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Abstract-The applications of discrete-time signal-processing tech- 

niques, such as windowing and filtering for the purpose of implement- 
ing accurate excitation schemes in the finite-difference time-domain 

(FDTD) method are demonstrated. The effects of smoothing windows 
of various lengths and digital lowpass filters of various bandwidths 
and characteristics are investigated on finite-source excitations of the 
FDTD computational domain. Both single-frequency sinusoidal sig- 
nals and multifrequency arbitrary signals are considered. 
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1. INTRODUCTION 

In parallel to the evolution of the computational resources in 
recent decades, application of the computer-based signal-processing 
(SP) techniques to digital representations of analog signals has 
been one of the most important topics in electrical engineering. 
Digital SP techniques, such as sampling, fast Fourier transformation 

(FFT), filtering, windowing, decimation, and interpolation, have been 

developed and widely used by almost all electrical engineers of various 
interests. In this paper, the application of some of these SP techniques 
to a particular area, namely, the excitation of the computational 
domain of the finite-difference time-domain (FDTD) technique [1] 
will be presented. Perfectly matched layer (PML) [2, 3] absorbing 
boundary conditions are used to terminate the three-dimensional (3- 
D) grid. 

This paper presents the accuracy improvements obtained by 
applying the SP techniques to the finite-source excitation schemes. 
Similar improvements have been obtained and reported for the plane- 
wave excitation scheme [4-6]. The plane waves are generated in 
the 3-D grid using a 1-D look-up table, which is excited by a hard- 
source. The incident-field values are generated by the 1-D finite- 
difference equations, and the required incident-field values on the total- 

field/scattered-field interface of the 3-D grid are linearly interpolated 
from the 1-D look-up-table data [7]. The quality of these incident- 
field values can be increased by the application of smoothing windows 
or digital filters [4] that alters the frequency content of the source 

signal. Furthermore, the quality of interpolation can be enhanced by 
increasing its order [5], or the accuracy of the look-up table process can 
be increased by decreasing the spatial and temporal sampling periods 
of the 1-D grid [6]. 

Numerical solutions of various electromagnetic scattering prob- 
lems yield the simulation and excitation of a near-field source instead 
of a plane wave produced by a distant source. The problems encoun- 
tered due to the high-frequency components of the plane-wave source 
functions are also observed in the finite-source excitations. However, 
since no look-up table is used, oversampling the source function or in- 

creasing the order of interpolation is not applicable in the finite-source 
excitation. The applicable tools, namely, the smoothing windows and 

digital lowpass filters, are used to reduce the high-frequency contents 
of the input signals, and hence, to increase the accuracy of the FDTD 

signals in this paper. 
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2. THE SOURCE MODEL 

In this paper, infinitesimal dipoles, which are modeled by small 

radiating Yee cubes, will be simulated as finite sources. Although 
a single Yee cube has finite dimensions, in contrast to the Hertzian 

dipole, modeling the source by a smaller volume is not possible, due 
to the space resolution of the FDTD method. 

A small dipole is modeled on a Yee cube by using the discretized 
version of 

at the source location. The term in (1) contains the desired current- 
source function divided by a factor of 03, which is the volume of the 
source cell. This scaling assures that the total current induced in the 
cell volume is equal to the desired value [8]. Thus, a constant current 

density of one Yee cube is used to simulate an infinitesimal dipole. 
The discretized version of (1) is given by 

The term in (2) is taken nonzero at a particular point 
(io, jo , ko ) and zero elsewhere, when an infinitesimal dipole is simulated. 

3. SIGNAL-PROCESSING TOOLS 

A time-limited analog signal (with finite support in time) is known to 
be not bandlimited in frequency. Thus, a causal signals, which is zero 
for t < 0, contains large high-frequency components, independent of 
the sampling rate. As an example, Fig. 1 (a) shows a causal sinusoid, 
i.e., a sinusoid multiplied by a step function, which contains an abrupt 
change at t = 0. The Fourier transform of this causal signal is not 

bandlimited, as shown in Fig. 1 (b) . 
Smoothing windows are used to taper the discontinuities of the 

signals and to reduce the high-frequency components of the signal 
spectra. A triangular (Bartlett), Hanning (Hann), Hamming, or 
Blackman window [9, 10] can be used for this purpose. In this paper, 
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Figure 1. (a) Time-domain and (b) frequency-domain representations 
of a sinusoidal signal multiplied by a step function at t = 0. (c) Time- 
domain and (d) frequency-domain representations of a sinusoidal signal 
multiplied by a Hanning window with length L = To at t = 0. 

the Hanning window, also known as the raised-cosine window, will be 
used whenever smoothing is applied to a signal. 

The time- and frequency-domain representations of a sinusoidal 

signal with operating frequency fo - 1 GHz, which is multiplied 
by a step function at t = 0, are displayed in Figs. l(a) and (b), 
respectively. When the continuous-time signal in Fig. 1 (a) is multiplied 
by a Hanning window of length L by 
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Figure 2. Frequency response of the 32-point digital lowpa5s filter, 
with a cut-off of 10 GHz and a transition region of 3-10 GHz, designed 
by the remez algorithm [13]. (b) Frequency spectrum of the signal in 

Fig. l(a) after it is filtered by the digital lowpass filter with frequency 
response shown in (a). 

and L is set as one period of the sinusoidal signal, i.e., To = 1/ fo, 
the high-frequency components due to the steep increase at t = 0 are 

suppressed. Figures 1(c) and (d) show the time- and frequency-domain 
representations of this windowed sinusoidal signal, respectively. 

The goal of suppressing the high-frequency components of the 

digital signals can also be achieved by using a digital lowpass filter. 
A linear-phase finite-impulse-response (FIR) lowpass filter can be 

designed using the Parks-Mcclellan algorithm [11, 12], devised to 
minimize the weighted errors in the design process. This algorithm 
is also implemented as a MATLAB function called remez [13]. 

Figure 2(a) presents the frequency response of a 32-point digital 
filter with unity gain and 10-GHz cut-off. The application of 
such a filter on the digital signal yields the multiplication of the 
discrete Fourier transforms of the two signals [9]. The effect of this 

multiplication is demonstrated in Figs. l(b) and 2. Figure 1 (b) displays 
the Fourier transform of the 1 GHz sinusoid multiplied by a rectangular 
window. When this signal is passed through the filter with the 

frequency response of Fig. 2(a), the resultant signal, whose frequency- 
domain representation is given in Fig. 2(b), is obtained. Comparison 
of Figures 1 (b) and 2(b) suggests that the amplitudes of the frequency 
components above 10 GHz are decreased by a few orders. 

The multiplication in the frequency domain corresponds to a 
convolution of the sequences in the time domain. The convolution 
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operation 

also reads as 

where ef[n] is the inverse FFT of the signal displayed in Fig. 2(b), 
e[n] is the sampled sinusoidal signal, whose frequency-domain 
representation is shown in Fig. l(b), and h[n] is the FIR filter with 

response displayed in Fig. 2(a). 

4. NUMERICAL RESULTS OBTAINED IN A 
HOMOGENEOUS GRID 

In this section, the FDTD signals will be compared to the frequency- 
domain solution of an infinitesimal dipole in homogeneous space, which 
is analytically available. In order to be able to use this information, 
the time-dependence of the current source is transformed into the 

frequency domain via the FFT. This frequency-domain representation 
of the current source is multiplied by the analytical solution of the 
small dipole. The resultant spectrum signal is inverse transformed to 
the time domain to obtain a quasi-analytical solution at the observation 

point. In the following sections, this quasi-analytical method will be 
used to illustrate the errors on the FDTD signals. 

4.1. Single-Frequency Dipoles 

In [4], the errors induced by the high-frequency components of a causal 
sinusoidal signal were shown on the plane-wave excitation of the FDTD 

grid. The main source of error in the plane-wave excitation is the high- 
frequency content of the incident wave, which increases the transient 
and steady-state error levels due to the phase velocity mismatches 
between the 1-D source grid and the 3-D FDTD grid [7]. In the case of 
a finite near-zone source exciting the FDTD grid, there is no concern 
about any phase velocity mismatches, since there is only the 3-D grid 
that the waves propagate in. However, the phase velocities of different 

frequency component are still not the same, causing the deviation of 
the FDTD signals from their ideal counterparts. 

The infinitesimal dipole is first excited with a sinusoid multiplied 
by a step function, and the corresponding simulation result is displayed 
in Fig. 3(a). The z-polarized dipole is located at grid point (0, 0, 0) and 
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Figure 3. Simulation results of a small z-polarized dipole. The source 
function is a sinusoid with a frequency of 1 GHz. (a) FDTD signal at 
the observation point when the sinusoid is multiplied by a step function 
at t = 0. (b) FFT of the signal in (a). (c) Quasi- analytical solution. 

(d) Observed FDTD signal when the sinusoidal is passed through a 

lowpass filter with cutoff at 13 GHz. (e) FFT of the signal in (d). 
(f) Quasi- analytical solution. (g) Observed FDTD signal when the 
sinusoid is multiplied by a one-period-long Hanning window. (h) FFT 
of the signal in (g). (i) Quasi-analytical solution. 
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the observation point is at (50A, 50A, 50A), where A, the cell size, is 
set as 2.5 mm. The time step is 4.5 ps, which satisfies the Courant 

stability limit. The quasi-analytical solution of an infinitesimal dipole 
with the same source function, which is a sinusoid multiplied by a step 
function, is also computed and displayed in Fig. 3(c). Comparison of 

Fig. 3(a) to (c) reveals that the FDTD computation scheme cannot 
follow the abrupt change in the source function at t = 0, and the high- 
frequency oscillations due to this non-ideal feature are still present on 
the sinusoid after a number of periods of the incident pulse. These 

high-frequency components are visible in Fig. 3(b), the FFT of the 

signal in Fig. 3(a), around a band centered at 50 GHz. 

Figures 3(d) and (f) display the FDTD and the quasi-analytical 
solutions of the source function, which is the sinusoidal signal passed 
through a 128-point digital lowpass filter with a cutoff at 13 GHz, 
respectively. The FDTD solution, displayed in Fig. 3(d), highly 
resembles the theoretical signal in Fig. 3(f), demonstrating the decrease 
in the FDTD error by the filtering process. Similar to the filtering 
process, multiplying the first period of the incident pulse by a 

smoothing window provides an FDTD signal identical to its theoretical 

counterpart, as demonstrated by Figs. 3(g) and (i). The suppression 
of the high-frequency components and the error by the digital filter 
and the smoothing window is further demonstrated by the FFT's of 
the FDTD signals, given in Figs. 3(e) and (h), respectively. These 
two frequency-domain plots illustrate the decrease in the energies 
of components around 50 GHz, which are dominant for the sinusoid 

multiplied by the step function, whose FFT is displayed in Fig. 3(b). 

4.2. Dipoles Driven by Transient Pulses 

The infinitesimal dipole can be excited by transient source functions 
as well as single-frequency functions. Setting the cell size and the 
time step as 2.5 mm and 4.5 ps, respectively, and the locations of the 
transmitter and the receiver the same as in the previous section, the 
infinitesimal dipole is excited by the rectangular pulse in Fig. 4(a) 
and the oscillatory signal displayed in Fig. 5(a) is obtained at the 
observation point. The corresponding quasi-analytical solution is 
shown in Fig. 5(c) as a reference. As the signal in Fig. 5(a) and its FFT 
in Fig. 5(b) demonstrate, the high-frequency oscillations are dominant 
on the time-domain signal and the FDTD scheme cannot produce a 

signal that resembles the theoretical one at the observation point. 
The digital lowpass filter mentioned in the previous section is 

applied on the rectangular pulse before it is fed into the source grid, and 
the resultant signal is displayed in Fig. 4(b). The FDTD observation, 
given in Fig. 5(d), and the quasi-analytical solution, displayed in 
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Figure 4. Time variation of (a) the rectangular pulse, (b) the filtered 

rectangular pulse, (c) the windowed rectangular pulse, and (d) the 
smooth pulse. 

Fig. 5(f), match in this case. Application of 30-At-long smoothing 
windows on the sharp edges of the rectangular pulse produces an input 
signal that is shown in Fig. 4(c). The excitation of the dipole with this 
source signal yields an FDTD signal, displayed in Fig. 5(g), with high 
resemblance to the reference solution, shown in Fig. 5(i). Filtering or 

smoothing the source function suppresses the dominant high-frequency 
components of the FDTD signal, as demonstrated in Figs. 5(e) and (h), 
respectively. 

In the above, the FDTD simulation results obtained by a 

rectangular pulse and other pulses derived therefrom are presented. 
The rectangular pulse contains large high-frequency components, 
which need extra effort to suppress. However, a smooth pulse contains 

high-frequency components with much less energies with respect to the 
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Figure 5. The simulation results and quasi-analytical solutions of a 
small z-polarized dipole located at point (0, 0, 0). Observation point 
is at (50A, 50A, 50A). The source function is a transient pulse with a 
center frequency of 1 GHz. (a) FDTD signal at the observation point 
when the source is a rectangular pulse with zero dc value. (b) FFT of 
the signal in (a). (c) Quasi-analytical solution. (d) FDTD signal at 
the observation point when the rectangular pulse is passed through a 

lowpass filter with cutoff at 13 GHz. (e) FFT of the signal in (d). 
(f) Quasi-analytical solution. (g) FDTD signal at the observation 

point when the sharp edges of the rectangular pulse are multiplied 
by 30At-long Hanning windows. (h) FFT of the signal in (g). (i) 
Quasi-analytical solution. (j) FDTD signal at the observation point 
when the source is a smooth pulse with 1 GHz center frequency. (k) 
FFT of the signal in (j). (1) Quasi-analytical solution. 
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rectangular pulse. Such a smooth pulse with 1 GHz center frequency, 
which is shown in Fig. 4(d), is employed as the time dependence of 
the single-cell dipole. The result of the corresponding simulation is 

presented in Fig. 5(j), which displays perfect match with the quasi- 
analytical reference solution in Fig. 5(1). The FFT of the time signal 
in Fig. 5(k) demonstrates that the FDTD signal is dominated by the 
1 GHz component, and not by the high-frequency components as in 

Fig. 5(b). 

5. APPLICATION OF SP TECHNIQUES TO 
SCATTERING PROBLEMS 

In the previous section, all the simulations were performed in a 

homogeneous medium, which made it possible to compare the FDTD 

signals to the theoretical field values. When a scatterer is present in 
the computational domain, it may not always be possible to know the 

exact values of the total and scattered fields, depending on the shape 
of the object. Moreover, in a scattering problem, the errors due to the 
lack of accuracy in the modeling of the scatterer, which may be larger 
than the high-frequency dispersion errors, should also be taken into 
account. 

Although the error cannot be exactly known for a heterogeneous 
computational domain, it is sometimes possible to comment on the 

quality of the scattered fields obtained by different source functions 
with different frequency contents. In this section, such a scattering 
problem will be investigated and the application of the SP techniques, 
summarized so far, on this scattering problem will be demonstrated. 

A typical example to a scattering problem with a finite source 

exciting the FDTD grid is a ground-penetrating-radar (GPR) problem 
[14-17]. The important feature of the GPR simulation is that, due 
to the stratified and heterogeneous structure of the ground, it is 
not possible to exactly know the outcoming signals. Therefore, it 
is impossible to compare the FDTD signals to the theory. However, 
due to the special characteristics of the GPR problem, not all kinds 
of source signals are appropriate for this certain application, and, 
therefore, it is still possible to demonstrate the effects of the SP 

techniques. 
A typical GPR simulation, displayed in Fig. 6, has five basic 

elements: the ground and the air, the receiving and the transmitting 
antennas, and the scatterer embedded in the ground. The transmitter 
and the receiver are located at the same elevation above the ground-air 
interface [16, 17]. The transmitter (T) generates the fields penetrating 
the ground with a particular polarization and the receiver (R) collects 
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Figure 6. A typical GPR problem, involving air, ground, transmitter 

(T), receiver (R), and a scatterer buried in the ground. The receiver 
collects the sum of the direct (D), reflected (G), and scattered (S) 
signals. 

and samples the fields with the same polarization. The total signal 
collected by the receiver is the sum of three individual signals: the 
direct signal (D) coupled from the transmitter to the receiver, the 

signal reflected from the ground (G), and the signal scattered by the 
buried target (S). The desired signal is the S signal, which contains 
information about the position and the characteristics of the buried 

target. When the transmitter-receiver pair is stationary and the 
receiver collects data at a point in space for successive instants of time, 
this is called an A-scan. A B-scan is obtained by performing repeated 
A-scan measurements at discrete points on a linear path. 

The scattered signals are obtained with the subtraction of the 
results of an extra simulation involving a homogeneous ground in the 
absence of the target. The result of this extra simulation provides 
the sum of D and G signals. This D+G signal is subtracted from the 

D+G+S signal to extract the S signal. It may be possible to determine 
the location, depth, size, and material properties of the buried target 
by analyzing the S signal. However, the quality of these deductions 

depends on the character of the signal. For example, if the signal 
extends in time or contains high-frequency oscillations, it may not be 

possible to know the location and depth of the target. 
Figure 7 displays the simulation results of a 5 x 5 x 4 cm3 dielectric 

prism buried 5 cm under the ground-air interface. The transmitting 
and receiving antennas are separated by 11 cm. The antenna pair 
travels along a linear path above the target and receives data at 

every 5 mm on the path. The cell size and the time step are selected 
as 2.5 mm and 4.5 ps, respectively. Figure 7(a) displays the B-scan 
results of the dielectric prism when the source function is selected as a 
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Figure 7. The B-scan and energy results of a dielectric prism buried 
5 cm under the ground. The source function is (a) a rectangular pulse 
with 1 GHz center frequency, (b) a lowpass-filtered rectangular pulse, 
(c) a rectangular pulse with smoothened edges, and (d) a smooth pulse 
with 1 GHz center frequency. 
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rectangular pulse with no DC component and 1 GHz center frequency, 
as in Fig. 4(a). As an alternative, this source function is filtered by an 
FIR lowpass filter, which has a 13 GHz cutoff, before it is fed into the 
source grid. The corresponding source signal and simulation results 
are shown in Figs. 4(b) and 7(b), respectively. Similarly, a smoothing 
window is applied on the edges of the rectangular pulse, as shown in 

Fig. 4(c), and the B-scan outputs are displayed in Fig. 7(c). The B-scan 
results in Fig. 7 are the scattered signals (S), i.e., the D and G signals, 
obtained by simulations employing homogeneous ground models, are 
subtracted from the original B-scan observations. All three results are 
normalized by the maximum S values observed in the corresponding 
B-scans, and displayed with respect to the radar position. The radar 

position denoted as zero is the point where the GPR is above the center 
of mass of the buried target. Energy values of the B-scan signals, 
obtained by compounding the values at a particular time step of each 
A-scan signal, are also computed and given below the corresponding 
B-scan result. 

Figures 7(a)-(c) demonstrate that, with all three source functions, 
the scattered signals are visible when the GPR is close to the buried 

target. Thus, these B-scan results reveal that it is possible to detect a 
buried target even if the source function employed on the transmitting 
antenna contains high-frequency components. However, the B-scan 
results in Figs. 7(a)-(c) do not readily indicate the depth of the target, 
since the three energy plots do not exhibit clear peaks at a consistent 
time instant due to the high-frequency oscillations in time. Figure 7(d) 
displays the simulation results obtained by feeding a smooth pulse, 
which is shown in Fig. 4(d), as the source function in the transmitting 
antenna. Although Figs. 7(a)-(c) exhibit long and oscillatory scattered 

signals in time, Fig. 7(d), obtained with the smooth pulse, displays 
smooth and clear B-scan signals. Thus, the high-frequency oscillations 
in Figs. 7(a)-(c) are not present because of the problem geometry, but 

instead, they are due to the characteristics of the source function fed 
into the transmitting antenna. A smooth pulse with short duration 
and smaller high-frequency components produces shorter S signals in 

time, which results in an enhanced estimate for the depth of the buried 

target. The energy plot given below the B-scan image in Fig. 7(d) also 
exhibits a clear peak at approximately 470At (2.1 ns), which almost 
coincides with the time instant that the waves reflecting from the 
center of the body of the target reaches the receiving antenna. On 
the other hand, the rectangular, filtered rectangular, and windowed 

rectangular pulses produce scattered signals, whose energies are spread 
from 400At to about 700At, without a single clearly distinguishable 
peak that correctly points to the depth of the buried target. 
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6. CONCLUSIONS 

In this paper, the effect of the frequency-domain content of the 
source functions on the excitation errors in the FDTD method is 
demonstrated. The errors due to the numerical dispersion taking 
place in the FDTD grids are decreased by the application of some 
SP techniques, which control the frequency content of the source. The 
SP tools, smoothing windows and digital lowpass filters, have immense 
effects on the error levels observed in the FDTD computational domain. 
These effects are demonstrated on various types of source functions by 
simulating their propagation in homogeneous media. The accuracies 
of the FDTD signals are measured by comparing them to a quasi- 
analytical solution in the near zone. The application and the enhancing 
effects of the simple SP techniques on the excitation schemes are also 
demonstrated on a GPR problem. It is shown that the spectral content 
of the signal, which depends on the choice of the source function, 
directly influences the detectability of the buried target. 
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