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ABSTRACT

ON ARF RINGS

Sefa Feza Arslan
M.S. in Mathematics
Advisor: Asst. Prof. Dr. Sinan Sertoz
September, 1994

In this thesis, we worked with curves which have cusp type singularities.
We described the Arf theory, which solves the problem of understanding and
finding the multiplicity sequence of a curve branch algebraically. We proposed
an algorithm for finding the Arf characters of a given curve branch. We also
faced the problem of Frobenius, and proposed an algorithm for the solution of

problem of Frobenius in the most general case.

Keywords : Curve branch, singularity, blow up, multiplicity sequence, Arf

ring, Arf semigroup, Arf closure, Arf characters, Frobenius.
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Bu tezde, kose noktasi bigiminde tekillikleri olan egrilerle ilgilendik. Bir
egri kolunun g¢okkathhk dizisinin anlagilmasi ve bulunmas: sorununu cebirsel
olarak ¢6zen Arf kuramin: tamttik. Verilen bir egri kolunun Arf karakterlerini
bulan bir algoritma énerdik. Ayrica, Frobenius problemi ile de karstlastik ve

en genel durumdaki ¢6ziimu igin bir algoritma 6nerdik.

Anahtar Kelimeler : Egri kolu, tekillik, tekilligin ¢6zilmesi, gokkathlik
dizist, Arf halkasi, Arf yarigrubu, Arf kapanigi, Arf karakterleri, Frobenius.
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Chapter 1

INTRODUCTION

The link between algebra and geometry makes it possible to predict alge-
braically the result of a geometric process. In this way, a geometric problem
can be solved by algebraic methods and computations. Also, invariants of

a geometric object can be found algebraically; these are very important for

classification.

We will deal with curves, which have cusp type singularities. Singular
curves can be classified by finding nonsingular curves, which are birationally
equivalent to these singular curves. This can be done by a blow up process.
For cusp type singularities, one blow up may not be sufficient to remove the
singularity. Hence, successive blow ups must be applied to obtain a nonsingular
curve. The multiplicity sequence constructed by taking the multiplicity of the
singularity before each blow up is a fundamental invariant of the singularity.
Arf shows that the completion of the local ring at the singularity of the branch

carries all the information necessary to obtain the multiplicity sequence [2].

Arf passes from geometry to algebra by using the completion of the local
ring. He constructs the canonical closure of this ring, later called the Arf
closure. The orders of the elements of this ring form a sub-semigroup of the
natural numbers. In this way, Arf passes from algebra to arithmetic. From this
semigroup, Arf obtains some numbers by a process to be described later, and
then he determines the multiplicity sequence of the curve branch by applying
the modified Jaccobian algorithm (8, pp. 108-109] to these numbers. These

numbers are called the Arf characters of that curve branch.

The purpose of this thesis is to describe the work of Arf and to propose

a computer algorithm for finding the Arf characters of a given curve branch.

1



Because of the the sub-semigroup mentioned above, we face the problem of
finding the largest integer which is not included in this semigroup, if the gen-
erators of this semigroup are relatively prime. This is the famous problem of
Frobenius. We also propose an algorithm for the solution of the problem of

Frobenius in the most general case.

In chapter 2, we give the necessary preliminaries for understanding the Arf
theory. We describe the category in which we will be working, by defining its

objects and morphisms. Then we describe curves, singularities, and resolution

of singularities, and give examples.

In chapter 3, we present a history of the problem of obtaining the multiplic-
ity sequence of a singular curve branch without applying succesive blow ups to

the curve. Then we describe the work of Arf and his solution to this problem.

In chapter 4, we offer a literature review of the problem of Frobenius. This
involves looking for the largest integer that is not included in the semigroup
generated by relatively primeintegers. Then we propose an algorithm for the

solution of the problem of in the most general case.

In chapter 5, to find the Arf characters of a curve branch we propose an
algorithm applicable to computer, by depending on the work of Arf. In this al-
gorithm, given a parameterization of a curve branch as input, its Arf characters

are obtained as output.

We use the following notation throughout:
R = Real numbers

N = {0,1,2,...}



Chapter 2

CURVES, SINGULARITIES,
AND RESOLUTION OF
SINGULARITIES

2.1 Background

We will be working in the category of algebraic varieties and birational maps
over an algebraically closed field. Our main construction is a blowing up of an

algebraic variety, which is the main example of a birational map. We recall

some definitions.
Let k be an algebraically closed field.

Definition 2.1.1. An affine n-space over k is defined to be the set of all
n-tuples, components of which are from k. An affine n-space over k is denoted

by A}, and by A™ if no confusion about the field arises.

It looks as if A" and A™ are the same but there is a major difference. k"
has an origin and a vector space structure, but A" is just a set of points. In
k™ the origin is a distinguished point, however in A™ all points are considered

with equal attention and no point is distinguished.

Let A = k[z1, ..., 7] be the polynomial ring in n variables over k. If f is a
polynomial in A and a = (ay,...,ay,) is an element of the affine space A", then

f(a) is defined as f(ay,...,a,). The zeros of a polynomial f € A is the set of



all a € A" satisfying f(a) = 0.

If Sis a collection of polynomials from A, then
Z(S)={a€ A" | f(a) =0 for all f € S},

is the set of all simultaneous solutions of the polynomials in S.

If I'is the ideal generated by S, then one can show that Z(S) = Z(I). It
follows from Hilbert’s basis theorem that A = k[z, ..., z,) is a Noetherian ring.
(See for example [3, p. 81].) Since A is a Noetherian ring, every ideal of it is
finitely generated. Hence, it is possible to express Z(S) as the common zeros

of a finite number of polynomials f,.... fi..

Also, for any subset X C A", the ideal of X in A can be defined by
I(X)={f€A| f(P)=0forall Pe X}.

Definition 2.1.2. A subset V of A" is an algebraic set if there is a subset
S C A which satisfies V = Z(S5).

By using the algebraic sets, we can define a topology on A". This is done
by taking closed sets as algebraic sets and open sets as the complements of

these algebraic sets.

Definition 2.1.3. The topology defined on A™ by taking closed sets as

algebraic sets and open sets as the complement of these algebraic sets is called

the Zariski topology on A".
Let us prove that this is indeed a topology.

We must show that the following three propositions are satisfied. (i) Finite
intersections of open sets are open, (ii) arbitrary (finite or infinite) unions of
open sets are open, and (iii) the empty set and whole space are open. In
order to prove (i), it is sufficient to show that the union of two closed sets
is closed. Let X,, X, be two closed sets. Since X; and X, are algebraic,
they can be written as Z(S;) and Z(S;) for some subsets S;,S; of A. Then
XU X, = Z(515;). where 515, is the set of all products of elements of 5; by
S,. In fact, if P € X, U Xy, then P € Z(5)) or P € Z(5,). Hence, Pis a zero
of every polynomial in $;S; and P € Z(5,5z). This proves that X; U X, C
Z(85,S,). Conversely, if P € Z(552) and P is not an element of X}, then

1



there is f1 € ) such that f;(P) # 0. But for any f, € Sz, (f1f2)(P) = 0 since
P € Z(5,52), so f,(P) must be zero. Hence P € X, C X;UX;,. To show (i), it
is sufficient to prove that arbitrary intersections of algebraic sets are algebraic.
If X, = Z(S,) is any family of algebraic sets and P € NX,, then for every n,
all the polynomials in S, are zero at P. This shows that P € Z(US,). Hence
NX, C Z(US,). Conversely, if P € Z(US,), then for every n, P € Z(S,).
This shows that P € NZ(S,) = NX,. Thus Z(US,) C NX,. This proves
that NX, = Z(US,). Finally to show (7i1) note that, since § = Z(1), it is an
algebraic set and its complement A" is open. In the same way, A" = Z(0) is

an algebraic set, and its complement @ is open.

This establishes the Zariski topology on A". From now on whenever a

topology is referred to, we will mean Zariski topology, unless otherwise stated.

Definition 2.1.4. A nonempty subset X of a topological space T is irre-
ducible if it cannot be expressed as the union of two proper subsets which are
closed in Y. Hence, a set V C A" is reducible if V = V; U V;, where W}, V; are

closed in V| satisfying V} # V and V2 # V.

Remark 2.1.5. Consider the Zariski topology on A". Let S C k[z, ..., z,]
be a collection of polynomials f;. Then Z(S) is a closed set and A™ — Z(S) is
an open set. Since Z(S) = NZ(f),

A" — Z(S) = A" = nZ(f;) = U(A" - Z(f)),

which shows that every open set can be written as the union of (A" — Z(f;))’s
for some f;. Hence, a base of open sets can be given by these sets. Ior arbitrary

fi9 #0,

(A" = Z(f)) N (A" - Z(g)) = A" - Z(f9g)

which is nonempty because f,g # 0, and Z(fg) # A". This shows that every
intersection of nonempty open sets is nonempty. Thus, Zariski topology is not

Hausdorff.

Proposition 2.1.6. Any nonempty open subset X of an irreducible space

Y is irreducible and dense.

Proof: Assume that an open subset X of Y is not dense. Then its closure
X = Y, i1s a closed proper subset in Y. Since X is open, ¥ = Y — X is a

closed proper subset in Y. } can be expressed as the union Y = Y, U}, of

S



two proper subsets, each one of which is closed in Y. But this contradicts with
the irreducibility of Y. Hence, our assumption is wrong and any open subset of
an irreducible space is dense. Now, assume that an open subset X of Y is not
irreducible. Then, X can be expressed as the union X = X, U X; of two proper
subsets, each one of which is closed in X. Since X is dense, X=Y=X,UX,.
X, #Y and X, # Y, because for example, HX; =Y, then X; =XNnX, =X
but this is a contradiction. So Y = X; U X, and X, X; are proper subsets of
Y. Again, this contradicts with the irreducibility of Y. Hence, any open subset

of an irreducible space is irreducible. a

Remark 2.1.7. To construct a link between geometry and algebra, we
explore the correspondence between ideals and algebraic sets. This link is
important because it gives us the opportunity to translate any statement about

algebraic sets into a statement about ideals and conversely.

From an algebraic set X C A", we pass to the ideal of polynomials vanishing

at X,
I(X)={f €k[zy,....z,) | f(P)=0forall P e X}.

If we pass to the zero set of this ideal Z(I(X)), then X C Z(I(X)) from
the definition of zero set, since every polynomial in the ideal is zero at every
point of X. As X is an algebraic set, it can be written as X = Z(fi,..., fs).
Then the ideal generated by fi,..., f,, which we show by < fi,...,fs >, is in
I(X). If any polynomial is added to a collection of polynomials, the added
polynomial may not vanish at some point where all the other polynomials are
zero. This makes the zero set of the new collection of polynomials smaller.
Now I(X) contains < fi, ..., f, >, but may contain some other polynomials as
well. Hence Z(1(X)) C Z(< fi,..., fs >) = X. This shows that Z(I(X)) = X.

In general, for an ideal a C A, Z(a) is its zero set and I(Z(a)) is the ideal
of the polynomials vanishing at Z(a). I(Z(a)) obviously contains I but it may

have more elements. Hence a C 1(Z(a)).

Example 2.1.8. Consider the ideal in k[z;,z,] generated by x? and z3.
Z((2? x2)) is (0,0). But I((0,0)) is the ideal generated by z; and z,, and

(-Thx2) 2 (-T-fal‘%)» but (II‘I'Z) 76 (If,]‘g).

Definition 2.1.9. Let a C k[zy,...,2,] = A be an ideal. The radical of a,
denoted \/a, is defined as,



va={f € A| f™ € a for some integer m > 1}.

An ideal a is a radical ideal if it is equal to its radical.

Theorem 2.1.10. (Hilbert’s Nullstellensatz). Let k be an algebraically
closed field, let a be an ideal in A = k[z,, ..., z,], and let f € A be a polynomial
which vanishes at all points of Z(a). Then f™ € a for some integer r > 0.

Proof: See [13, p. 374] or [7, pp. 168-173]. O

Now it follows from Hilbert’s Nullstellensatz that I(Z(a)) = y/a for an ideal
a. Thus if a is a radical ideal, then I(Z(a)) = a.

In this way, we found a correspondence between radical ideals and algebraic

sets. This link between algebra and geometry is the main theme.

Irreducibility is not only important geometrically, but it also corresponds

to special ideals in the algebraic category.

Proposition 2.1.11. An algebraic set is irreducible if and only if its ideal

is a prime ideal.

Proof: First, let us show that if X is irreducible then I(X) is a prime ideal.
If fifs € I(X), then Z(f1f2) D Z(I(X)). We showed in Remark 2.1.7 that
Z(I(X)) = X,s0 X C Z(fif2) = Z(f) U Z(f2). X can be expressed as the
union of two closed sets such that X = (Z(f;)N X)U(Z(f2) N X). Since X is
irreducible, either X = X N Z(fy) or X = X N Z(fz). Hence, X C Z(f1) or
X C Z(f>), that is f; € I(X) or fo € I(X).

Conversely, for a prime ideal p, assume that Z(p) = X; U X2. Then,
I(Z(p)) = I(X1 U X2). Since p is a prime ideal and since every prime ideal is a
radical ideal, I(Z(p)) = p. The polynomials that vanish at every point of both
X, and X, form the intersection of the set of polynomials vanishing on X; and
X,. Thus we can write p = I(X;) N I(X;). Then we have either p = I(X;) or
p = I(X;). Assume this is not true, that is p is a proper subset of J(.X;) and
I(X3). Then there are polynomials satisfying f € I(X,), f € I(X2), g € I(Xa),
and g € I(X,). In particular this implies that f & p and g € p. Now, fg is
an element of both 7(.X}) and /(X;). So fg € p and since p is a prime ideal,
either for g must be an element of p. But this is a contradiction, since neither
f nor gis in p. So our assumption is false, and hence, p = I(X;) or p = I(X>),

which shows that Z(p) = Z(I(X,) = X, or Z(p) = Z(I(X;) = X,. So Z(p)is

7



irreducible. ]

Since every maximal ideal is prime, it is clear that a maximal ideal m of
A = k[zy,...,z,) corresponds to a minimal irreducible closed subset of A,
which is a point. Then every maximal ideal of A can be expressed as m =

(1 — a1, ...,z — a,), for some ay,...,a, € k.
The objects of our category can now be defined as follows.

Definition 2.1.12. An affine variety is an irreducible closed subset of
A™. An open subset of an affine variety is called a quasi-affine variety. If X
is a quasi-affine variety, an irreducible locally closed subset of X is called a

subvariety of X.

Example 2.1.13. We have seen above that any point of P of A" is a
minimal irreducible closed subset. Hence, any point P is an example of an
affine variety. For any irreducible polynomial f € k[zi,...,,], the zero set
Z(f) is also an example of affine variety. In A?, with coordinates z; and z,
Z(z3 — x2) describes the cuspidal cubic curve. Similarly in A® with coordinates
1,2, and z3, the zero set Z(z2 — 2% 23 — z3) is another affine variety known

as the twisted cubic curve.

Before we define the morphisms of our category, we define some fundamental

concepts.

Definition 2.1.14. The affine coordinate ring A(X) of a variety X C A"
is defined to be A/I(X), that is k[zy,...,x,]/1(X). The elements of the affine
coordinate ring are the polynomial functions on our variety. Two polynomials
that are equal at each point of the variety are the same function on this variety,
and polynomials which are zero at every point of the variety correspond to the

zero function on our variety.

A maximal ideal mp of A(X) for a point P € X is the set of polynomials
vanishing at P, viz. mp = {f € A(X) | f(P) = 0}.

The polynomials of k[zy, ..., r,] can be considered as functions on A™. We
allow other functions that can be written as the quotient of two polynomials

locally, where the denominator polynomial is not zero.

Definition 2.1.15. A function is regular at a point of a variety X, if it can
be expressed as the quotient of two polynomials on an open neighborhood of



the point, where the polynomial in the denominator does not vanish on this

neighborhood.

Namely, for a variety X, a function f : X — k is regular at a point z € X
if there is an open neighborhood U with z € U C X, and polynomials fy, f; €
k(zi,...,xn), satisfying f = fi/f2 on Uand f; is nowhere zero on U [10, p. 15].

If fis regular at every point of X, then f is regular on X.

Proposition 2.1.16. Functions that are regular at every point of a variety
are polynomials. Hence, the ring of functions that are regular at every point
of a variety X, denoted by O(X), will be isomorphic to the affine coordinate

ring A(X) of X.

Proof: See [10. p. 17]. 0

We have defined the ring of all regular functions on a variety X. Let us now

define the local ring of P on X, where P € X.

Definition 2.1.17. The germ of a regular function on Y near Pis a pair
< U, f > where L is an open subset of X containing P, and f is a regular
function on U. Two pairs < U, f > and < V,g > are equivalent if f = g on
UNV. The local ring of P on X, Opx is the ring of these germs. This is a

local ring and its maximal ideal is the set of germs of regular functions which

vanish at P.

Proposition 2.1.18. Opx is isomorphic to the localization of the affine

coordinate ring at its maximal ideal mp corresponding to P.

Proof: See [10, p. 17]. 0

Definition 2.1.19. The function field K(X) of X consists of the elements
< U, f > where Uis a nonempty open subset of X, and fis a regular function
on U. < U, f>isequivalent to < V,g > if f=gon UNV. It is obvious that
K(Y) is isomorphic to the quotient field of A(Y). The elements of the function

field are called rational functions.
Finally we can define the morphisms of our category.

We define a morphism between two varieties in such a way that information

about regular functions are transferred from one variety to the other, in a

9



manner made precise in the following definition.

Definition 2.1.20. For two varieties X and Y, a morphism ¢ : X — Y is
defined to be a continuous map such that for every open set V C Y, and for
every regular function f : V — k, the function fo g : o™ (V) — k is regular.
In particular, if f is regular on Y, f o ¢ is regular on X.

Definition 2.1.21. A biregular morphism p : X — Y of two varieties is
a morphism which admits an inverse morphism ¢ : Y — X with ¢ o = i1dy
and ¢ o1 = idy. The biregular morphism is the isomorphism in this category.

This completes the definition of the category of varieties and morphisms.
This category is known as the category for the biregular theory. The main
theme in this category is that two objects (varieties) are considered the same
if their coordinate rings are isomorphic. However, experience shows that we

have to ‘enlarge’ our category, if we focus our attention on the function fields

instead of coordinate rings.

Definition 2.1.22. For two varieties X and Y, a rational map o : X - Y
is an equivalence class of pairs < U,y > where Uis a nonempty open subset
of X, oy is a morphism from U to Y, and < U,py > and < V,py > are
equivalent if oy = @y on UNV. For some < U, py >, if the image ¢y is dense

in Y, then ¢ is called dominant.

Definition 2.1.23. A biralional map is a rational map that has an inverse,
i.e., there exits a rational map ¥ : Y — X satisfying Y op =1dy and po¢p =
idy.

Birational isomorphism is satisfactory and in fact useful because of the

following fact.

Proposition 2.1.24. Two varieties are birationally equivalent, if and only

if their function fields are isomorphic.

Proof: See [10, p. 26].

We will see in section 2.4 that since blowing up is a rational map, a variety

X and its blowing up is birationally equivalent, and their function fields are

isomorphic.

The last concept we will mention briefly in this section is the projective

space.

10
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Definition 2.1.25. Projective space may be considered as a space whose
points are the lines through the origin of some vector space. Hence, formally
the projective space P" is the quotient of the set k**! — {(0,...,0)} under the

equivalence relation given by (ao, ..., a,) ~ (aao, ..., aa,) for all a € k,a # 0.

Namely, points lying on the same line through the origin all denote the same
point in the projective space. The equivalence class of the point (aq,...,a,) in
k™*1 is denoted by [ag : ... : a,) in P".

As an example, consider Pﬁb the set of all lines in R? with axes z¢ and ;.
All the lines through the origin except the line £; = 0 can be parameterized
by taking their intersections with the line z; = 1. With this parameterization,

the line z; = 0 will denote the point at infinity. As a set,
Pp = {(z,1) | = e R}U{(1,0)},

where (1,0) is referred as “the point at infinity”, see figure 2.1.

In P} (the set of all lines through the origin in k™! with axes xo, ..., z,),
consider the n-space given by z, = 1. It parameterizes all lines through the
origin in k™*! except those that lie in z, = 0. The lines in z, = 0 are the
points of P*~'. Hence, P* = A" UP"!,

We expect P" to be locally like A" even at infinity, and our expectation is

fulfilled when we prove the following.
Proposition 2.1.26. P" is a union of A"’s.
Proof: Some special subsets U; of P" are defined as

U, = {[.1‘0 D J‘n] € P | T, # 0}
11



Hence, if p = [z : ... : 2] € U;, then we can writep=[22:...: 1:...: In). We

can define a function {p; : U; — k™ as

Pil[T0, - Ta]) = (£, Bk Bl )

It is clear that ¢, is onto and one to one. It has an inverse
ol (ar, a)=[ay:..iai1:liaigr i iay) €U

Note that ¢; and ;! are acceptable morphisms in our category.
¥ Pi p g

Thus, U; is isomorphic to A", and P" is a union of A™’s. Hence, locally P"
looks like A™. o

Polynomials are not well defined on P". However, if fis a homogeneous
polynomial and is zero for some (zq, .... z,,) € k**! — {(0,...,0)}, then fis zero
at all points on the line (Azo,...,Az,). Hence, if P = [zg : ... : z,], then we
can say that f(P) = 0 or f(P) # 0. Now, we can talk about the zero sets of
homogeneous polynomials and define them as algebraic sets. We can define a
topology on P" by taking the algebraic sets as closed sets. A projective variety

is then defined to be an irreducible algebraic set in P".

Proposition 2.1.27. A projective variety X is covered by the open sets
X N U;, which will be homeomorphic to affine varieties by the mapping ¢;.

Proof: See [9, p. 5]. 0O

Example 2.1.28. Consider the projective variety X, which is the zero set
of the homogeneous polynomial z¢z2 — 23. 7 can be taken to be 1 on the
intersection of X with the open set Up. Then the intersection will be the zero

set of the cuspidal cubic curve 12 = z3.

2.2 Curves

Curves are special varieties. Let us define dimension first in order to define a
curve. A chain of an ideal I1s a sequence of ideals satisfying Iy C ... C I, =1

and the length of this chainis & In a ring R, the height of a prime ideal pis the

12
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maximum 7 such that there exists a chain py C p; C ... C p, = p of distinct

prime ideals.

Definition 2.2.1. The Krull dimension of the ring R is defined as the
maximum of the heights of all prime ideals, i.e., the maximum length of chains

of prime ideals in R.

Definition 2.2.2. A variety is called a curve, if the Krull dimension of its

affine coordinate ring is 1.

If X is an affine variety, then the dimension of X is equal to the dimension
of its affine coordinate ring A(X). A variety X in A" has dimension n — 1 if
and only if it is the zero set of a single nonconstant irreducible polynomial, see
(10, p. 7]. A plane curve is then the set of all points whose coordinates satisfy
an equation f(z,y) = 0, where fis a polynomial with certain coeflicients from

the ground field.

Example 2.2.3. The cuspidal cubic which is defined by z2 — z} = 0 is an

example of a plane curve in A%

Example 2.2.4 The nodal cubic which is defined by 22 — 22 —z3 = 0 is

another example of a plane curve in A%}

(3]

0%

0‘3 il " 2 23 ) 0 o8 04 X2 o 02 ce os o ]

Figure 2.2: The cuspidal cubic curve and the nodal cubic curve

Example 2.2.5. Four-leaved rose which is defined by (x?4z2)°—4z222 = 0

is another plane curve [7, p. 146].

"The cuspidal cubic curve and nodal cubic curve were known by Greeks as the “cissoid
of Diocles” and “conchoid of Nicomedes” and used for solving the problem of doubling the
cube and trisecting the angle. Diocles showed that v/2 can be constructed by using ruler,
compass and cissoid. These were the classical problems of antiquity. Later, it was proved
by Galois theory that they can not be solved by only ruler and compass construction. For

more information, sce [6. pp. 9-16].
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Figure 2.3: Four-leaved rose

Example 2.2.6. The twisted cubic which is defined by z; — zf = 0 and
z3 —z3 = 0 is a space curve in A,

We will deal with the branch of a curve at a point. Before giving its defini-
tion, we prefer to give an example to be familiar with the notion.

Example 2.2.7. The nodal cubic curve z2 — 23 — 2} = 0 has locally two
components around (0,0). To see this rewrite the equation of the curve as,

3 = zj(1 4 1), and observe that,

(T4+z)2 =21+ iz — 32+ ..).

This leads to the equations z9 = z; + %xf — %::::l3 +...and z2 = —(z; + %:cf -

573 +...). They are called the branches of the curve at (0,0).
We will give a precise definition of a branch by using parameterization.
Let k[[t]] be the formal power series ring. An element ¢ of k[[t]] is of the
form, ¢ = ap + a;t + ... + ant™ + ... where a; € k. Order of ¢ is the degree of

the smallest degree term present. Namely, smallest 7 satisfying a; # 0.

Proposition 2.2.8. A variety C of A" has a parameterization at any one

of its points (ay, ..., a,) in the form;

T = (1)

Tn = @a(t)
where (1), ..., oa(l) are power series in ¢ and (p1(0), ..., 9a(0)) = (a1, ..., an),

if and only if C'is a curve.

Proof: For the part of the proof beginning with “if Cis a curve”, see
(1, pp. 62-63].

14



Conversely, let a : k[z1, ..., za] — k[p1(t), ..., pa(t)] C k[[t]] be the map such
that a(z;) = @.(t). It is obvious that that the kernel of this map is I{X). Hence,

k[zq,...,zn)/1(X) = k[p1(2), ..., pn(t)]. Since k[p1(t), ..., on(¢)] has dimension
1, k[z1,...,z,)/1(X) has dimension 1, too. Hence, X is a curve. ]

This parameterization z; = ¢1(t),...,22 = p,(t) of a curve C at a point
(a1,...,an) corresponds to a branch of C at this point. A parameterization
z1 = ¢i(t), ..., zn = @5(1) is redundant, if it can be obtained from some other
parameterization by substituting for ¢ some power series in ¢ of order > 1. A

parameterization is called irredundant if it is not redundant.

Definition 2.2.9. A branch at a point is an equivalence class of irredundant
parameterizations at that point; two parameterizations are equivalent, if one
can be obtained from the other by substituting a power series of order 1, see
[1, pp. 63-64].

Example 2.2.10. For the nodal cubic curve, by using the equations

o = 21 + %zf — %x? + ... and z, = —(z1 + %zf — é:v“;’ + ...) obtained in

Example 2.2.7, we will have two parameterizations of the curve at (0,0). The

first parameterization at (0,0) is
Ty=t, zp=t+ 32— ¥4
and the second one is
zy=1t, zy = —(t+ 3t* — 3t 4+ ..).

From the definition, these are the two branches of the curve at (0,0).

At (—1,0), the same curve has parameterizations,
z=t2—1, 2o =t(t* — 1) and 2y = 1? - 1, z, = —t(t* — 1).

They correspond to the same branch, because the second parameterization can
be obtained from the first one by substituting —¢ which has order 1. Hence at

(—1,0), there is only one branch of the curve.

The cuspidal cubic curve has one branch at (0,0). It has the parameteriza-
tion

15



o=t ;=18

The twisted cubic curve has also one branch at (0,0) and it has the param-
eterization

=t o=t xz3=1

We shall deal with curves which have polynomial parameterizations. These
curves can be defined by r, = ¢i(2),...,z, = @.(t) where p1(t), ..., 0a(t) are
polynomials in ¢. Not every curve does have a polynomial parameterization.
But for every curve that has a polynomial parameterization, it is possible
to find the defining equations, i.e., an implicit representation. (There are
algorithms for doing this by using Groebner bases. For more information, see

[7, pp. 126-132].)

2.3 Singularity

In general, singularity within a totality may be defined as a place of unique-
ness, of specialty, of degeneration, of indeterminacy or infinity, [6, p. 82].
Smoothness means no sudden and unexpected changes. Singularity may also

be defined as the place where smoothness is violated.

For varieties, singularity can be defined both geometrically and alge-
braically. The geometric definition, which is historically the first, depends

on the formal derivatives of the generators defining the ideal of that variety.

Definition 2.3.1. For a variety X of dimension 7 in A", let fi,..., fi be
the gencrators defining its ideal. X is nonsingular at a point P € X if the rank
of the matrix J = (8f;/0x;(P)) is n — r. This matrix is called the Jacobian

malriz at P.

From this definition, we can deduce that singular points of a curve C are
those at which the curve has more than one tangent (counting multiplicity).
In other words, a point of a curve is said to be singular if every line through
this point has intersection multiplicity greater than 1 with the curve there.
Multiplicity of a curve at a point Pis d, if every line through P has intersection

multiplicity at least d with the curve there.

Hence, for a plane curve C of degree n, if the lines through P meet C
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outside P in at most n — d points, then multiplicity of P at Cis d. By using
the Jacobian, a singular point of a plane curve defined by f(z;,z;,) =0 is a

point (a,b) with f(a,b) =0, f;,(a,b) =0, fr,(a,b) = 0.

Example 2.3.2. Both the cuspidal cubic curve and the nodal cubic curve
defined above has singularity at (0,0). These two examples are highly illus-
trative for understanding the types of singularities. The cuspidal cubic curve
which is defined by z5 — 2} = 0 has cusp type of singularity at (0,0), i.c., it
has the same tangent with multiplicity greater than 1. The nodal cubic curve
which is defined by z3 — 22 — z? = 0 has a node at (0,0), where it has two

distinct tangents.

All singular curves have either one of these two types of singularities or

combinations of them.

Example 2.3.3. The four leaved rose defined by (z? + z%)® — 4z%z2 = 0 is

an example having both types of singularities.

By using algebraic concepts, an equivalent definition for singularity can be

found.

Definition 2.3.4. A local ring A with maximal ideal m is a regular local

ring if dim m/m? = dim A.
We now give an algebraic definition for singularity;

Definition 2.3.5. Let X be a variety and P € X be a point. X is singular

at P if and only if the local ring Op x is not a regular local ring.

Proposition 2.3.6. The geometric and algebraic definitions are equivalent.
That is, for a variety X of A™ and P € X, the local ring Op x is a regular local
ring if and only if the rank of the Jacobian matrix at P for the generators of

the ideal X is n — r where ris the dimension of X.

Proof Let P € X be (ay,...,a,). Considering P as a point of A", the
corresponding maximal ideal is ap = (zy — ay,...,Z, — ay). A linear map «
from A = k[z1,...,x,) to k" is defined by

Since a(z; ~ a;) = (0,...,1,...,0), these form a basis for k". Hence, the map

a:ap — k" is surjective. Since o(x; — a;)(z; — a;)) = (0,...,0), it is obvious

17



that a(ap) = 0. Then, it follows immediately that o' : ap/a® — k" is an
isomorphism. Let /(X) be the ideal of X such that I(X) = (fi,..., fm). From
the definition of Jacobian matrix and «, maximum number of the independent
vectors a(f;) for i from 1 to m is the rank of the Jacobian matrix. Hence,
a(I(X)) as a subspace of k™ has a dimension equal to the rank of the Jaco-
bian matrix. o ((I(X) + a}%)/a}) is equal to o/(I(X)), so (/(X) + a%)/a% as a
subspace of ap/a% has a dimension equal to the rank of the Jacobian matrix,
too. Let mp be the maximal ideal of Op x. Then mp/m% = ap/(I(X) + a%).
Since ap D I(X) + a3 D a%, (ap/a)/((ap + I(X))/a%) is isomorphic to
ap/(I(X) + a}), see (13, p. 83]. Hence, dim ap/(I(X) + a%) + dim
(I(X) + a%)/a% = dim ap/a? = n, and dim mp/m} + rank J = n. If dim
X = r, then the local ring Op x has dimension r, too. Hence, Op x is regular if
and only if dim mp/m% = r, which is the same thing as saying that the rank

of the Jacobian matrix i1s n — r. This shows the equivalence of the algebraic

and geometric definitions. 0

2.4 Resolution of Singularities

We can classify the singular curves by finding nonsingular curves which are
birationally equivalent to these singular curves. This can be done by the reso-
lution of singularities. For curves, the construction of the blow up of the curve

at a point is the main tool in the resolution of singularities of this curve.

The construction consists of simply removing the singular point and replac-
ing it by a projective line, the points of which will correspond to the tangent
directions at that point. Now, let us construct the blowing up of A? at the
point O = (0,0). The product A? x P! is considered with z,,z; affine coordi-
nates of A% and y;,y, homogeneous coordinates of P'. The closed subsets of
A? x P! are defined by the polynomials in z1, z2,y;, y2 which are homogeneous
with respect to y;,y,. Now, blowing up of A? at the point O is defined to be
the closed subset X of A? x P! defined by the equation z,y; = T2y,

We have a projection map 7 : X — A%,

771(0) consists of all points of the form (0,0) x [y1,y.] with [y1,y2] € P'.
Hence, 7~1(0) is isomorphic to P'. If we draw a picture of this blow up, it

looks like a spiral staircase (Figure 2.4).
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Figure 2.4: The blow up X of A’

We can generalize this and construct the blowing up of A™ at the point
0=(0,...,0). Now, the product A™ x P*"! is considered with z,...,z, affine
coordinates of A" and yy, ..., y» homogeneous coordinates of P*~!. The blowing
up of A™ at the point Ois defined to be the closed subset X of A” x P*~! defined
by the equations {z;y; = z;y; | ¢,7 = 1,...,n}. Again, we have 7, the projection
map from X to A". 771(O) consists of all points (0, ...,0) x [y, ..., ys] where
[¥1, -, Ya] € P*71. In order to find the blow up at any point, we use change of
linear coordinates which sends this arbitrary point to O = (0, ...,0).

If Cis a curve of A" passing through O, then blowing up of C at the point
O is defined to be the closure C of 7=1(C — 0) in A™ x P*~! with respect to
Zariski topology where 7 : X — A" is the blowing up of A" at the point O.

The map 7 : C — C is a birational morphism.
We will give illustrative examples of blow up.

Example 2.4.1. Let us find the blowing up of the nodal cubic curve
Cy : 22 = 23+ 22 at O. The blow up X of A% at O'is a closed subset of A? x P!
satisfying the equation z,y; = 7,31, where y,, y, are homogeneous coordinates.
The inverse image of Cy in X will be obtained by considering this equation with
the curve equation r2 = 73+ z3. If the open set of P! with y; # 0 is considered,
y1 can be set to be 1. Then, 73 = 2i(x; + 1) and z, = z,y,. By substituting,
we have 22y? = z2(zy + 1), from which we obtain two irreducible components,

first of which is x; = 0,72 = 0 and y; arbitrary. This is the exceptional curve
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of the blow up. The other is y2 = z; + 1 and =, = z,y,, which is the closure
of #71(Cy — 0) and meets the exceptional curve at y, = +1, which correspond
to the slopes of the two branches of C; at O. On the other open set, y, # 0,
y2 may be considered to be 1. Then, 22 = z%(z; + 1) and z; = z,y,. By
substituting, we have 72 = z3y} + z2y?, from which we obtain two irreducible
components, first of which is 2; = 0,z = 0 and y; arbitrary. The other is
y2+ydr, = 1 and 1; = 1,y,, which meets the exceptional curve at +1. In this
way, we obtained a nonsingular curve. We observe that the effect of blowing
up is to separate out branches of curves passing through the singular point
according to their slopes. Hence, it is clear that node type of singularities can
be resolved by only one blowing up but for cusp type of singularities, this is

not always the case as the following arguments show.

Example 2.4.2. Consider the cuspidal cubic curve C; : z3 = z3 at O. X,
which is the blow up of A? at O, is a closed subset of A? x P' satisfying the
equation z,y; = 7.y, where y;,y2 are homogeneous coordinates. The inverse
image of C, in X will be obtained by considering this equation with the curve
equation z2 = z3. Again if we consider the open set of P! with y; # 0,1
can be set to be 1. Then, z2 = z} and z; = z,y,. Substitution will give
(z1y2)? = z3 from which we can obtain two irreducible components first of
which is z; = 0,z, = 0 and y, arbitrary. Second one, which is defined by
y? = z, and z, = 71y is the closure of 771(Cy — O). If the other open set
is considered y, may be set to 1. Then z, = z,y,. By substituting, we have
z2 = z3y;. We obtain again two irreducible components. z; = 0,2z, = 0 and
y; arbitrary. The second one is z2y; = 1 and z; = z,y,. We again obtained a

nonsingular curve.

Example 2.4.3. The last example is again a curve which has a cusp type
of singularity. It is the curve C3 : 22 = z}. If the same procedure is followed
considering the open set y; # 0 of P?, then the closure of 77}(Cs — O) will be
defined by the equations y? = z} and y,z; = z,. It is obvious that the curve
obtained has cusp type of singularity too. Hence, for cusp type of singularities,

one blowing up may not be enough to remove the singularity. (In this example

another blow up will resolve the singularity.)

It will be useful to write the equations defining the blow up in local coor-

dinates. Recalling that the blow up of X of A™ at (0,...,0) is,

{((I‘]....,.T"),[y] D yn]) I Iiyj — y.'I_,' — 0}

Consider U/ = {y; # 0} C .X. From the defining equations of the blow up we
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have, z, = & = ¥n n_ 2 ¥n _ za
) T2 = 221,02, = 122y For 2y £ 0,8 = 22, e = 2». Define a one

to one and onto map ¢, : U; — A" as,

O1({z1, oy 20) X [y1 1 e 2 yn]) = (21, .2y =(X,..., Xa)
with inverse ;! : A™ — U as,

ey (Xny oy Xo) = (X1, Xa X2y oo, X0 X)) X [1: Xo 1ot Xy

Hence, the blown up space will be considered as having local coordinates,
X] = (I?],Xg = i,t,z""’X" = }!II_;L If (X], ...,Xn) = (0,,0) then, Iy =Y2= ... =
yn = 0, and this corresponds to the point ((0,...,0),[1:0:...:0]) in the blown up

space.
This can be done for every open set U;.

Now, by changing to Euclidean coordinates, let us show what happens to

the defining equations of the curves after the blow up in the above examples.

Example 2.4.4. Consider the nodal cubic curve defined by z% = z3 + z2.
On the open set Uy, where local coordinates are X; = z;, X; = ff-, the blown

up curve has the equation X; + 1 = X2.

Example 2.4.5. For the twisted cubic curve defined by z3 = 23, on the

open set U;, where local coordinates are X; =z, X, = = the blown up curve

has the equation X; = X7.

Example 2.4.6. For the last curve defined by z2 = z3}, on the open set
U, where local coordinates are X; = z;, X, = 22, the blown up curve has the

equation X3 = X?. From this equation, the blown up curve is still singular.

Hence, if we have the parameterization of a curve C as
ry = @i(t), ..., Tn = n(t),

then the its blow up on U; will have parameterization in local coordinates as

Xi = pi(t),Xo = 20 X, = 20

In Proposition 2.2.8, we have shown that
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k[z1, 22, ..., 2]/ 1(C) = K[1(t), 02(t), -, 2a(t)].
Then the local ring of the curve C at (0,0,...,0) 1s

.....

Recall that the completion of a local ring A, denoted by A, can be defined
as the inverse limit lim A/m™ where m is the maximal ideal of A (see [3, pp.

100-103]). Then the completion of the local ring of the curve at (0,0,...,0) is

k[[‘rgl(t)v 992(t)a A Son(t)]]'

We have seen above that on U; the blown up branch curve has parameter-
eal) X, = ——(—”"(:) Now, if
yaem e1(t)” ?

ization in local coordinates as X; = ¢1(t), X2 = Sy -
the singularity is translated to (0,0, ...,0), we have in local coordinates

Xi=¢i(t) e, Xp = walt) o X! =l o

T e B T oe(t)

where ¢, €3, ..., €, are the constant terms of X1,Xa,..., X, The local ring at

(0,0, ...,0) is now
k["pl(t) — ¢y, i_:g% - c?a"')%‘g% - Cﬂ](t)

The completion of this local ring is

Klpi(t) — 1, 28 ~ ¢, ..., 2203 — eall-

1 (t) 220 ()
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Chapter 3

ARF CHARACTERS OF
SINGULAR BRANCHES

In section 2.4, we have seen that for curves which have cusp type singularities,
one blow up may not be enough to remove the singularity. Hence, successive
resolution processes must be applied. The sequence constructed by taking the
multiplicity of the singular point before each successive resolution process is
called the multiplicity sequence. The problem is to obtain the multiplicity
sequence from the local ring of the curve at the singularity, without applying
successive blow ups to the curve. In other words, the problem is to predict

algebraically the result of a geometric process.

3.1 Historical Development

The multiplicity sequence of a singular plane curve branch can be found by
using Fuclidean algorithm, which is the process of finding the greatest common
divisor of two numbers. The branch is characterized by a number of pairs of
numbers g, ¥ (¢ = 1....,k) such that for i = 2, .., k v; is the greatest common
divisor of y;—y and v,;_;, and g; is not divisible by v, for : = 1,..., k. Euclidean
algorithm is applied to these pairs characterizing the branch. The divisors are
the multiplicities of the points of the branch and the corresponding quotients

are the number of consecutive points of such multiplicity given by the divisor

8, pp. 107-108).

These pairs can be determined from the below parameterization of the plane
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curve C, known as Puiseur ezpansion [6, pp. 512-518],
Ty =% Ty = e b 8 b b U e b 4TS b b TR L

In z,, m; is the smallest exponent not divisible by u whose coefficient b,,, is
nonzero, my is the smallest exponent not divisible by greatest common divisor
of u and m; whose coefficient b,,, is nonzero, my is the smallest exponent
not divisible by greatest common divisor of u, m;, my; whose coefficient b,,, is
nonzero, ..., and my is the smallest integer for which greatest common divisor of
u, my, My, ..., mg is 1 whose coefficient b,,, is nonzero [, p. 166]. These terms
by ™1, by t™2, .., by, U are the characteristic terms of the expansion. Now,
we can determine pairs y,,v; from the degrees of these characteristic terms,
and degree of z,, which is u. First y; = m; and v; = u. Then for: =2,...)k,

p; = m; — m,_y and y; = greatest common divisor of p;_; and v;_;.

Example 3.1.1. Consider the branch given by,

z; = {1

T, = t250+t375+t410+t417

in which only characteristic terms appear. By using the method given above,
this branch is characterized by the pairs (250,100), (125,50), (35,25) and (7,5).
Applying the Euclidean algorithm to these pairs,

250 = 2x100+50

100 = 2 x50
125 = 2x50+425
50 = 2x251

35 = 1x25+10
25 = 2x10+5

10 = 2x5
= 1x5
5 = 2x2+41
= 2x1

The numbers in boldface are the multiplicities, and the numbers multiplied
by them in the table denote the number of times each multiplicity is repeated
in the sequence. Then the multiplicity sequence of the curve branch is:

(100,100 50.50.50,50 25,25,25 10,10 5.5.5 2,2 1,1).
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As expected, for a general curve in n-space, this method does not work.
In fact the theory of algebraic curve branches in plane was complete even in
1938, when Semple wrote “Singularities of Space Algebraic Curves”, see [17].
In his paper, Semple analyzed the geometry of successive resolution processes
on a singular curve branch in 3-space. Semple defined prozimity in order to
determine a relation between the successive blow ups. A plane egl) is obtained

when a point E) of a space curve branch is resolved. Any point E; of egl) is

defined to be proximate to E,. By resolving £, again, a plane egQ) 1s obtained.

Also, a surface 622) represents E; — E,. These two, 652) and eg2), meet in a line.

Then from the point of view of linear equivalence, £, = 652) + egz). If E5is

chosen freely in egz), it will be proximate only to its immediate ancestor F,,

but if it is chosen in the intersection line, then it will be proximate to both E,

and E,. Suppose, E5 is chosen from the intersection line and resolved. Then,
(3)

3 . .
a plane eg ) representing E3, a surface e, ’ representing E3 — E3, and a surface

e§3’ representing Fy — E, — E3. These intersect in curves, which are concurrent
in a point. Fj can be chosen freely in ega) proximate only to Ej3, or in the
intersection of ega) and e£3), proximate to E; and Fj3, or in the intersection of
cga) and e£3), proximate to E; and Fj, or as the point where the curves are

concurrent, proximate to £y, E,, and Ej.

We can summarize these by explaining the set up after every blow up:

(0) We have a point E; (which is to be resolved).

(1) A plane egl) is obtained. A point E; of egl) is chosen. We have now FE;
and egl) — E; = E; — E;. (E; is to be resolved.)

2) We obtain a plane egz) representing F,, and a surface el? representing
p g 1

E, — E,. These intersect in a line. Fj is chosen on the line. Now, we have Ej,
egz) — E3 = FEy — E3 and eﬁ"’) — E3 = E, — E; — E3. (E3 is to be resolved.)

(3) We obtain a plane e:(,S) representing Fj, a surface el representing E, —

3 : . .
Es, and a surface eg ) representing £y — E, — E5. These intersect in curves

concurrent in a point.

By generalizing this, Semple defined a point E; as proximate to Ej, if E;
is chosen from the resolution of E; or if E; is any point of any diminished
neighborhood of E;, which is obtained by subtracting from it a set of points of
itself. As above, Ey — E; — E5 is a diminished neighborhood of E;. Hence,
E,; which is chosen from this neighborhood is proximate to Ey. E; — Ej is
a diminished neighborhood of E, and E4 chosen from this neighborhood is

proximate to E,.
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From this definition, Du Val in 1942 deduced the following three results for
the n-space [8, p. 109].

(1) If a point is proximate to two others, then one of these is proximate to

the other.

(2) In n dimensions, no point can be proximate to more than n others.

(3) The multiplicity of a curve in any point is the sum of its multiplicities

In points proximate to that.

Du Val defined the restriction of a point to be the number of its predecessors
to which it is proximate. This led to the definition of a leading point of the
branch as one whose restriction is less than that of its successor. The sum of the
multiplicities of the first n-points is called the multiplicity sum corresponding to
the n-th point. Du Val called the multiplicity sum corresponding to a leading
point as a character of the branch. His main contribution to the problem
of finding the multiplicity sequence of an arbitrary curve branch is that, if
the characters of the branch are known, then the multiplicity sequence of the
branch can be found by applying the modified Jacobian algorithm to these

characters.

The modified Jacobian algorithm [8, p. 108-109] is as follows:

We begin with the characters of an algebraic branch. They form the first
row. The least of these is chosen as the divisor. The least of the remaining
ones is chosen and divided by the divisor. The product (quotient x divisor
for this least element) is subtracted from all the numbers except the divisor
itself. This algorithm differs from the Jacobian algorithm by the fact that in
Jacobian algorithm all the numbers in the row except the divisor are divided
by the divisor so that all the remainders are less than the divisor. In modified
Jacobian algorithm the remainders may be greater than the divisor. The divisor
and the remainders obtained form the second row. If any remainder is zero,
it is omitted. The algorithm stops, when we reach a row consisting of only
one element. The divisors are the multiplicities of the points of the branch.

and the quotient corresponding to each divisor is the number of points of the
corresponding multiplicity.
Example 3.1.2. We will apply the modified Jacobian algorithm to two

algebraic curve branches. The first one has the characters 100, 250, 425, 485,
512. The second one is an example of Du Val which has the characters 2087,

4610, 6068, 6384.
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N o

100 250 425 485 512 | 2 || 2087 4610 6068 6384 | 2
200 200 200 200 | | 4174 4174 4174 |
100 50 225 285 312 | 2 || 2087 436 1894 2210 | 4
100 100 100 100 | || 1744 1744 1744 |
50 125 185 212 | 2 || 343 436 150 466 | 2
100 100 100 | [| 300 300 300 |
50 25 85 112 | 2 |] 43 136 150 166 | 3
50 50 50 | | 129 129 129 |

25 35 62 | 1 || 43 7 21 37| 3
2 25| | 2 2L 21 |

25 10 37 | 2 || 22 7 16 | 2
20 20| |l 14 14 |

5 10 17 | 2 | 8 7 2 | 3
10 10 | 6 6 l

5 711 | 2 1 2 | 2
51 2 2 |
5 2 | 2| 1 |
4 bl |
1 |2 |l |
| |
I I

The multiplicity sequence of the curve branch, which has the characters
100, 250, 425, 485, 512 1s:

(100,100 50,50,50,50 25,25,25 10,10 5,5,5 2,2 1,1).

The multiplicity sequence of the curve branch, which has the characters
2087, 4610, 6068, 6384 is:

(2087,2087 436,436,436,436 150,150 43,43,43 7,7,7,7,7 2,2,2 1,1)

Every time a column enters the algorithm, a leading point is passed so
restriction rises by unity. Every time a column becomes zero, restriction falls
by unity. We can observe from the table that, for the first curve branch, the
restriction can not be greater than 2. Thus, the branch is capable of existing
in two dimensions. This is the expected result because the example given

previously as a plane algebraic curve has the same multiplicity sequence. For
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the second curve, the restriction rises to 3. Hence, the branch is capable of

existing in three dimensions, but not in a plane.

This method is valid for any algebraic curve branch with known characters.
More than this, it gives us the opportunity to know the minimum dimension
in which the branch is capable of existing. What Du Val asked was, how we
should obtain the characters of the curve branch. The relation between these

and the expansion of branch in power series was unsolved, until Arf wrote his
paper in 1949 [2].

3.2 Arf Rings, Closure and Characters

Arf’s work depends on the observation that there is an algebra behind these
geometric arguments. He shows that the multiplicity sequence of an algebraic
branch can be defined by purely algebraic notions. He constructs the link
between geometry and algebra by showing that the completion of the local ring
at the singularity of the branch carries all the information necessary to obtain

the multiplicity sequence.

For a curve branch having the parameterization z; = ¢;(¢), ..., 2, = @n(t),
the completion of the local ring is k[[p1(?), ..., ¢a(t)]], i.e., the ring formed by

all formal series of the form,

- : A S 1
}_, OiyyinPy P

i1 400y in 20

where a;, ;. € k.

Arf passes from geometry to algebra by using the completion of the local
ring. He constructs the canonical closure of this ring, later called the Arf
closure. The orders of the elements of the constructed ring form a semigroup.
This is passing from algebra to arithmetic. Now from this semigroup, Arf
obtains some numbers by a process to be described below, and then applies

the modified Jacobian algorithm to these numbers to obtain the multiplicity

sequence.

In this way, he provides an answer to the question of finding the relation

that must exist between Du Val's results and the series representation of the

branch.

o
o



Before we define Arf ring, Arf semigroup, Arf closure, and Arf characters,

we give nccessary definitions and theorems. For the proofs of theorems, see
2]

In the formal power series ring k[[t]], where kis any field, consider a subring

H. Let
‘V(H) e {10 - O,i],iz, ...,ir,ir+1,...}

be the orders of the elements of H in increasing order. The integers

20,21y .-y Iry ... fOrm a semi-group of nonnegative integers. If arbitrary

So, Siy, S5y, - elements of orders tg,1;,1%2,... respectively are chosen from H,

then every element of H can be written in the form

ZQIS,'“ (a1 € k).
=0

H is assumed to contain all the power series of this form. The subset of H
consisting of all the elements whose orders are greater than or equal to & will
be denoted by Ij:

Iy ={fe€ H|ord(f) > h}.

I, is an ideal of H and its elements are of the form

Z 0115,‘“ (CY( € k)

w>h

Theorem 3.2.1. [2, Aux. Thm. 1, p. 257] If v is the greatest common
divisor of the elements of W(H), then for sufficiently large r,

ir+] = ir + v, ir+2 = i,- + 2V, ceey ir+k = ir + ]CV,

and there exists a power series of order 1,

'In his paper, Arf uses the names canonical ring for Arf ring, canonical semigroup for Arf
sernigroup, and canonical closure for Arf closure. We use “Arf” rather than “canonical”.
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T = t(l + Ztgltl) (6 € k)
=1

such that every element of H is of the form 3272, a; T,

From the theorem, it follows that if the greatest common divisor of the
elements of W(H) is 1, then H contains power series of all orders after some r.
Note that in this case, i.e., when v = 1, finding the largest integer not contained

in W(H) is known as the problem of Frobenius, which we will discuss in chapter

4.

Theorem 3.2.2. [2, Aux. Thm. 3, p. 259] If the set of quotients of
elements of I, by Sy (an element of order k in H) is denoted by I;/Sy, and the
ring generated in k{[t]] by Ir/Ss is denoted by [In/Sh], then the ring [I/Sh]

does not depend on the choice of Sj.

Thus, we will denote [I1/Sk] by [14].

Example 3.2.3. [2, p. 260] This illustrative example of Arf shows that
the semigroup W([I;,]) contains the semigroup generated by the integers

b=t =0, thp1 —th, Thg2 — k..
which are the orders of the elements of I;, /S;,. But W([I;,]) is not necessarily

equal to this semigroup. Consider the ring H formed by all the series of the

form

Z CY,‘_,‘X"Y]. (0‘.'_,‘ S k),

730
where X = t!, Y =t +¢'°. W(H) contains the integers

0.4,8,10,12,14,16,18,20,22,24,25,26,28.29,30,32,33,34,35,36,37,38,...

Hence, the orders of the elements of I;/.X are
0.4,6.8,10,12,14,16,18,20,21,22,24.25 26,28,29,30,31,32,33,34,...
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which generated the semigroup
0,4,6,8,10,12,14,16,18,20,21,22,24,25,26,27,28,29,30,31,32,33,34,...
but [14] contains the element (Y/X)? — X3 = 2t}7 + t?? whose order is 17, which

i1s not an element of this set.

Definition 3.2.4. (2, p. 260] A ring is called an Arf ring if [I;] = I+/S
for every h € W(H).

Remark 3.2.5. [2, p. 260] If His an Arf ring, then the integers
th—1h =0, thy1 —1tn, thyz — a,
form a semigroup for every h. A semigroup of nonnegative integers
io=0, 21, 12, .., ip,
is called an Arf semigroup if the sequence of integers
th—th =0, the1 —1h, Thp2 — ip,

is a semigroup for every h.
From the definition, k[[t]] is an Arf ring, and N is an Arf semigroup.

Theorem 3.2.6. [2, Aux. Thm. 4, p. 261] (i) Intersection of Arf rings is
an Arf ring.

(i) Intersection of Arf semigroups is an Arf semigroup.
Remark 3.2.7. (2, p. 261] If H is an Arf ring, then so is [I;,].

Definition 3.2.8. [2, p. 263] Given a ring H, the intersection of all Arf
rings containing H is an Arf ring *H, which is called the Arf closure of H.
Similarly for a semigroup G, the intersection of all semigroups containing G'is

an Arf semigroup *G, called the Arf closure of G.

Theorem 3.2.9. (2, Thm. 1, p. 264] The intersection of all the semigroups

g such that *g =* G is a semigroup g, such that *g, =* G.
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(?7BIBABKI dbcg IPL bem D? HMZH?IBQ@KML  G?7BI?G Bl AD? EZKF?
AD?K@7?J BH >ENN?G AD? 7 0 ? K7 ENBIHM>D ADHB %e O

$7 BH E H?JBQ@KMLP AD?I AD?@? BH E JBIBJEN H?A K7 Q?1?@EAK@HP PBP h
HM>D ADEA

D?C E@? G?7BI?G Bl AD? 7KNNKXBIQ XEC hB BH AD? HIJENN?HA IKIS?@K BIA?Q?@ Bl
h BH AD? HIENN?HA K7 AD? BIA?Q2@Br BH IKA K7 AD? 7TK@J EBhBP XD?@?

BH E IKII?QEABF? BIA?Q?@ hE BH AD? HIENN?HA K7 AD? BIXEUBX@DHEEP? KA

K7 AD? 7TK@J K@BhBH P XD?@? P E@? IKII?QEABF? BIA?Q?@H hmBPRhI

Z?BIQ G?7BI?GP hifB BH AD? HIENN?HA BIAP@R@®>BI BH IKA K7 AD? 7K@J

IBhB f h f f Kqgag

XD?@? P P PKg E@? IKI?QEABF? BIA?Q?@HP B? P "BP Phl BH E JBIBJEN H?A K7
Q?1?@EAK@HKB |

(?7BIBABKI dbcc [bPL bend Z?BIQ AD? >DE@E>A?@BHAB> HMZ H?IBQ@KML

K70 AD? JBIBJEN H?A K7 Q?I?@EAK@H I- O G?7BI?G Bl ADBH XEC E@?
AD? 0
D?K@?J dbcb bP DJ DbP L bem : : : Z?BIQ AD?

Q?I?@EAK@H K7 E H?JBQ@KM H?A K7 AD? >DE@E>AQ@H KIAEBI?G Bl AD?
H?A o P P PzV

D?K@?J dbcd IbP DJ dP L beemO Z?BIQ AD? H?JBQ@KML Q?I?@EA?G
ZC : B: oo KF?@ IEAM@EN IMJZ?@HP AD? BIA?Q?@H

HM>D ADEA
H PP fbf fB2Nf AV

E@? KZAEBI?G 7@KJ g :: : 1z ZC AD? JKGB7B?G E>KZBEI ENQK@BADJ
K7 (M 2ZEN D?@7? AD? BIA?Q?@H ABPTr ELL?E@ EH GBFBHK@HP XDBN? AD?
OMKAB?IAH @?L@?H?IA AD? IMJZ?@ K7 ABJ?H ?E>D GBFBHK@ BH @?L?EA?G Bl AD? H?OM?[>?
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