyalı and Diri [1] uses a similar approach for author, genre,

and gender classification. Amasyalı and Yıldırım [2] consider some aspects of

news categorization with a small dataset. Cataltepe et al. [10] study Turkish

text categorization using shorter roots. In a recent work, Torunoglu et al. [60]

examines preprocessing in Turkish news categorization.

2.2 Ensemble Selection

Ensemble of classifiers has become popular in recent years due to its benefits

on effectiveness. It is mainly used in information retrieval, data mining, ma-

chine learning, and pattern recognition. Kittle et al. [26] examines combining

classifiers in an effective way. Dietterich [13] also gives ensembling methods and

reasons to use ensemble learning in a comprehensive manner. Rokach [48] studies

ensemble of classifiers in a framework that includes building blocks of ensembles.

Ensemble of classifiers has recently become popular in different domains. For

example, Sanden and Zhang [51] apply ensemble techniques in multi-label music

information retrieval.

In literature, there are several ensemble selection studies based on pattern

recognition and machine learning problems. The work by Rokach and Lior [47] is

a comprehensive study on existing surveys on ensemble selection. It also gives a

taxonomy based on combiner, classifier dependency, diversity, ensemble size, and

cross-inducer. Tsoumakas et al. [61] give a taxonomy and short review on en-

semble selection. Their taxonomy includes four selection strategies: search-based,

clustering-based, ranked-based, and other. Our work is a member of ranked-based

ensemble selection. We rank our ensemble members according to their accuracy

on a separate validation set.

Margineantu and Dietterich [36] study search-based ensemble pruning consid-

ering memory requirements. Classifiers constructed by AdaBoost algorithm [17]
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are pruned according to five different measures for greedy search based on accu-

racy or diversity. Their results show that it is possible to prune 60-80% (60 to

80%) ensemble members in some domains with good effectiveness performance.

Tamon and Xiang [56] then study on Kappa pruning used by Margineantu and Di-

etterich [36] in order to increase its accuracy. They also introduce a NP-complete

approach on boosting pruning, but they do not test their approach. Both studies

employ C4.5 decision trees.

Prodromidis et al. [45] define pre-pruning and post-pruning for ensemble se-

lection in fraud detection domain. In our study, their pre-pruning corresponds

to forward greedy search and post-pruning means backward greedy search. Their

validation measures are based on diversity, coverage, cost complexity, and correla-

tion. They produce their base classifiers in a mixed way such that they divide the

train data into data partitions by time divisions and then apply different classifi-

cation algorithms including decision trees to these partitions. Another difference

in this work is that they employ meta-learning. They get upto 90% pruning with

60-80% of the original performance.

Sharkey et al. [53] study ensemble selection in fault diagnosis and robot

localization by using neural nets. They introduce an approach called “test and

select” that finds optimal ensembles. They use search-based ensemble selection

when number of neural nets to be combines are small. Random-based selection

is applied when this number is large. They divide a separate part of the train

data for validation. The main result is that their approach improves accuracy for

their study domain.

Roli et al. [49] give methods for designing ensemble of classifiers in pattern

recognition domain. They study search-based, diversity-based, clustering-based,

and heuristic methods to select among base classifiers. They emphasize that their

approach does not guarantee optimal ensemble design for the classification task

and “optimal design is still an open issue.”

The work by Fan et al. [15] is another fraud detection study employing greedy

search with backfitting. Its main contribution is that they consider cost-sensitive

ensembles. They employ decision trees and use benefit as validation measure.
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They also introduce a novel dynamic scheduling approach. Their results show

that 90% ensemble members can be pruned with the same or higher accuracy with

benefit-based greedy search. Dynamic scheduling can also be applied to pruned

ensemble in order to reduce another 25-75% of pruned ensemble members.

Zhou et al. [74] also study neural network ensembles. They introduce a genetic

ensemble selection algorithm called GASEN. They compare their approach with

bagging and boosting. They find that “it may be a better choice to ensemble

many instead of all the available neural networks.”

Caruana et al. [9] employ forward greedy search for ensemble selection on bi-

nary machine learning problems. They use different classification algorithms that

are artificial neural nets, decision trees, k-nearest neighbors, and support vector

machines. Their production method is heterogeneous such that their ensem-

bles consist of different classifiers trained by different algorithms and parameters.

They divide a separate set for validation and use accuracy and diversity as vali-

dation measure. They show that their selection approach outperforms traditional

ensembling methods such as bagging, boosting. Caruana et al. [8] then examine

some unexplored aspects of ensemble selection as a continuation of their previous

study [9]. Their work includes examining effects of different validation set and

ensemble sizes. They indicate that increasing validation set size improves perfor-

mance. They also show that pruning upto 80-90% ensemble members rarely hurt

the performance.

Liu et al. [32] employs a genetic algorithm called LVFd. This algorithm is

based on a filter model of feature selection algorithm LVF and considers diversity

instead of consistency. They use bagging for ensemble construction and C4.5 de-

cision trees. Diversity is the validation measure to select among base classifiers.

They find that size difference between full and selected ensembles is 75 while ac-

curacy is slightly decreased and diversity is similar. They suggest that “ensemble

size can be reduced as long as its diversity is maintained.”

Mart́ınez-Muñoz and Suárez [38] examine search-based ensemble pruning with

bagging. They use CART trees and three different measures for forward greedy

search. They test different number of ensemble sizes to find with their search
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methods and show that 80% members can be removed with Margin Distance

Minimization (MDM). Hernández-lobato et al. [20] study search-based ensemble

pruning with bagging on regression problems. They search according to an al-

gorithm that is similar to the work by Margineantu and Dietterich [36]. They

decide to use 20% of ensemble members by looking regression errors generated

by different size of subensembles that are ordered previously. This heuristic rule

performs well according to their test results. Mart́ınez-Muñoz and Suárez [39]

then uses training error defined in boosting in order to use in greedy search of

ensemble pruning. This study is similar to the work by Hernández-lobato et al.

[20] and their results are similar as well. They give two heuristic rules for ensem-

ble pruning one of which prunes 20% of ensemble members like in the work by

Hernández-lobato et al. [20].

The work by Zhang et al. [72] is a sample study for applying a genetic algo-

rithm to select ensemble on various machine learning problems. They introduce

semi-definite programming (SDP) to select ensemble subset. They compare this

method with diversity-based approach used in the work by Prodromidis et al.

[45] and Kappa-based ensemble selection used in Margineantu and Dietterich

[36]. Their ensembles are produced by AdaBoost. The C4.5 decision tree algo-

rithm is used. They set ensemble size as 25 (i.e they do not examine different

pruning levels) and find that SDP is more efficient and effective than other two

methods.

Mart́ınez-Muñoz et al. [37] is a comprehensive study on ordered pruning.

They examine six different pruning techniques including kappa, reduce-error, and

margin distance minimization. They use bagging for ensemble construction and

apply CART trees. They compare their results with ensemble pruning based on

genetic algorithms, semidefinite programming, and AdaBoost. They also examine

using different number of base classifiers and using all or separate part of training

set for validation. They find that pruning performs better while using larger

number of base classifiers and all training set rather than separate part. The best

performance is obtained by pruning 20-40% of ensemble members. They also

indicate that computational cost of ordered-based pruning is less than genetic

pruning algorithms.
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Ulas et al. [62] study ICON algorithm, which is based on greedy search, on 38

datasets with 14 classification algorithms. They examine different validation mea-

sures, greedy search directions and methods for combining classifier predictions.

They compare the results with bagging, AdaBoost, and random subspace method.

They find that “an incremental ensemble has higher accuracy than bagging and

random subspace method; and it has a comparable accuracy to AdaBoost, but

fewer classifiers.” They do not examine different pruning levels.

In a recent work, Lu et al. [34] introduce ensemble selection by ordering

according to a heuristic measure based on accuracy and diversity. Similar to

our study, they then prune the ordered (ranked) ensemble members using pre-

defined number of ensemble sizes. They compare their results with bagging and

the approach used by Mart́ınez-Muñoz and Suárez [38]. Their method usually

performs better than others when 15% and 30% of ensemble members are selected.

The above studies are all based on static selection as our study is. However,

there are also dynamic selection strategies in which different classifiers are em-

ployed for different test patterns. The work by Ko et al. [27] is an example of

dynamic ensemble selection. They examine some dynamic selection methods in

pattern recognition domain. Bagging, boosting, and random subspace are used

for ensemble construction. They also examine different validation set sizes. They

find that dynamic selection can perform better than static selection.

2.3 Summary of Related Work and Difference

of Our Work

We list a summary of the above related work in Table 2.1 and their details on

Table 2.2.

Turkish text categorization studies do not consider the motivation of this

study and moreover there is no specific studies regarding news portals. They use

small datasets that are not reflect the real data in news portals.
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Our study is different from the above ensemble pruning studies in terms of

the production method of ensemble members, the way of ensemble selection, and

the domain to which ensemble selection applied. We introduce a novel approach

that examines data partitioning ensembles in ensemble selection. We also exam-

ine different classification algorithms that are popular in text categorization for

ensemble selection. Our ensemble selection method is also simple such that we

do not use greedy search or a genetic algorithm.
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Table 2.1: Selected related work on ensemble selection. Domain: ML-Machine Learning Problems, PR-Pattern Recogni-
tion Problems, FD-Fraud Detection, NC-News Categorization. Classifiers: ANN-Artificial neural nets, DT-Decision tree,
KNN-k nearest neighbor, MLP-Multilayer Perceptrons, NB-Naive Bayes, PNN-Probabilistic Neural Networks, PWC-Parzen
windows classifiers, RBF-Radial Basis Function neural networks, QDC-Quadratic discriminant classifiers, SVM-Support
Vector Machine.

Work Domain Classifier # of dataset Result
(Marg. and Diet., 1997) [36] ML DT 10 60-80% pruning in some domains

(Prodromidis et al., 1999) [45] FD Bayes,DT,Ripper 2 90% pruning results with 60-80%
of original performance

(Fan et al., 2002) [15] FD DT 3 90% pruning with same/higher
acc

(Zhou et al., 2002) [74] PR,ML ANN 20 Many instead of all neural
networks under certain circum-
stances.

(Caruana et al., 2004) [9] Binary ML ANN,DT,KNN,SVM 7 Selection outperforms traditional
(Liu et al., 2004) [32] ML DT 29 Size difference bw full and se-

lected ensembles is 75 while ACC
is slightly decreased and DIV is
similar.

(Mart. and Suárez, 2004) [38] ML DT 10 Up to 80% with MDM
(Caruana et al., 2006) [8] Binary ML ANN,DT,KNN,SVM 7 -Pruning rarely hurt the perfor-

mance (up to 80-90%)
(Hernández-Lobato et al., 2006) [20] Regression ANN 14 Pruning 80% performs well.

(Ko et al., 2008) [27] PR KNN,PWC,QDC 6 Dynamic can perform better than
static

(Mart́ınez-Muñoz et al., 2009) [37] ML DT 6 20-40% pruning.
(Lu et al., 2010) [34] ML C4.5 26 Performs better when 15% and

30% selected.
(Our work) NC DT,KNN,NB,SVM 2 Up to 90% pruning with almost

no decrease in accuracy.
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Table 2.2: Selected related work on ensemble selection (details). Production: BO-Boosting, BA-Bagging, RS-Random
Subspace, H-Dividing Heuristicly, DJ-Disjunct, F-Fold, R-Random-size Sampling. Validation Set: ALL-Using all train
set, SEP-Using separate part of train set. Validation Measure: ACC-Accuracy, BE-Benefit, CAL-Calibration, COM-
Complementariness, COV-Coverage, DIV-Diversity, EGE-Estimated generalization error, KAP-Kappa MDM-Margin dis-
tance minimization, MSE-Mean-square error, RE-Reduce-error

Work Production Selection Val. Set Val. Measure
(Marg. and Diet., 1997) [36] Homog.(BO) Greedy Search ALL,SEP DIV,RE,KAP

(Prodromidis et al., 1999) [45] Mixed(H) Greedy Search SEP COV,DIV
(Fan et al., 2002) [15] Mixed(DJ) Greedy Search ALL BE,DIV,MSE
(Zhou et al., 2002) [74] Homog.(BA,BO) Genetic Algo. ALL EGE

(Caruana et al., 2004) [9] Heter. Greedy Search SEP ACC,DIV
(Liu et al., 2004) [32] Homog.(BA) Genetic Algo. ALL DIV

(Mart. and Suárez, 2004) [38] Homog.(BA) Ordered Pruning ALL COM,MDM,RE
(Caruana et al., 2006) [8] Heter. Greedy Search SEP ACC,DIV

(Hernández-Lobato et al., 2006) [20] Homog.(BA) Ordered Pruning ALL ACC
(Ko et al., 2008) [27] Homog.(BA,BO,RS) Dynamic selection ALL ACC

(Mart́ınez-Muñoz et al., 2009) [37] Homog.(BA) Ordered Pruning ALL,SEP COM,KAP,RE,MDM
(Lu et al., 2010) [34] Homog.(BA) Ordered Pruning SEP ACC,DIV

(Our work) Homog.(BA,DJ,F,R) Ordered Pruning SEP ACC



Chapter 3

News Categorization

In this chapter we introduce a comprehensive categorization template that in-

cludes various decisions regarding text categorization and news portals. Then

the categorization algorithms used in this study are explained in detail.

3.1 Developing a Template

Our template for Turkish news articles consists of two main parts: (i) determining

a highly accurate categorization setup for Turkish news articles that will provide

highly accurate results and (ii) examining design issues on news portals. Before

going into news portal issues, it is important to see how Turkish language reacts

to techniques used in text categorization. In this respect, we aim to find an highly

accurate setup including various aspects used in text categorization.

Firstly, different types of machine learning-based classifiers result in differ-

ent results. We choose to use C4.5 decision tree, KNN (k -Nearest Neighbor),

Naive Bayes (NB), and SVM (Support Vector Machines) with the kernels poly-

nomial(poly) and rbf. KNN [11] has been studied over years and becomes a

traditional benchmark. SVM [63] becomes popular in recent years, since it is

reported to give good results. There are some modified versions of SVM that are

15
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faster than the traditional one. One of them, SMO (Sequential Minimal Opti-

mization) [44] is used in this study. C4.5 [46] which is a decision tree approach

and probability-based Naive Bayes [24] are two popular classification approaches

studied in literature. The details of these algorithms are given in the following

section.

Classification methods usually have parameters giving different results with

respect to the given data. KNN needs k value representing number of nearest

neighbors. Choosing an optimal k value is impossible due to the variations among

data sets. SVMs are linear classifiers in their simple form; but they can also learn

non-linear classifiers by using kernel functions like poly or rbf [23]. These kernels

vary with degree and width parameters respectively. Lastly, C4.5 decides to prune

by looking a threshold called confidence value.

Term weighting techniques are important in information retrieval literature.

In its simple form, terms are weighted as binary 0s or 1s with respect to their

occurrence. Term Frequency (tf ) takes how many times a term appears in docu-

ment into account. Lastly, tf.idf [50], which is a traditional approach in IR, uses

occurrence of a term in other documents as well as term frequency.

Preprocessing techniques include using stemmers and applying a stop word

list which removes frequently used words in that language. Using stems of words

reduces the dimensionality of the given data. There are various studies to develop

stemming algorithms in English like [33]. In Turkish, we choose to apply Fn

stemming approach which simply uses first n characters of a word. We use the

Turkish stop word list given in [7].

Feature selection is used in text categorization to choose the most discrimi-

nating features. Feature means either a word or a phrase. We use its simple form

as a word. Features are obtained by calculating a scoring function. We choose to

apply information gain, gain ratio, chi-squared statistic, and relief [28, 41, 71].

We aim to obtain a highly accurate ATC setup for Turkish news articles by

investigating the effects of:
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• parameter tuning,

• term weighting ,

• stemming and stopping (that we also refer to as preprocessing),

• indexing (feature selection).

News portals get news articles from various news resources and these documents

accumulate with time. In news portals, we observe that:

• It is important to decide how many of the incoming articles should be used

during training. Choosing an appropriate training size for all applications

is a common concern [68].

• Content of news articles changes with time. Content analysis is an old

research topic. A robust classifier in our study is expected to have small

differences in its performance as news stories changes with time.

3.2 Categorization Algorithms

Categorization algorithms used in this study are C4.5 decision tree, k -Nearest

Neighbors (kNN), Naive Bayes (NB), and Support Vector Machines (SVM).

3.2.1 C4.5 Decision Tree

Decision tree algorithms are usually based on information entropy [22]. C4.5 is

a decision tree algorithm developed by Quinlan [46] that is based on informa-

tion entropy as well. Assuming training documents are represented with vectors,

C4.5 mainly splits these vectors according to a decision criteria. This criteria

is information gain in C4.5 algorithm. Each attribute in a document vector is

searched by the algorithm in order to find the optimal one (highest information

gain) to split. Then the algorithm repeat the same procedure for splitted subsets.



CHAPTER 3. NEWS CATEGORIZATION 18

It stops when all nodes in a subset belong to the same category label. There are

pruned and unpruned versions of C4.5 decision tree algorithms. We use pruned

version with confidence parameter. When confidence value gets small, the algo-

rithm prunes more. The details of C4.5 algorithm can be found in the work by

Quinlan [46].

3.2.2 k-Nearest Neighbor (kNN)

The aim of KNN is to learn a training model by using a given training set includ-

ing text documents with category labels. Figure 3.1 shows a sample of training

data set. Assuming there are two category labels (rectangle and triangle) assigned

to each training documents, the aim is to assign one of these category labels to

the new coming document (circle). Firstly, the nearest k training documents to

the new coming document are found. The k value is predefined by an expert in

advance. In the example of Figure 3.1, k value is assumed as 3. After finding

nearest neighbors, the category labels of these nearest documents are taken into

account. A similarity measure is used to find the similarity between two docu-

ments. Then the similarity value and category information is used in order to

get a weight for each nearest document. These weights are then added together

to find the final result. In the figure, it is clear that the new coming document is

assigned as triangle.

Figure 3.1: A sample training data for kNN.

Assume x is the document to be categorized and y(x, ci) ∈ 0, 1 is the result
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of whether the category of document x is ci. The similarity between x and any

document di is sim(x, di). Then we need to find the result of the following formula

for each category.

y(x, ci) =
∑

di∈kNN

sim(x, di)y(di, ci) (3.1)

In the literature there are several measures to find similarity between two

vectors. The similarity measure used in this study is Euclidean distance [12].

3.2.3 Naive Bayes (NB)

Naive Bayes is a statistical algorithm that is based on Bayesian method [21]. In

this approach, a generative model is associated with each category to generate

documents. It compares “text in a document d” to “text that would be generated

by the model associated with a category c.” Then it computes an estimate of the

likelihood that d belongs to c.

In text categorization, NB calculates probability values in order to assign

category labels [35]. Firstly, prior category probabilities are calculated. P (ci) is

prior probability that document di is in ci if we knew nothing about “the text

in di.” Then we multiply it with the probability that di is generated by ci. The

result is called the posterior probability, P (ci|di). Posterior probability is the

probability of class membership. Categorization decision depends on assigning

document to category with highest posterior probability:

arg(max)P (ci|di) = arg(max)
P (di|ci)P (ci)

P (di)
(3.2)

= arg(max)P (di|ci)P (ci) (3.3)
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Since estimating priors and conditional probabilities is challenging, NB as-

sumes conditional independence assumption in order to reduce number of param-

eters [35]. Conditional independence assumption says that features are indepen-

dent of each other given the category. NB also assumes positional assumption

because position of a word does not carry information about a category. Because

of these assumptions, this Bayesian method is called “Naive.” However, it has

some advantages to use. Unlike methods like decision trees, it is better to use NB

when there are many equally important features. It is robust to noise features

and concept drift.

3.2.4 Support Vector Machine (SVM)

Support Vector Machines (SVMs) were invented by Vapnik in 1979 [63]. They

have been used in various problems such as pattern recognition or text catego-

rization because of their good performance.

Figure 3.2: Possible hyperplanes for a sample linear space.

The goal of SVMs is, like any other classifiers, to decide a reasonable classifi-

cation on newcomers according to a training data assigned with correct classifica-

tions. Unlike other classifiers, SVM considers the training data in a k -dim space

and tries to find a (k -1)-dim hyperplane which separates the space regarding to
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a reasonable classification. A hyperplane is simply a subset of an k -dim space

(e.g a 2-dim linear space is separated into points with a simple vector). There

might be several possible hyperplanes that separates the space correctly though.

Figure 3.2 shows some possible hyperplanes separating reasonably. u1 and u2

both separates the space correctly while u3 does not. The aim is to maximize

the distance between the hyperplane and the parallel hyperplanes nearest to the

original one (i.e this distance is called a margin and also the data points on the

parallel hyperplanes are support vectors). Since the margin of u1 is smaller than

the margin of u2, selecting u2 maximizes the margin and thus reduces the error

rate of the newcomer classification. There is a unique property of SVMs regard-

ing to support vectors. The support vectors are the only effective elements in the

training set [70]. That is, other points do not affect the learning procedure and

the removal of these points results in the same learning parameters.

Figure 3.3: A sample linear SVM.

In its simple form, a linear SVM classifier finds a hyperplane that separates

the training data into a set of positive and negative data points. A sample linear

SVM is given in Figure 3.3. u is the hyperplane maximizing the margin and can

be written as:

u = w.xb = 0 (3.4)
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where w is the normal factor to the hyperplane, b is the learning consant, x

is the data point to be classified and the margin is calculated 2/‖w‖

The dashed lines (u = 1 and u = -1) are the parallel hyperplanes maximizing

the margin as far as possible without any misclassification and the data points on

these lines are support vectors. Suppose this training set is a set of data points

with assigned labels for each of them:

(y1, x1), ....., (yl, xl), yi ∈ −1, 1 (3.5)

where x is a training example and y is the corresponding classification label.

SVM problem here is to find a linear separation and also to maximize the

margin. This training space is linearly separable if the following conditions hold

[64]:

w.xi + b ≥ 1 ifyi = 1, (3.6)

w.xi + b ≤ −1 ifyi = −1 (3.7)

Since the margin is 2/‖w‖, it is maximized if the norm vector of w (which

involves a square root) is minimized as the following:

min
1

2
‖w‖2 (3.8)

Combining both problems, SVM problem is the following optimization prob-

lem [44]:

min
1

2
‖w‖2 subject to yi(w.xi − b) ≥ 1, ∀i (3.9)

Having stated the optimization problem, it is important to indicate that the

following procedure is for linear SVM problem. Figure 3.4 shows the case in which
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there is a non-linear hyperplane for a 2-dim data space. It is hard to represent

this non-linear curve in a mathematical formula which is used for solving the

optimization problem. In this case, it is wise to transform / map this non-linear

curve to a linear equivalent in a different space which can be in the same or higher

dimension. Figure 3.5 gives an illustration for the mapping of the 2-dim space in

Figure 3.4 to another space which can be ,for instance, in 3-dim. This mapping

/ transformation is done by a kernel function. A kernel function actually takes

each data point as an input and gives a new representation for it.

Figure 3.4: A sample non-linear hyperplane.

There are several types of kernel functions, but we use polynomial (poly) and

rbf kernels in our study because of the fact that they produced good results in

[23].

When there are more than two classes, SVM solves the problem with two

approaches: using one-to-all approach and one-to-one approach (pairwise classi-

fication). One-to-all approach divides the training set into two parts: a random

class data points and the points of all other classes merged together. In the pair-

wise classification, all possible class pair combinations are considered and each

class pair is given as an input. By this way, it is considered as a two class problem.

In such approach, if there are n classes, then we need to find the training results

of n*(n-1)/2 class pairs. After that, all training results of pairs are combined

with a coupling method.
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There are some fast algorithms developed for improving SVMs such as SVM-

light [23] and Sequential Minimal Optimization (SMO) [44]. In this study, SMO

is chosen to demonstrate the results of SVM on subtitle categorization. SMO

uses either polynomial or RBF kernel. It also solves the multi-class problem by

using pairwise classification.

Figure 3.5: A sample mapping with a kernel function.

After learning a model, it is then easy to find categories of a set of test

subtitle documents. The learned hyperplane is applied to the newcomers and the

categories are assigned by looking which side of the hyperplane it falls.



Chapter 4

Ensemble of Classifiers

In this chapter, we explain basics of ensemble learning and how to prune en-

semble of classifiers in order to increase efficiency and effectiveness. As stated

earlier the main focus of this study is to prune ensembles in the domain of news

categorization.

4.1 Ensemble Learning

Rokach [48] gives real-life examples to emphasis the power of ensembling. One of

the examples given is the experience of Sir Francis Galton, who was an English

philosopher. Once Galton visited a livestock fair and participated in a guessing

contest. Participants tried to find the exact weight of an ox- 1,198 pounds. There

was no one found the exact weight. However, Galton noticed that the average of

all guesses is almost the exact weight- 1,197 pounds. Likewise, Rokach mentions

about the book of “The Wisdom of Crowds: Why the Many Are Smarter Than

the Few and How Collective Wisdom Shapes Business, Economies, Societies and

Nation.” [55] The author James Michael Surowiecki tries to convince that the

aggregation of information from several sources results in better decisions than

those made by individuals. What Rokach does is to point out the power of

ensemble approaches and this principle can even work for our case- ensemble of

25
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classifiers. Can et al. [43] study a similar approach in data fusion. They combine

different ranking methods such as borda count and condorcet.

In text categorization, ensemble of classifiers performs well when classifiers

are accurate and diverse [13]. In order to be an accurate classifier, it has to

get better error rate than random guessing. Diverse classifiers are the ones that

make different errors on data space. The question is whether it is possible to

construct accurate and diverse classifiers. Dietterich [13] claims that it is often

possible to construct such ensembles and gives statistical, computational, and

representational reasons in this respect.

Figure 4.1: Ensemble of classifiers in text categorization.

Figure 4.1 shows an illustration of ensemble learning. Ensemble learning

mainly consists of two parts: constructing base classifiers (ensemble members)

and combining (aggregating) their predictions. Base classifiers are constructed

homogeneously or heterogeneously. Homogeneous classifiers are trained by the

same algorithm and constructed by data partitioning methods in which train-

ing documents are manipulated [13, 14]. Heterogeneous classifiers are usually

created by training different algorithms on the training set [9]. There are also

mixed constructions in which data is partitioned and different algorithms are

applied separately. Then the predictions of base classifiers are combined by sim-

ple/weighted voting [61], mixture of experts [25] or stacking [67]. Voting is the
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most popular approach. It combines predictions of ensemble based on sum, pro-

duction or other rules. It is called weighted when each prediction is multiplied

by a coefficient.

4.2 Ensemble Pruning

In ensemble pruning, construction and combination parts are same as traditional

ensembling that is explained in the previous section. However, there is an addi-

tional pruning (selection) part in ensemble pruning. There are various ensemble

pruning approaches [61]. In general, they search for an optimal subset of en-

semble members. Searching evaluation is done with a validation (hill-climbing or

hold-out) set, which is either the whole or a separate part of training set.

Tsoumakas et al. [61] divides ensemble pruning strategies into four categories:

search-based, clustering-based, ranked-based, and other.

Search-based methods are usually based on greedy search algorithms. The

aim is to find an optimal subset of existing ensemble members by searching ac-

cording to a validation measure. Forward and backward search are most popular

ones. Forward selection starts with one member(chosen randomly or according

to validation measure) and adds new members by searching optimal ensemble

based on validation measure such that we want to get better validation measure

after each step. Backward selection is the opposite of forward selection. It starts

with the whole ensemble and removes members based on validation measure. The

handicap of these search methods is to get stuck into local optima. The solution

is to apply backfitting in which previously-chosen classifiers are replaced in a

greedy way.

Clustering-based methods are based on two steps. Firstly clusters are pro-

duced by a clustering algorithm. A selection strategy is applied to each cluster

and representative cluster members are obtained accordingly. These members

are then used for ensemble learning. Ranked-based methods are based on rank-

ing ensemble members according to a validation measure. Then it is possible to
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prune specific percentage of members from this ranking. Lastly, there are some

other methods that are not in any of the previous topics. For instance, genetic

algorithms and statistical approaches are inside this topic.



Chapter 5

Experimental Environment

In this chapter, we explain which measures and datasets are used in the experi-

ments. After that we give template and ensemble pruning procedures.

5.1 Measures

In order to measure the effectiveness of the experiments, the well-known informa-

tion retrieval metric - accuracy [35] is used. Given a test set labeled with expert

categories, accuracy of the news article classification- acc is defined as:

acc =
Number of correctly labeled news articles

Number of all labeled news articles
(5.1)

5.2 Datasets

We use three datasets in the experiments. For developing a news categorization

template, we create two Turkish datasets called BilCat-MIL and BilCat-TRT.

For examining ensemble pruning in news categorization, we conduct experiments

in both BilCat-TRT and Reuters-21578.

29
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Category # Train Documents # Test Documents
Sports 572 258

Economy 472 208
Turkey 458 199
World 411 168
Politics 397 185

Columnists 357 201
- 2667 1219

Table 5.1: Category information of BilCat-MIL.

Category # Train Documents # Test Documents
Sports 716 337
World 580 292
Turkey 473 252

Economy 368 190
Health 165 61

Culture&Art 140 80
- 2442 1212

Table 5.2: Category information of BilCat-TRT.

Since our concern is on Turkish news articles, data used in experiments should

be in Turkish. We created two different data sets called BilCat-MIL and BilCat-

TRT by exploiting Bilkent News Portal. Categories of these data are assigned by

RSS resources. These datasets can be accessed at (http://cs.bilkent.edu.tr/ ctora-

man/datasets).

Category information of BilCat-MIL and BilCat-TRT are given in Table

5.1 and Table 5.2 respectively. BilCat-MIL and BilCat-TRT consist of 3,886

and 3,654 documents coming from Milliyet and TRT that are collected between

01.11.2010 26.11.2010 and 01.01.2011 25.02.2011 respectively. They respectively

contain 50,048 and 52,042 unique words.

BilCat-MIL is deliberately chosen to be more balanced than BilCat-TRT to

observe if results differ. We divide our data sets such that train data are approx-

imately two times of test data to provide sufficient sizes for both sets. We do

not use k-fold cross-validation or random sampling procedures since content of

news articles changes as time passes: old documents must be used for training
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and new documents must be used for testing (but not the other way). They also

violate our training set size and time distance experiments. The details of our

experimental procedures are explained in the next section.

“Reuters-21578, Distribution 1.0” is a well-known benchmark dataset contain-

ing 21,578 news articles that are published by Reuters in 1987 [31]. It is open to

researchers to download from (http://www.daviddlewis.com/resources/). After

splitting with ModApte, eliminating multi-class documents and choosing the 10

most frequent topics, we get 5,753 training and 2,254 test news articles.

5.3 Template Development Procedure

The algorithms experimented in this study are conducted with the help of Weka

[66]. The most frequent 1,000 unique words per category is used to avoid overfit-

ting [23] to increase efficiency. The classifiers are trained with four popular ma-

chine learning algorithms explained previously: C4.5, KNN, NB (Naive Bayes),

and SVM.

In the first part of our template development, experiments are based on iter-

ative optimization, a technique similar to game theory [42]. In the first iteration,

default parameters are selected and the best parameters are obtained through

four setup levels. The following iterations start with parameters that are selected

at the end of the previous iteration. We stop iterations in a heuristic way when

accuracy difference between two iterations is less than 0.5%. Parameters at the

end of the last iteration construct a highly accurate setup. Each iteration consists

of five setup-levels:

1. setup-0 (default): In the beginning of the first iteration, parameters of all

classifiers are adjusted to their default values. Binary term weighting is

used. Preprocessing and feature selection are not applied. The following

iterations start with parameters that are selected at the end of the previous

iteration.
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Figure 5.1: Development procedure for the second part of text categorization
template: Analyzing (a) effect of training set size, (b) effect of time distance be-
tween training and test sets. (Figures represent a sample scenario with 3 training
sub-datasets.)

2. setup-1 : Parameter of a classifier is to be determined. The other parameters

are the same as parameters obtained at the end of the previous iteration (if

any, otherwise default-setup) - the same approach is applied in the following

setup level as well.

3. setup-2 : The term weighting scheme of a classifier is to be determined. The

classifier parameters are fixed as determined by setup-1.

4. setup-3 : The effect of preprocessing is to be determined. The classification

parameters and term weighting settings are the same as determined by

setup-1 and setup-2, respectively.

5. setup-4 : The effect of feature selection is to be determined. The classifica-

tion parameters, term weighting, and preprocessing settings are the same

as determined by setup-1, setup-2, and setup-3 respectively.
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In the second part of our template development, we examine different training

set sizes and different time distances between training and test sets. While exam-

ining training set size, we choose sub-datasets of different size with different time

spans all ending at the beginning time of test set (see Figure 5.1-a). By making

training documents adjacented to test documents, we make sure that training

set reflects the recent news content. While examining different time distances

between training and test sets, we choose sub-datasets of same size (see Figure

5.1-b). By keeping the size of training sub-datasets the same, we make sure that

we eliminate the effect of different training set sizes. By this way, we examine

the effect of the time distance between train and test sets.

5.4 Ensemble Pruning Procedure

Figure 5.2 represents the ensemble selection process used in this study. Firstly,

the train set is divided into two separate parts. The base train set is used for

training the base classifiers. We construct the ensemble by dividing the base

train set with homogeneous (in which base classifiers are trained by the same

algorithm) data partitioning methods.

We apply four different partitioning methods: bagging, random-size sampling,

disjunct, and fold partitioning [14].

• Bagging [5] creates ensemble members each of size N by randomly selecting

documents with replacement where N is the size of the train set.

• Disjunct partitioning divides the train set into k equal-size partitions ran-

domly and each k partition is trained separately.

• Fold partitioning divides the train set into k equal-size partitions and k-1

partitions are trained for each partitions.

• Random-size sampling is similar to bagging, but the size of each ensemble

member is chosen randomly.
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Figure 5.2: Ensemble pruning process used in this study.

The base classifiers are then trained with four popular machine learning algo-

rithms that are used for developing a news categorization template as well: C4.5,

KNN, NB, and SVM. KNN’s k value is set as 1 and the default parameters are

used for other classifiers.

After constructing the ensemble we decide to select simple solutions for ensem-

ble selection since constructing data partitioning ensembles is a time-consuming

process for large text collections. We choose ranking-based ensemble pruning

that does not use complex search algorithms of other ensemble selection methods.

Each ensemble member is ranked according to their accuracy on the validation

set. We use a distinct part of the train set for the validation. The size of the
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validation set is set as 20% of the training set since we observe reasonable ef-

fectiveness and efficiency and accordingly, 20% of each category’s documents are

chosen randomly without replacement. After ranking, we prune the ranked-list

10% to 90% by 10% increments.

For the combination of the pruned base classifiers, we choose weighted voting

that avoids the computational overload of stacking, mixture of experts etc. Class

weight of each ensemble member is taken as its accuracy performance on the

validation set. If the validation set of a class is empty (when number of documents

in a class is not enough), then simple voting is applied.

Considering each four data partitioning methods with four classification algo-

rithms, we use a thorough experimental approach and repeat the above ensemble

pruning procedure for 16 different scenarios. All experiments are repeated 30

times and results are averaged. Documents are represented with term frequency

vectors. Ensemble size is set as 10 and the most frequent 100 unique words per

category are used to increase efficiency. We use the classification accuracy for

effectiveness measurement.



Chapter 6

Experimental Results

In this chapter, we give our experimental results on two main topics: developing

a news categorization template for Turkish news portals and studying ensemble

pruning in news categorization. Our news categorization template results are pre-

sented in two subsections. Firstly, we give a highly accurate categorization setup,

then examine two issues on news portals. After news categorization template,

we give the ensemble pruning results with a discussion of some pruning-related

decisions.

6.1 News Categorization Results

6.1.1 A Highly Accurate Setup for Turkish News Catego-

rization

The experimental results given in this section are those of the optimized accuracies

obtained after the final iteration. In the experiments, we observed at most three

iterations. Firstly, parameter tuning results are given in Figure 6.1. The value

of number of k nearest neighbor is 20 and 1 using BilCat-MIL and BilCat-TRT

respectively when the best accuracy values are obtained. The difference (20 vs.

36
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Figure 6.1: Parameter tuning results (setup-1) as accuracy vs. (a) k of KNN
(b) Width of SVM-rbf. Default value is 0.01 (x axis value=2x) (c) Degree of
SVM-poly. Default is 1.0 (d) Confidence of C4.5. Default is 0.25 (x axis=2x)
(Figures are not drawn to the same scale.)

1) is probably because of that BilCat-TRT is an imbalanced data set. SVM-rbf

kernel performs the best when width is 2−7 and 2−6 on BilCat-MIL and BilCat-

TRT respectively. SVM-poly kernel decides on 1.2 using both datasets. Lastly,

confidence value of C4.5 are decided as default value 2−2 and 2−4 on BilCat-MIL

and BilCat-TRT respectively.

Term weighting results are given in Table 6.1. Using KNN with tf.idf gives

better results than other weighting approaches. The tf approach is not a good

choice for NB and both SVM kernels. SVM-rbf works well with binary weighting.

The results do not differ dramatically on C4.5.

Preprocessing results are given in Table 6.2. There is no word stemming and
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Table 6.1: Term weighting results (setup-2) for all categorization algorithms on
both datasets.

BilCat-MIL BilCat-TRT
C4.5 KNN NB SVM

poly
SVM
rbf

C4.5 KNN NB SVM
poly

SVM
rbf

Binary 67.6 58.9 76.2 82.9 82.1 74.0 64.8 85.9 87.1 87.5
tf 69.8 56.1 67.2 79.8 69.3 75.7 65.8 81.9 84.3 74.6
tf.idf 69.7 60.2 77.4 83.1 77.5 75.7 69.4 86.9 86.6 84.1

Table 6.2: Preprocessing results (setup-3) for all categorization algorithms on
both datasets.

BilCat-MIL BilCat-TRT
C4.5 KNN NB SVM

poly
SVM
rbf

C4.5 KNN NB SVM
poly

SVM
rbf

F3 67.1 60.2 67.5 83.1 82.0 72.7 66.9 81.3 85.4 85.5
F4 69.8 57.9 71.7 83.3 80.9 72.9 69.4 85.2 86.2 86.6
F5 68.7 56.5 73.0 83.1 81.1 75.7 67.4 86.6 86.5 87.5
F6 67.8 52.0 73.5 81.5 80.8 74.1 64.2 86.9 87.1 87.1
F7 64.3 50.2 76.2 81.2 81.5 74.0 65.4 86.2 87.0 86.3
none 65.0 50.8 77.4 80.5 82.1 70.8 61.8 84.4 83.9 84.7

stopping applied in none setting. In the other settings, word stopping is applied

with one of Fn stemming. SVM-rbf and NB react positive to preprocessing on

only BilCat-TRT. Preprocessing increases accuracies of other classifiers on both

sets. The highest increase is seen in KNN.

Feature selection results are given in Figure 6.2 [59]. Selecting small number

of features performs well with KNN because of the fact that nearest neighbor

algorithms does not work well with high dimensions, which is called the curse of

dimensionality [4]. On the other hand, selecting most of the features performs

well with other classifiers. This is because of the fact that there are only few

irrelevant features not to use in text categorization [23]. Information Gain and

Chi-Squared performs better than others for smaller number of features using

all classifiers. They can be used to increase efficiency without losing reasonable

effectiveness.
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Figure 6.2: Accuracy vs. number of selected features (setup-4).
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Table 6.3: Summary of iterative optimization for all categorization algorithms on
both datasets.

BilCat-MIL BilCat-TRT
C4.5 KNN NB SVM

poly
SVM
rbf

C4.5 KNN NB SVM
poly

SVM
rbf

Init 66.0 24.8 73.7 80.3 82.1 67.2 38.9 82.5 83.5 83.1
Opt 69.8 60.2 77.4 83.3 82.1 75.7 69.4 86.9 87.1 87.5

Finally, summary of iterative optimization on both data sets is given in Ta-

ble 6.3. Initial accuracy obtained with default parameters and final optimized

accuracy obtained at the end of the last iteration are listed for each classification

methods. Default values are changed after deciding on a highly accurate setup

on both data sets with all classifiers except SVM-rbf on BilCat-MIL. KNN is

the most sensitive classifier to parameter changes. Its accuracy changes from

24.8 to 60.2 which is a 243% increase. Highest accuracies we achieve are 83.3

with SVM-poly and 87.5 with SVM-rbf on BilCat-MIL and BilCat-TRT respec-

tively. Classifiers are more successful on BilCat-TRT in general. Naive Bayes

performs approximately the same as SVM classifiers on BilCat-TRT. This can be

explained by looking individual category accuracies. Naive Bayes performs bet-

ter than SVM classifiers on the categories “Culture&Art” and “Health,” which

include smaller number of documents than other categories as Table 5.2 shows.

6.1.2 Issues on News Portals

Changes in training data set size. Results for the effect of changing train size are

given in Figure 6.3. Increasing the training size on both sets provides improve-

ment on accuracy of C4.5 and SVM with both kernels. However, KNN does not

have a continuous accuracy increase. This can be due to the local character of

KNN [52]. NB works well with small training sets. We explain it by its indepen-

dence assumption that indicates each feature is independent of others. Therefore,

it can easily make good estimates of probability in small sets [57].
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Figure 6.3: Accuracy vs. training set size: Effect of training size with different
number of training sizes for all classifiers on two data sets. (a) BilCat-MIL (b)
BilCat-TRT

Figure 6.4: Accuracy vs. min days between train and test sets: Robustness of
classifiers by increasing min days between train and test sets (number of train
documents) on two data sets. (a) BilCat-MIL (b) BilCat-TRT
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Changes in Classifier Robustness. Robustness results are given in Figure 6.4.

The structures of datasets allow us to examine the effects of time distance be-

tween train and test sets at most 15 and 30 days in BilCat-MIL and BilCat-TRT,

respectively. In Figure 6.4, the x-axis value 15(443) means that time distance

between train and test sets is 15 days including 443 documents. Considering our

results on both data sets and assuming that small accuracy variations are unim-

portant, we can conclude that NB and SVM-poly are robust for approximately 30

and 10 days respectively. C4.5, KNN, and SVM-rbf are robust for a few days. NB

is more robust than other classifiers probably due to its independence assumption

explained before.

6.2 Ensemble Pruning Results

6.2.1 Pruning Results

The four questions given in the contributions are answered in this section. Firstly,

Figure 6.5 [58] gives the results of how much ensemble member we can prune

with different data partitioning and categorization methods. These figures can

be interpreted either heuristically or statistically. In heuristic way, one can look

at Figure 6.5 and choose an appropriate pruning degree regarding some accuracy

reduction. In general, fold partitioning seems to be more robust to accuracy

reduction while disjunct partitioning is the weakest one. Similarly, NB and SVM

are more suitable for ensemble pruning while C4.5 prunes the least number of

base classifiers.
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Figure 6.5: Accuracy vs. pruning level: experimental results of different data partitioning and categorization methods
on two datasets: (a) Reuters-21578 (b) BilCat-TRT. (Figures are not drawn to the same scale.)
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Table 6.4: The highest ensemble pruning degrees(%) obtained by unpaired t-test*
for each partitioning and categorization method on both datasets.

Reuters-21578 BilCat-TRT
C4.5 KNN NB SVM C4.5 KNN NB SVM

Bagging 10 10 90 60 10 20 60 50
Disjunct 10 30 60 40 10 0 20 30
Fold 0 0 90 50 10 60 90 90
Random-size 10 10 90 90 0 20 50 70

* All accuracy differences between traditional ensemble and ensemble pruning
approaches are statistically insignificant (p > 0.05) up to the pruning degrees
given above. This means that, for example with Reuters-21578, NB and Bag-
ging we can prune 90% of ensemble members with no statistically significant
decrease in accuracy with respect to traditional ensemble approach.

One can also apply some statistical methods to obtain a pruning degree re-

garding no accuracy reduction. We apply unpaired two-tail t-test between each

pruning degree and traditional ensemble learning to check whether accuracy re-

duction is statistically significant. We apply unpaired t-test until difference be-

comes statistically significant. Pruning degrees regarding no accuracy reduction

with unpaired t-test are listed in Table 6.4. We can prune up to %90 ensemble

members using fold partitioning and NB on both datasets. Disjunct partitioning

seems to be the worst method for ensemble pruning with no accuracy reduction.

Similar to heuristic observations, we get better pruning degrees when either NB

or SVM is used. Small amount of ensemble members are pruned using C4.5 and

KNN with no accuracy reduction.

Figure 6.5 and Table 6.4 also answer the question of how English and Turkish

differ in ensemble pruning. One can observe more pruning degrees in English than

those of Turkish when different heuristic pruning degree decisions are used. But

Table 6.4 suggests that all partitioning and categorization methods prune similar

number of ensemble members in both English and Turkish when no accuracy

reduction is considered. However, NB prunes more or equal number of ensemble

members with all partitioning methods in English than those of Turkish.

In some pruning degrees, we observe that ensemble pruning even increases
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Table 6.5: Traditional ensemble learning and pruning’s highest accuracy for each data partitioning and categorization
method on Reuters-21578.

Traditional / Pruning’s Highest (Pruning Degree)
C4.5 KNN NB SVM

Bagging 0.8646/- 0.8044/- 0.7928/0.8007(40%)** 0.8714/0.8722(10%)
Disjunct 0.8490/- 0.8024/- 0.8351/0.8404(40%)* 0.8414/0.8452(30%)**
Fold 0.8576/- 0.7921/- 0.7780/0.7846(60%)** 0.8718/-
Random-size 0.8624/0.8629(10%) 0.8139/- 0.8092/0.8174(30%)** 0.8565/0.8682(40%)**

* Difference between traditional and pruning’s highest is highly statistically significant when p < 0.05
** Difference between traditional and pruning’s highest is extremely statistically significant when p < 0.01
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Table 6.6: Traditional ensemble learning and pruning’s highest accuracy for each data partitioning and categorization
method on BilCat-TRT.

Traditional / Pruning’s highest (Pruning degree)
C4.5 KNN NB SVM

Bagging 0.7325/- 0.5277/0.5282 0.7128/0.7163(20%)* 0.7605/0.7620(20%)
Disjunct 0.6987/- 0.5529/- 0.7209/0.7220(10%) 0.7206/-
Fold 0.7159/0.7171 0.5180/- 0.7076/0.7101(20%)* 0.7554/0.7612(10%)**
Random-size 0.7290/- 0.5423/- 0.7186/0.7205(10%) 0.7479/0.7549(30%)*

* Difference between traditional and pruning’s highest is highly statistically significant when p < 0.05
** Difference between traditional and pruning’s highest is extremely statistically significant when p < 0.01
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Figure 6.6: Accuracy vs. validation set size: effect of different validation set
size between 1% and 50% of original train set.

accuracy of traditional ensemble learning. Table 6.5 and 6.6 list accuracies of

traditional ensemble learning and highest increased accuracy that we can obtain

by ensemble pruning using Reuters-21578 and BilCat-TRT respectively. Accura-

cies are given for all data partitioning and text categorization methods. If any

degree of ensemble pruning makes no increase in accuracy, then we only give its

traditional ensemble learning accuracy. We also give the pruning degree in which

we get the highest accuracy within parentheses. Note that these pruning degrees

are not the same as those in Table 6.4. Unpaired t-test is applied for all com-

parisons between traditional ensemble and pruning’s highest increased accuracy.

Results show that we can increase accuracy while reducing the number of ensem-

ble members used in training. In general, it is possible to increase accuracy with

NB and SVM when ensemble pruning is applied. The combination when highest

accuracies are seen is bagging with SVM on both datasets. Fold with SVM and

random-size with SVM are almost as good as bagging with SVM. Lastly, more

ensemble members are pruned while increasing accuracy in English than those of

Turkish.
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Figure 6.7: Accuracy vs. pruning level: effect of different ensemble set size
between 10 and 50 base classifiers. (Figures are not drawn to the same scale.)

6.2.2 Pruning-related Decisions

Ranked-based ensemble pruning explained in Section 5.4 is a simple strategy

that depends on choosing an appropriate validation set and ensemble size. In

the previous experiments, 5% of the original training set is randomly selected for

each category and this separate part is set as the validation set. We also choose

to use 10 base classifiers as the ensemble size. These decisions are chosen for

simplicity. However, other decisions may affect the accuracy result of ranked-

based ensemble pruning. We examine these two parameters in this section. The

following experiments are conducted on only bagging with SVM for simplicity.

Bagging and SVM are used due to their popularity in our application domain.

Different validation set sizes on both datasets are examined in Figure 6.6.

Validation size experiments are conducted by 90% pruning of 10 base classifiers.

We randomly select news documents for each category between 1% and 50% of

the original train set and set this separate part as validation set. Figure 6.6

shows that if validation set size is either too small or too big, accuracy becomes

reducing. Optimal validation set size is somewhere between 5% and 10% of the

original training set.
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Ensemble size is another parameter for ensemble pruning. Figure 6.7 displays

pruning accuracies of different number of base classifiers between 10 and 50.

In ensemble set size experiments, validation set size is selected as 5% of the

original training set. Accuracy is slightly increased with increasing number of base

classifiers as expected. Moreover, accuracy reduction by pruning becomes lower

as ensemble size increases. However, efficiency is reduced due to the additional

workload of training base classifiers. Thus, one should consider the trade-off

between reduction in efficiency and increase in accuracy.



Chapter 7

Conclusion & Future Work

This thesis examines two main topics. Firstly we introduce a text categorization

template for Turkish news articles and then study ensemble pruning in text cat-

egorization. Our text categorization template and ensemble pruning results will

be used in Bilkent News Portal.

Firstly, text categorization template develops a highly accurate categorization

setup for Turkish text documents and examines issues related to text categoriza-

tion on news portals.

Our highly accurate categorization setup includes decisions on parameter tun-

ing, term weighting methods, preprocessing and feature selection. Parameter tun-

ing is a necessary process for news categorization. Term weighting methods differ

according to classifiers. Binary term weighting can be applied with SVM classi-

fiers. For other classifiers, tf-idf seems to be a reasonable choice. Preprocessing

seems to increase accuracies of all classifiers. Lastly, feature selection can be used

to increase efficiency without losing reasonable accuracy. The number of selected

features can be decided upon Figure 6.2 for each classifier. Our categorization

setup is based on iterative optimization and it may result in a local-maxima in

parameter space. Testing all parameter combinations solves this problem; yet it

is inefficient.

50
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Our template also examines two issues related to news portals: training set

size and robustness of classifier in terms of time line. Increasing training set size

results in accuracy improvement with C4.5 and SVM classifiers. This increase is

not consistent for KNN. For NB, small train sets can perform well. NB is also

robust in terms of time difference between train and test sets. Other classifiers

are not robust as NB is.

Secondly, ensemble of classifiers are created with different data partitioning

methods and trained by popular text categorization algorithms. One of the simple

ensemble selection approaches, ranked-based ensemble pruning using a separate

validation set is applied to increase efficiency. The main goals are to find how

many ensemble members we can prune in text categorization without hurting ac-

curacy, which data partitioning methods and categorization algorithms are more

suitable for ensemble pruning, how English and Turkish differ in ensemble prun-

ing, and lastly whether we can increase accuracy with ensemble pruning. The

controlled experiments are conducted on English and Turkish datasets. We use

unpaired t-test to find pruning degrees whose accuracies are not statistically dif-

ferent than no pruning. Unpaired t-test is also applied to statistically prove that

ensemble pruning increases accuracy of traditional ensemble learning. We plan

to perform further experiments with additional datasets. However, our statistical

tests results provide strong evidence about the generalizability of our results.

We employ data partitioning methods with several classification algorithms in

ensemble pruning. Validation set and ensemble size are also important parameters

we examine in ensemble pruning. The main results of this study are:

1. Up to 90% of ensemble members can be pruned with almost no decrease in

accuracy (See Table 6.4).

2. NB and SVM prune more ensemble members than C4.5 and KNN. Using

disjunct partitioning prunes less members than other methods.

3. Pruning results are similar for both English and Turkish.

4. It is possible to increase accuracy with ensemble pruning (See Table 6.5

and 6.6). But pruning degrees are decreased in comparison to degree values
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without accuracy decrease (See Table 6.4). The best accuracy results are

obtained by bagging with SVM on both datasets.

The validation set size is set as 5% of the training set in this study. However,

tuning this portion can change the effectiveness of ensemble pruning. Ensemble

size is another important parameter in the ensemble categorization. We choose

10, but different sizes can give different pruning levels. Therefore, we also examine

the effect of different ensemble and validation set sizes. It is seen that using 5-

10% of the train set for validation is an appropriate decision for both datasets.

We also find that accuracy reduction becomes smaller as ensemble size increases.

Future work possibilities for our highly accurate categorization. It would be

interesting to examine some other term weighting schemes (e.g tf-rf, tf-icf ). For

the sake of efficiency, we employ Fn stemmer in our study. However, some other

stemming algorithms can also be examined. Also classifier robustness in terms of

time line is a open field for research. It is better to use datasets including news

articles from a wide time line spectrum.

Future work possibilities for ensemble pruning. We rank base classifiers by

measuring accuracies on a separate validation set. However, different ensemble

pruning methods including search-based approaches and validation measures such

as diversity can be studied. Additional test collections in other languages can be

used in further experiments.
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