About curvature, conformal metrics and warped products

To cite this article: Fernando Dobarro and Bülent Ünal 2007 J. Phys. A: Math. Theor. 40 13907

View the article online for updates and enhancements.

Related content
- The Lichnerowicz equation on compact manifolds with boundary
 Michael Holst and Gantumur Tsogtgerel
- The constraint equations for the Einstein-scalar field system on compact manifolds
 Yvonne Choquet-Bruhat, James Isenberg and Daniel Pollack
- Warped product space-times
 Xinliang An and Willie Wai Yeung Wong

Recent citations
- The mixed Yamabe problem for foliations
 Vladimir Rovenski and Leonid Zelenko
- Curvature in Special Base Conformal Warped Products
 Fernando Dobarro and Bülent Ünal
About curvature, conformal metrics and warped products

Fernando Dobarro¹ and Bülent Ünal²

¹ Dipartimento di Matematica e Informatica, Università degli Studi di Trieste, Via Valerio 12/b, I-34127 Trieste, Italy
² Department of Mathematics, Bilkent University, Bilkent, 06800 Ankara, Turkey

E-mail: dobarro@dmi.units.it and bulentunal@mail.com

Received 11 April 2007
Published 31 October 2007
Online at stacks.iop.org/JPhysA/40/13907

Abstract

We consider the curvature of a family of warped products of two pseudo-Riemannian manifolds \((B, g_B)\) and \((F, g_F)\) furnished with metrics of the form \(c^2 g_B \oplus w^2 g_F\) and, in particular, of the type \(w^{2\mu} g_B \oplus w^2 g_F\), where \(c, w: B \rightarrow (0, \infty)\) are smooth functions and \(\mu\) is a real parameter. We obtain suitable expressions for the Ricci tensor and scalar curvature of such products that allow us to establish results about the existence of Einstein or constant scalar curvature structures in these categories. If \((B, g_B)\) is Riemannian, the latter question involves nonlinear elliptic partial differential equations with concave–convex nonlinearities and singular partial differential equations of the Lichnerowicz–York-type among others.

PACS numbers: 02.40.–k, 02.30.Jr, 04.50.+h, 11.25.–w
Mathematics Subject Classification: 53C21, 53C25, 53C50

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The main concern of this paper is the curvature of a special family of warped pseudo-metrics on product manifolds. We introduce a suitable form for the relations among the involved curvatures in such metrics and apply them to the existence and/or construction of Einstein and constant scalar curvature metrics in this family.

Let \(B = (B_m, g_B)\) and \(F = (F_k, g_F)\) be two pseudo-Riemannian manifolds of dimensions \(m \geq 1\) and \(k \geq 0\), respectively and also let \(B \times F\) be the usual product manifold of \(B\) and \(F\). For a given smooth function \(w \in C_\infty(B) = \{ v \in C_\infty(B) : v(x) > 0, \forall x \in B \}\), the warped product \(B \times_w F = ((B \times_w F)_{m+k}, g = g_B + w^2 g_F)\) was defined by Bishop and O’Neill in [18] in order to study manifolds of negative curvature.
In this paper, we deal with a particular class of warped products, i.e. when the pseudo-metric in the base is affected by a conformal change. Precisely, for given smooth functions $c, w \in C^\infty_0(B)$ we will call $((B \times F)_{m+k}, g = c^2 g_B + w^2 g_F)$ as a $[c, w]$-base conformal warped product (briefly $[c, w]$-bcwp), denoted by $B \times [c,w] F$. We will concentrate our attention on a special subclass of this structure, namely when there is a relation between the conformal factor c and the warping function w of the form $c = \psi^\mu$, where μ is a real parameter and we will call the $[\psi^\mu, \psi]$-bcwp as a (ψ, μ)-bcwp. Note that we generically called the latter case as special base conformal warped products, briefly sbcwp in [28].

As we will explain in section 2, metrics of this type play a relevant role in several topics of differential geometry and theoretical physics (see also [28]). This paper concerns curvature-related questions of these metrics which are of interest not only in the applications, but also from the points of view of differential geometry and the type of the involved nonlinear partial differential equations (PDE), such as those with concave–convex nonlinearities and the Lichnerowicz–York equations.

The paper is organized in the following way: in section 2, after a brief description of several fields where pseudo-metrics described as above are applied, we formulate the curvature problems that we deal with in the following sections and give the statements of the main results. In section 3, we state theorems 2.2 and 2.3 in order to express the Ricci tensor and scalar curvature of a (ψ, μ)-bcwp and sketch their proofs (see [28, section 3] for detailed computations). In sections 4 and 5, we establish our main results about the existence of (ψ, μ)-bcwp’s of constant scalar curvature with compact Riemannian base.

2. Motivations and main results

As we announced in the introduction, we firstly want to mention some of the major fields of differential geometry and theoretical physics where base conformal warped products are applied.

(i) In the construction of a large class of non-trivial static anti-de Sitter vacuum spacetimes
- In the Schwarzschild solutions of the Einstein equations (see [9, 17, 40, 57, 67, 72]).
- In the Riemannian Schwarzschild metric, namely (see [9]).
- In the ‘generalized Riemannian anti-de Sitter T^2 black hole metrics’ (see [9, section 3.2] for details).
- In the Bañados–Teitelboim–Zanelli (BTZ) and de Sitter (dS) black holes (see [1, 14, 15, 27, 44] for details).

Indeed, all of them can be generated by an approach of the following type: let (F_2, g_F) be a pseudo-Riemannian manifold and g be a pseudo-metric on $\mathbb{R}^+ \times \mathbb{R} \times F_2$ defined by
\[
g = \frac{1}{u^2(r)} \, dr^2 \pm u^2(r) \, d\theta^2 + r^2 g_F. \tag{2.1}\]

After the change of variables $s = r^2, \, y = \frac{1}{2} t$, there results $\, ds^2 = 4r^2 \, dr^2$ and $\, dy^2 = \frac{1}{4} \, dr^2$. Then (2.1) is equivalent to
\[
g = \frac{1}{\sqrt{s}} \left[\frac{1}{4 \sqrt{s} u^2(\sqrt{s})} \, ds^2 \pm 4 \sqrt{s} u^2(\sqrt{s}) \, dy^2 \right] + sg_F \tag{2.2}\]
\[= (s^\frac{1}{2})^{\frac{\mu}{2}(\frac{1}{2})} [(2s^\frac{1}{2} u(s^\frac{1}{2}))^{\frac{\mu}{2}(\frac{1}{2})} \, ds^2 \pm (2s^\frac{1}{2} u(s^\frac{1}{2}))^{\frac{\mu}{2}(\frac{1}{2})} \, dy^2] + (s^\frac{1}{2})^{\frac{1}{2}(\frac{1}{2})} g_F.\]

Note that roughly speaking, g is a nested application of two (ψ, μ)-bcwp’s. That is, on $\mathbb{R}^+ \times \mathbb{R}$ and taking
\[
\psi_1(s) = 2s^{\frac{1}{2}} u(s^\frac{1}{2}) \quad \text{and} \quad \mu_1 = -1, \tag{2.3}\]
the metric inside the brackets in the last member of (2,2) is a (ψ_2, μ_2)-bcwp, while the metric g on $(\mathbb{R}_+ \times \mathbb{R}) \times F_2$ is a (ψ_2, μ_2)-bcwp with

$$\psi_2(s, y) = s^2 \quad \text{and} \quad \mu_2 = -\frac{1}{2}.$$ \hfill (2.4)

In the last section of [28], through the application of theorems 2.2 and 2.3 below and several standard computations, we generalized the latter approach to the case of an Einstein fiber (F_k, g_F) with dimension $k \geq 2$.

(ii) In the study of the equivariant isometric embeddings of spacetime slices in Minkowski spaces (see [37, 38]).

(iii) In the Kaluza–Klein theory (see [58, 76, section 7.6, Particle Physics and Geometry] and [77] and in the Randall–Sundrum theory [29, 39, 61–63, 69] with μ as a free parameter. For example, in [45] the following metric is considered

$$e^{2\alpha(y)} g_{ij} \, dx^i \, dx^j + e^{2\beta(y)} \, dy^2,$$

with the notation $\{x^i\}, i = 0, 1, 2, 3$ for the coordinates in the four-dimensional spacetime and $x^5 = y$ for the fifth coordinate on an extra dimension. In particular, Ito takes the ansatz

$$B = \alpha A,$$

which corresponds exactly to our sbcwp metrics, considering $g_B = dy^2, g_F = g_{ij} \, dx^i \, dx^j, \psi(y) = e^{\beta(y)} = e^{\alpha(y)}$ and $\mu = \alpha$.

(iv) In string and supergravity theories, for instance, in the Maldacena conjecture about the duality between compactifications of M/string theory on various anti-de Sitter spacetimes and various conformal field theories (see [53, 60]) and in warped compactifications (see [39, 70] and references therein). Besides all of these, there are also frequent occurrences of this type of metrics in string topics (see [32–36, 51, 59, 69] and also [1, 11, 65] for some reviews about these topics).

(v) In the derivation of effective theories for warped compactification of supergravity and the Hořava–Witten model (see [48, 49]). For instance, in [49] the ansatz $ds^2 = h^a \, ds^2(X_4) + h^\beta \, ds^2(Y)$ is considered, where X_4 is a four-dimensional spacetime with coordinates x^μ, Y is a Calabi–Yau manifold (the so-called internal space) and h depends on the four-dimensional coordinates x^μ, in order to study the dynamics of the four-dimensional effective theory. We note that in those articles, the structure of the expressions of the Ricci tensor and scalar curvature of the involved metrics result particularly useful. We observe that they correspond to very particular cases of the expressions obtained by us in [28], see also theorems 2.2 and 2.3 and proposition 2.4 stated below.

(vi) In the discussion of Birkhoff-type theorems (generally speaking these are the theorems in which the gravitational vacuum solutions admit more symmetry than the inserted metric ansatz, (see [40] p 372 and [16, chapter 3]) for rigorous statements), especially in equation (6.1) of [64] where Schmidt considers a special form of a bcwp and basically shows that if a bcwp of this form is Einstein, then it admits one Killing vector more than the fiber. In order to achieve this, the author considers for a specific value of μ, namely $\mu = (1 - k)/2$, the following problem:

Does there exist a smooth function $\psi \in C_0^\infty(B)$ such that the corresponding (ψ, μ)-bcwp($B_2 \times F_k, \psi^{2\mu}g_B + \psi^2g_F$) is an Einstein manifold? (see also (Pb-Eins) below.)

(vii) In the study of bi-conformal transformations, bi-conformal vector fields and their applications (see [31, remark in section 7] and [30, sections 7 and 8]).
(viii) In the study of the spectrum of the Laplace–Beltrami operator for p-forms. For instance in equation (1.1) of [10], the author considers the structure that follows: let M be an n-dimensional compact, Riemannian manifold with boundary, and let y be a boundary-defining function; she endows the interior M of M with a Riemannian metric ds^2 such that in a small tubular neighborhood of ∂M in M, ds^2 takes the form
\[ds^2 = e^{-2\alpha(x,y)} dt^2 + e^{-2\beta(x,y)} d\theta^2_{BM}, \]
where $t := -\log y \in (c, +\infty)$ and $d\theta^2_{BM}$ is the Riemannian metric on ∂M (see [10, 54] and references therein for details).

Notation 2.1 From now on, we will use the Einstein summation convention over repeated indices and consider only connected manifolds. Furthermore, we will denote the Laplace–Beltrami operator on a pseudo-Riemannian manifold (N, h) by $\Delta_N(\cdot)$, i.e., $\Delta_N(\cdot) = \nabla^N \nabla_N(\cdot)$. Note that Δ_N is elliptic if (N, h) is Riemannian and it is hyperbolic when (N, h) is Lorentzian. If (N, h) is neither Riemannian nor Lorentzian, then the operator is ultra-hyperbolic.

Furthermore, we will consider the Hessian of a function $v \in C^\infty(N)$, denoted by H^v_B or H^v_N, so that the second covariant differential of v is given by $H^v_B = \nabla(\nabla v)$. Recall that the Hessian is a symmetric $(0, 2)$ tensor field satisfying
\[H^v_B(X, Y) = XYv - (\nabla X)Y = h(\nabla_X(\nabla v), Y), \]
for any smooth vector fields X, Y on N.

For a given pseudo-Riemannian manifold $N = (N, h)$ we will denote its Riemann curvature tensor, Ricci tensor and scalar curvature by R_N, Ric_N and S_N, respectively.

We will denote the set of all lifts of all vector fields of B by $\Sigma(B)$. Note that the lift of a vector field X on B denoted by \hat{X} is the vector field on $B \times F$ given by $d\pi(\hat{X}) = X$ where $\pi: B \times F \to B$ is the usual projection map.

In section 3, we will sketch the proofs of the following two theorems related to the Ricci tensor and the scalar curvature of a generic (ψ, μ)-bcwp.

Theorem 2.2. Let $B = (B_m, g_B)$ and $F = (F_k, g_F)$ be two pseudo-Riemannian manifolds with $m \geq 3$ and $k \geq 1$, respectively and also let $\mu \in \mathbb{R}\setminus\{0, 1, \mu, \mu_\pm\}$ be a real number with
\[\mu := -\frac{k}{m-2} \quad \text{and} \quad \mu_\pm := \frac{1}{\sqrt{\mu^2 - \mu}}. \]
Suppose $\psi \in C^\infty_0(B)$. Then the Ricci curvature tensor of the corresponding (ψ, μ)-bcwp, denoted by Ric verifies the relation
\begin{align*}
\text{Ric} &= \text{Ric}_B + \frac{1}{\psi \mu} \Delta_B \psi g_B \text{ on } \mathcal{L}(B) \times \mathcal{L}(B), \\
\text{Ric} &= 0 \text{ on } \mathcal{L}(B) \times \mathcal{L}(F), \\
\text{Ric} &= \frac{1}{\psi^{2(\mu-1)}} \frac{\mu}{\mu_\pm} \Delta_B \psi g_F \text{ on } \mathcal{L}(F) \times \mathcal{L}(F),
\end{align*}
where
\begin{align*}
\alpha^H &= \frac{1}{(m-2)\mu + k}, & \beta^H &= \frac{\mu}{(m-2)\mu + k}, \\
\alpha^\Delta &= \frac{1}{(m-2)\mu + k}, & \beta^\Delta &= \frac{\mu}{(m-2)\mu + k}. \tag{2.10}
\end{align*}
Theorem 2.3. Let $B = (B_m, g_B)$ and $F = (F_k, g_F)$ be two pseudo-Riemannian manifolds of dimensions $m \geq 2$ and $k \geq 0$, respectively. Suppose that S_B and S_F denote the scalar curvatures of $B = (B_m, g_B)$ and $F = (F_k, g_F)$, respectively. If $\mu \in \mathbb{R}$ and $\psi \in C^\infty_0(B)$, then the scalar curvature S of the corresponding (ψ, μ)-bcwp verifies

(i) If $\mu \neq -\frac{k}{m-1}$, then
\begin{equation}
-\beta \Delta_B u + S_B u = S_B u^{2(\mu+1)} - S_F u^{2(\mu-1)\lambda+1},
\end{equation}

where
\begin{equation}
\alpha = \frac{2\{k + (m-1)\mu\}}{\{k + (m-1)\mu\} + (1-\mu)\{k + (m-2)\mu[k + (m-1)\mu]\}},
\end{equation}
\begin{equation}
\beta = \alpha 2\{k + (m-1)\mu\} > 0
\end{equation}

and $\psi = u^\alpha > 0$.

(ii) If $\mu = -\frac{k}{m-1}$, then
\begin{equation}
-k \left[\frac{k}{m-1} \right] \frac{|\nabla^B \psi|^2}{\psi^2} = \psi^{-\frac{1}{\mu+1}} [S - S_F \psi^{-2}] - S_B.
\end{equation}

From the mathematical and physical points of view, there are several interesting questions about (ψ, μ)-bcwp’s. In [28], we began the study of existence and/or construction of Einstein (ψ, μ)-bcwp’s and those of constant scalar curvature. These questions are closely connected to theorems 2.2 and 2.3.

In [28], by applying theorem 2.2, we give suitable conditions that allow us to study some particular cases of the problem:

(Pb-Eins.) Given $\mu \in \mathbb{R}$, does there exist a smooth function $\psi \in C^\infty_0(B)$ such that the corresponding (ψ, μ)-bcwp is an Einstein manifold?

In particular, we obtain the following result as an immediate corollary of theorem 2.2.

Proposition 2.4. Let us assume the hypothesis of theorem 2.2. Then the corresponding (ψ, μ)-bcwp is an Einstein manifold with λ if and only if (F, g_F) is Einstein with ν constant and the system that follows is verified
\begin{equation}
\lambda \psi^{2\mu} g_B = \text{Ric} + \beta H H^B \frac{1}{\psi^\nu} \frac{\psi^\nu}{\psi^\nu} = \beta^\Delta \frac{1}{\psi^\nu} \Delta_B \psi^{2\mu} g_B \quad \text{on } L(B) \times L(B)
\end{equation}

where the coefficients are given by (2.10).
(Ya) [12, 47, 48, 66, 73, 77] Does there exist a function $\varphi \in C^\infty_>(B)$ such that $(B_n, \varphi^2 g_B)$ has constant scalar curvature?

Analogously, in several articles the following problem has been studied.

(cscwp) [26] Is there a function $w \in C^\infty_>(B)$ such that the warped product $B \times w F$ has constant scalar curvature?

In the following we will suppose that $B = (B_m, g_B)$ is a Riemannian manifold. Thus, both problems bring to the study of the existence of positive solutions for nonlinear elliptic equations on Riemannian manifolds. The involved nonlinearities are powers with Sobolev critical exponent for the Yamabe problem and sublinear (linear if the dimension k of the fiber is 3) for the problem of constant scalar curvature of a warped product. In section 4, we deal with a mixed problem between (Ya) and (cscwp) which is already proposed in [28], namely

(Pb-sc). Given $\mu \in \mathbb{R}$, does there exist a function $\psi \in C^\infty_>(B)$ such that the corresponding (ψ, μ)-bcwp has constant scalar curvature?

Note that when $\mu = 0$, (Pb-sc) corresponds to the problem (cscwp), whereas when the dimension of the fiber $k = 0$ and $\mu = 1$, then (Pb-sc) corresponds to (Ya) for the base manifold. Finally, (Pb-sc) corresponds to (Ya) for the usual product metric with a conformal factor in $C^\infty_>(B)$ when $\mu = 1$. Under the hypothesis of theorem 2.3 (i), the analysis of the problem (Pb-sc) brings to the study of the existence and multiplicity of solutions $u \in C^\infty_>(B)$ of

$$-\beta \Delta_B u + S_B u = \lambda u^{2p+1} - S_{F2} u^{2(p-1)+1},$$

(2.16)

where all the components of the equation are like in theorem 2.3 (i), and λ (the conjectured constant scalar curvature of the corresponding (ψ, μ)-bcwp) is a real parameter. We observe that an easy argument of separation of variables, like in [23, section 2] and [26], shows that there exists a positive solution of (2.16) only if the scalar curvature of the fiber S_B is constant. Thus this will be a natural assumption in the study of (Pb-sc).

Furthermore, note that the involved nonlinearities on the right-hand side of (2.16) dramatically change with the choice of the parameters, an exhaustive analysis of these changes is the subject matter of [28, section 6].

There are several partial results about semi-linear elliptic equations like (2.16) with different boundary conditions, see for instance [2, 5, 6, 8, 14, 20, 22, 25, 71, 76] and references in [28].

In this paper we will state our first results about the problem (Pb-sc) when the base B is a compact Riemannian manifold of dimension $m \geq 3$ and the fiber F has non-positive constant scalar curvature S_F.

For brevity of our study, it will be useful to introduce the following notation:

$$\mu_{sc} := \mu_{sc}(m, k) = -\frac{k}{m-2} \quad \text{and} \quad \mu_{pr} = \mu_{pr}(m, k) := -\frac{k+1}{m-2},$$

(sc as scalar curvature and Y as Yamabe). Note that $\mu_{pr} < \mu_{sc} < 0$.

We plan to study the case of $\mu = \mu_{sc}$ in a future project, therefore the related results are not going to be presented here.

We can synthesize our results about (Pb-sc) in the case of non-positive S_F as follow.

• The case of scalar flat fiber, i.e. $S_F = 0$.

Theorem 2.5. If $\mu \in (\mu_{pr}, \mu_{sc}) \cup (\mu_{sc}, +\infty)$ the answer to (Pb-sc) is affirmative.

By assuming some additional restrictions on the scalar curvature of the base S_B, we obtain existence results for the range $\mu \leq \mu_{pr}$.

• The case of fiber with negative constant scalar curvature, i.e. $S_F < 0$. In order to describe the μ ranges of validity of the results, we will apply the notations introduced in [28, section 5] (see appendix for a brief introduction of these notations).

Theorem 2.6. If $(m, k) \in D$ and $\mu \in (0, 1)$ or $(m, k) \in CD$ and $\mu \in (0, 1) \cap (\mu_-, \mu_+)$ or $(m, k) \in CD$ and $\mu \in (0, 1) \cap C[\mu_-, \mu_+]$, then the answer to (Pb-sc) is affirmative.

Remark 2.7. The first two cases in theorem 2.6 will be studied by adapting the ideas in [5] and the last case by applying the results in [71, p 99]. In the former—theorem 4.15, the involved nonlinearities correspond to the so-called concave–convex whereas in the latter—theorem 4.16, they are singular as in the Lichnerowicz–York equation about the constraints for the Einstein equations (see [21, 42, 56], [55, p 542–3] and [71, chapter 18]). Similar to the case of $SF = 0$, we obtain existence results for some remaining μ ranges by assuming some additional restrictions for the scalar curvature of the base SB.

Naturally, the study of (Pb-sc) allows us to obtain partial results of the related question.

Given $\mu \in \mathbb{R}$ and $\lambda \in \mathbb{R}$ does there exist a function $\psi \in C^\infty_0(B)$ such that the corresponding (ψ, μ)-bcwp has constant scalar curvature λ?

These are stated in the several theorems and propositions in section 4.

3. The curvature relations—sketch of the proofs

The proofs of theorems 2.2 and 2.3 require long and yet standard computations of the Riemann and Ricci tensors and the scalar curvature of a general base conformal warped product. Here, we reproduce the results for the Ricci tensor and the scalar curvature, and we also suggest the reader to see [28, section 3] for the complete computations. From now an \otimes denotes the usual tensorial product.

Theorem 3.1. The Ricci tensor of $[c, w]$-bcwp, denoted by Ric satisfies

\[
(1) \quad \text{Ric} = \text{Ric}_B - \left((m - 2) \frac{1}{c} H_B^c + \frac{1}{w} H_B^w \right) + 2(m - 2) \frac{1}{c^2} \Delta_B c + \frac{k}{w} \Delta_B \left[\Delta_B c + k \frac{g_B(\nabla_B c, \nabla_B c)}{w} \right] g_B
\]

on $\mathcal{L}(B) \times \mathcal{L}(B)$,

\[
(2) \quad \text{Ric} = 0 \text{ on } \mathcal{L}(B) \times \mathcal{L}(F),
\]

\[
(3) \quad \text{Ric} = \text{Ric}_F - \frac{w^2}{c^2} \left[(m - 2) \frac{g_B(\nabla_B w, \nabla_B c)}{w} + \frac{\Delta_B w}{w} + (k - 1) \frac{g_B(\nabla_B w, \nabla_B w)}{w} \right] g_F
\]

on $\mathcal{L}(F) \times \mathcal{L}(F)$.

Theorem 3.2. The scalar curvature S of a $[c, w]$-bcwp is given by

\[
c^2 S = S_B + S_F \frac{c^2}{w^4} - 2(m - 1) \frac{\Delta_B c}{c} - 2k \frac{\Delta_B w}{w} - (m - 4)(m - 1) \frac{g_B(\nabla_B c, \nabla_B c)}{c^2} - 2k(m - 2) \frac{g_B(\nabla_B w, \nabla_B c)}{w} - k(k - 1) \frac{g_B(\nabla_B w, \nabla_B w)}{w^2}.
\]
The following two lemmas (3.3 and 3.7) play a central role in the proof of theorems 2.2 and 2.3. Indeed, it is sufficient to apply them in a suitable mode and make use of theorems 3.1 and 3.2 several times, the reader can find all the details in [28, sections 2 and 4].

Let \(N = (N_n, h) \) be a pseudo-Riemannian manifold of dimension \(n \), \(|\nabla(\cdot)|^2 = h(\nabla(\cdot), \nabla(\cdot))\) and \(\Delta_h = \Delta_N \).

Lemma 3.3. Let \(L_h \) be a differential operator on \(C^\infty_{\geq 0}(N) \) defined by

\[
L_h v = \sum_{i=1}^{k} r_i \frac{\Delta_h v^{a_i}}{v^{a_i}},
\]

where \(r_i, a_i \in \mathbb{R} \) and \(\zeta := \sum_{i=1}^{k} r_i a_i, \eta := \sum_{i=1}^{k} r_i a_i^2 \). Then,

(i) \(L_h v = (\eta - \zeta) \frac{\|\text{grad}_h v\|^2}{v^2} + \zeta \frac{\Delta_h v}{v} \).

(ii) If \(\zeta \neq 0 \) and \(\eta \neq 0 \), for \(\alpha = \frac{\zeta}{\eta} \) and \(\beta = \frac{\zeta^2}{\eta} \), then we have

\[
L_h v = \beta \frac{\Delta_h v}{v^2}.
\]

Remark 3.4. We also applied the latter lemma in the study of curvature of multiply warped products (see [27]).

Corollary 3.5. Let \(L_h \) be a differential operator defined by

\[
L_h v = r_1 \frac{\Delta_h v^{a_1}}{v^{a_1}} + r_2 \frac{\Delta_h v^{a_2}}{v^{a_2}} \quad \text{for} \quad v \in C^\infty_{\geq 0}(N),
\]

where \(r_1 a_1 + r_2 a_2 \neq 0 \) and \(r_1 a_1^2 + r_2 a_2^2 \neq 0 \). Then, by changing the variables \(v = u^\alpha \) with \(0 < u \in C^\infty(N), \alpha = \frac{r_1 a_1 + r_2 a_2}{r_1 a_1^2 + r_2 a_2^2} \) and \(\beta = \frac{r_1 a_1^2 + r_2 a_2^2}{r_1 a_1 + r_2 a_2} \) the following result is obtained:

\[
L_h v = \beta \frac{\Delta_h u}{u}.
\]

Remark 3.6. By the change of variables as in corollary 3.5, equations of the type

\[
L_h v = r_1 \frac{\Delta_h v^{a_1}}{v^{a_1}} + r_2 \frac{\Delta_h v^{a_2}}{v^{a_2}} = H(v, x, s)
\]

transform into

\[
\beta \Delta_h u = u H(u^{\alpha}, x, s).
\]

Lemma 3.7. Let \(\mathcal{H}_h \) be a differential operator on \(C^\infty_{\geq 0}(N) \) defined by

\[
\mathcal{H}_h v = \sum_{i=1}^{l} r_i \frac{H^{v^i}}{v^i},
\]

\(\zeta := \sum r_i a_i \) and \(\eta := \sum r_i a_i^2 \), where the indices extend from 1 to \(l \in \mathbb{N} \) and any \(r_i, a_i \in \mathbb{R} \). Hence,

\[
\mathcal{H}_h v = (\eta - \zeta) \frac{1}{v^2} \frac{\text{d}v}{v^2} \otimes \frac{\text{d}v}{v^2} + \zeta \frac{1}{v} \frac{H^{v^i}}{v^i}.
\]

If furthermore, \(\zeta \neq 0 \) and \(\eta \neq 0 \), then

\[
\mathcal{H}_h v = \beta \frac{H^{1/\eta}}{\eta},
\]

where \(\alpha = \frac{\zeta}{\eta} \) and \(\beta = \frac{\zeta^2}{\eta} \).
4. The problem (Pb-sc)—existence of solutions

Throughout this section, we will assume that \(B \) is not only a Riemannian manifold of dimension \(m \geq 3 \), but also 'compact' and connected. We further assume that \(F \) is a pseudo-Riemannian manifold of dimension \(k \geq 0 \) with constant scalar curvature \(S_F \leq 0 \). Moreover, we will assume that \(\mu \neq \mu_{sc} \). Hence, we will concentrate our attention on the relations (2.11), (2.12) and (2.13) by applying theorem 2.3 (i).

Let \(\lambda_1 \) denote the principal eigenvalue of the operator
\[
L(\cdot) = -\beta \Delta_B \cdot + S_B(\cdot),
\]
and \(u_1 \in C^\infty_0(B) \) be the corresponding positive eigenfunction with \(\|u_1\|_\infty = 1 \), where \(\beta \) is as in theorem 2.3.

First of all, we will state some results about uniqueness and non-existence of positive solutions for equation (2.16) under the latter hypothesis. About the former, we adapt lemma 3.3 in [5, p 525] to our situation (for a detailed proof see [5], [19, Method II, p 103] and also [68]).

Lemma 4.1. Let \(f \in C^0(\mathbb{R}_>0) \) such that \(t^{-1} f(t) \) is decreasing. If \(v \) and \(w \) satisfy
\[
-\beta \Delta_B v + S_B v \leq f(v), \quad v \in C^\infty_0(B),
\]
and
\[
-\beta \Delta_B w + S_B w \geq f(w), \quad w \in C^\infty_0(B),
\]
then \(w \geq v \) on \(B \).

Proof. Let \(\theta(t) \) be a smooth nondecreasing function such that \(\theta(t) \equiv 0 \) for \(t \leq 0 \) and \(\theta(t) \equiv 1 \) for \(t \geq 1 \). Thus for all \(\epsilon > 0 \),
\[
\theta_\epsilon(t) := \theta\left(\frac{t}{\epsilon}\right)
\]
is smooth, nondecreasing, non-negative and \(\theta(t) \equiv 0 \) for \(t \leq 0 \) and \(\theta(t) \equiv 1 \) for \(t \geq \epsilon \). Furthermore, \(\gamma_\epsilon(t) := \int_0^t s \theta'(s) \, ds \) satisfies \(0 \leq \gamma_\epsilon(t) \leq \epsilon \), for any \(t \in \mathbb{R} \).

On the other hand, since \((B, g_B)\) is a compact Riemannian manifold without boundary and \(\beta > 0 \), like in [5, lemma 3.3, p 526] the following inequality is obtained:
\[
\int_B \left[-v \beta \Delta_B w + w \beta \Delta_B v \right] \theta_\epsilon(v - w) \, dv_{g_B} \leq \int_B \left[-\beta \Delta_B v \right] \gamma_\epsilon(v - w) \, dv_{g_B}.
\]
Hence, by the above considerations about \(\theta_\epsilon \) and \(\gamma_\epsilon \), (4.4) implies that
\[
\int_B \left[-v \beta \Delta_B w + w \beta \Delta_B v \right] \theta_\epsilon(v - w) \, dv_{g_B} \leq \epsilon \int_{\beta \Delta_B \geq 0} \left[-\beta \Delta_B v \right] \, dv_{g_B}.
\]
Now, by applying (4.2) and (4.3) the following results are obtained:
\[
-v \beta \Delta_B w + w \beta \Delta_B v = v L w - w L v \geq v f(w) - w f(v) = v w \left[\frac{f(w)}{w} - \frac{f(v)}{v} \right].
\]
Thus by combining (4.6) and (4.5), as \(\epsilon \to 0^+ \) we led to
\[
\int_{v > w} v w \left[\frac{f(w)}{w} - \frac{f(v)}{v} \right] \, dv_{g_B} \leq 0
\]
and conclude the proof like in [5, lemma 3.3, p 526–7]. But \(\frac{f(w)}{w} < \frac{f(v)}{v} \) on \([v > w] \) and hence \(\text{meas}[v > w] = 0 \); thus \(v \leq w \).\(^3\)
\(^3\) Meas denotes the usual \(g_B \) measure on the compact Riemannian manifold \((B_m, g_B)\).
Corollary 4.2. Let \(f \in C^0(\mathbb{R}_{>0}) \) such that \(t^{-1} f(t) \) is decreasing. Then
\[
-\beta \Delta_B v + S_B v = f(v), \quad v \in C^\infty_{>0}(B)
\] (4.8)
has at most one solution.

Proof. Assume that \(v \) and \(w \) are two solutions of (4.8). Then by applying lemma 4.1 firstly with \(v \) and \(w \), and conversely with \(w \) and \(v \), the conclusion is proved. \(\square \)

Remark 4.3. Note that lemma 4.1 and corollary 4.2 allow the function \(f \in C^0(\mathbb{R}_{>0}) \) to be singular at 0.

Related to the non-existence of smooth positive solutions for equation (2.16), we will state an easy result under the general hypothesis of this section.

Proposition 4.4. If either \(\max_B S_B \leq \inf_{u \in \mathbb{R}_{>0}} u^{2\mu_0}(\lambda - S_F u^{-2\alpha}) \) or \(\min_B S_B \geq \sup_{u \in \mathbb{R}_{>0}} u^{2\mu_0}(\lambda - S_F u^{-2\alpha}) \), then (2.16) has no solution in \(C^\infty_{>0}(B) \).

Proof. It is sufficient to apply the maximum principle with some easy adjustments to the particular involved coefficients. \(\square \)

- The case of scalar flat fiber, i.e. \(S_F = 0 \).

In this case, the term containing the nonlinearity \(u^{2(\mu-1)\alpha+1} \) becomes non-influential in (2.16), thus (Pb-sc) equivalently results to the study of existence of solutions for the problem
\[
-\beta \Delta_B u + S_B u = \lambda u^{2\mu_0+1}, \quad u \in C^\infty_{>0}(B),
\] (4.9)
where \(\lambda \) is a real parameter (i.e., it is the searched constant scalar curvature) and \(\psi = u^\alpha \).

Remark 4.5. Let \(p \in \mathbb{R} \setminus \{1\} \) and \((\lambda_0, u_0) \in (\mathbb{R} \setminus \{0\}) \times C^\infty_{>0}(B) \) be a solution of
\[
-\beta \Delta_B u + S_B u = \lambda u^p, \quad u \in C^\infty_{>0}(B).
\] (4.10)
Hence, by the difference of homogeneity between both members of (4.9), it is easy to show that if \(\lambda \in \mathbb{R} \) satisfies \(\text{sign}(\lambda) = \text{sign}(\lambda_0) \), then \((\lambda, u_\lambda) \) is a solution of (4.10), where \(u_\lambda = t_\lambda u_0 \) and \(t_\lambda = \left(\frac{\lambda_0}{\lambda} \right)^{1/p} \). Thus by (4.9), we obtain geometrically: if the parameter \(\mu \) is given in a way that \(p := 2\mu_0 + 1 \neq 1 \) and \(B \times \{\psi_\lambda \} \) \(F \) has constant scalar curvature \(\lambda_0 \neq 0 \), then for any \(\lambda \in \mathbb{R} \) verifying \(\text{sign}(\lambda) = \text{sign}(\lambda_0) \), there results that \(B \times \{\psi_\lambda \} \) \(F \) is of scalar curvature \(\lambda \), where \(\psi_\lambda = t_\lambda^\alpha \psi_0 \) and \(t_\lambda \) given as above.

Theorem 4.6. (Case: \(\mu = 0 \)) The scalar curvature of a \((\psi, 0)\)-bcwp of base \(B \) and fiber \(F \) (i.e., a singly warped product \(B \times \psi \) \(F \)) is a constant \(\lambda \) if and only if \(\lambda = \lambda_1 \) and \(\psi = \text{a positive multiple of } u_1^\alpha \) (i.e., \(\psi = t u_1^\alpha \) for some \(t \in \mathbb{R}_{>0} \)).

Proof. First of all note that \(\mu = 0 \) implies \(\alpha = \frac{2}{k+1} \). On the other hand, in this case, problem (4.9) is linear, so it is sufficient to apply the well-known results about the principal eigenvalue and its associated eigenfunctions of operators like (4.1) in a suitable setting. \(\square \)

Theorem 4.7. (Case: \(\mu_{sc} < \mu < 0 \)) The scalar curvature of a \((\psi, \mu)\)-bcwp of base \(B \) and fiber \(F \) is a constant \(\lambda \), only if \(\text{sign}(\lambda) = \text{sign}(\lambda_1) \). Furthermore,

4 Along this paper we consider the sign function defined by \(\text{sign} = \chi_{(0, +\infty)} - \chi_{(-\infty, 0)} \), where \(\chi_A \) is the characteristic function of the set \(A \).
(i) if $\lambda = 0$ then there exists $\psi \in C^\infty_{>0}(B)$ such that $B \times [\psi^\alpha, \psi^\alpha] F$ has constant scalar curvature 0 if and only if $\lambda_1 = 0$. Moreover, such ψ’s are the positive multiples of u^α_1, i.e. tu^α_1, $t \in \mathbb{R}^>0$.

(ii) if $\lambda > 0$ then there exists $\psi \in C^\infty_{>0}(B)$ such that $B \times [\psi^\alpha, \psi^\alpha] F$ has constant scalar curvature λ if and only if $\lambda_1 > 0$. In this case, the solution ψ is unique.

(iii) if $\lambda < 0$ then there exists $\psi \in C^\infty_{>0}(B)$ such that $B \times [\psi^\alpha, \psi^\alpha] F$ has constant scalar curvature λ when $\lambda_1 < 0$ and is close enough to 0.

Proof. The condition $\mu_{sc} < \mu < 0$ implies that $0 < p := 2\mu + 1 < 1$, i.e., problem (4.9) is sublinear. Thus, to prove the theorem one can use variational arguments as in [23] (alternatively, degree theoretic arguments as in [7] or bifurcation theory as in [26]).

We observe that in order to obtain the positivity of the solutions required in (4.9), one may apply the maximum principle for the case of $\lambda > 0$ and the antimaximum principle for the case of $\lambda < 0$. The uniqueness for $\lambda > 0$ is a consequence of corollary 4.2.

Remark 4.8. In order to consider the next case we introduce the following notation. For a given p such that $1 < p \leq p_Y$, let

$$
\kappa_p := \inf_{v \in \mathcal{H}_p} \int_B \left(|\nabla_B v|^2 + \frac{S_B}{p} v^2 \right) \, dv_{\mathbb{R}^n},
$$

where

$$
\mathcal{H}_p := \left\{ v \in H^1(B) : \int_B |v|^{p+1} \, dv_{\mathbb{R}^n} = 1 \right\}.
$$

Now, we consider the following two cases.

(1 < $p < p_Y$). In this case by adapting [41, theorem 1.3], there exists $u_p \in C^\infty_{>0}(B)$ such that $(\beta \kappa_p, u_p)$ is a solution of (4.10) and $\int_B u_p^{p+1} \, dv_{\mathbb{R}^n} = 1$ ($p = p_Y$). For this specific and important value, analogously to [41, section 2], we distinguish three subcases along the study of our problem (4.10), in correspondence with the sign(κ_{p_Y}).

$\kappa_{p_Y} = 0$. In this case, there exists $u_{p_Y} \in C^\infty_{>0}(B)$ such that $(0, u_{p_Y})$ is a solution of (4.10) and $\int_B u_{p_Y}^{p+1} \, dv_{\mathbb{R}^n} = 1$.

$\kappa_{p_Y} < 0$. Here there exists $u_{p_Y} \in C^\infty_{>0}(B)$ such that $(\beta \kappa_{p_Y}, u_{p_Y})$ is a solution of (4.10) and $\int_B u_{p_Y}^{p+1} \, dv_{\mathbb{R}^n} = 1$.

$\kappa_{p_Y} > 0$. This is a more difficult case, let K_m be the sharp Euclidean Sobolev constant

$$
K_m = \sqrt{\frac{4}{m(m-2)\omega_m^\frac{2}{m}}},
$$

where ω_m is the volume of the unit m sphere. Thus, if

$$
\kappa_{p_Y} < \frac{1}{K_m^2},
$$

then there exists $u_{p_Y} \in C^\infty_{>0}(B)$ such that $(\beta \kappa_{p_Y}, u_{p_Y})$ is a solution of (4.10) and $\int_B u_{p_Y}^{p+1} \, dv_{\mathbb{R}^n} = 1$. Furthermore, the condition

$$
\kappa_{p_Y} \leq \frac{1}{K_m^2}
$$

(4.14)
These results allow us to establish the following two theorems.

Theorem 4.9. (Cases: \(\mu_{p_\nu} < \mu < \mu_{\infty} \) or \(0 < \mu \)). There exists \(\psi \in C^\infty_{>0}(B) \) such that the scalar curvature of \(B \times_{[\psi^p,\psi]} \) \(F \) is a constant \(\lambda \) if and only if \(\text{sign}(\lambda) = \text{sign}(\kappa_p) \), where \(p := 2\mu\alpha + 1 < p_Y \), i.e. problem (4.9) is superlinear but subcritical with respect to the Sobolev immersion theorem (see [28, remark 5.5]). By recalling that \(\psi = u^\alpha \), it is sufficient to prove that follows.

Let \(u_p \) be defined as in the case of (1 < \(p < p_Y \)) in remark 4.8. If \((\lambda, u) \) is a solution of (4.9), then multiplying (4.9) by \(u_p \) and integrating by parts there results

\[
\beta \kappa_p \int_B u_p u \, dv_{g_B} = \lambda \int_B u_p u^p \, dv_{g_B}.
\]

Thus \(\text{sign}(\lambda) = \text{sign}(\kappa_p) \) since \(\beta, u_p \) and \(u \) are all positive.

Conversely, if \(\lambda \) is a real constant such that \(\text{sign}(\lambda) = \text{sign}(\kappa_p) \neq 0 \), then by remark 4.5, \((\lambda, u_p) \) is a solution of (4.9), where \(u_\lambda = t_\lambda u_p \) and \(t_\lambda = \left(\frac{2\mu\alpha + 1}{p_Y} \right)^{\frac{1}{p_Y}}. \)

On the other side, if \(\lambda = \kappa_p = 0 \), then \((0, u_p) \) is a solution of (4.9). Since 1 < \(p \), the uniqueness for \(\lambda < 0 \) is a consequence of corollary 4.2. \(\square \)

Theorem 4.10. (Cases: \(\mu = \mu_{p_\nu} \)). If there exists \(\psi \in C^\infty_{>0}(B) \) such that the scalar curvature of \(B \times_{[\psi^p,\psi]} \) \(F \) is a constant \(\lambda \), then \(\text{sign}(\lambda) = \text{sign}(\kappa_p) \). Furthermore, if \(\lambda \in \mathbb{R} \) verifying \(\text{sign}(\lambda) = \text{sign}(\kappa_p) \) and (4.13), then there exists \(\psi \in C^\infty_{>0}(B) \) such that the scalar curvature of \(B \times_{[\psi^p,\psi]} \) \(F \) is \(\lambda \). Besides, if \(\lambda \in \mathbb{R} \) is negative, then there exists at most one \(\psi \in C^\infty_{>0}(B) \) such that the scalar curvature of \(B \times_{[\psi^p,\psi]} \) \(F \) is \(\lambda \).

Proof. The proof is similar to that of theorem 4.9, but follows from the application of the case of \((p = p_Y) \) in remark 4.8. Like above, the uniqueness of \(\lambda < 0 \) is a consequence of corollary 4.2. \(\square \)

In the next proposition including the supercritical case, we will apply the following result (see also [71, p 99]).

Lemma 4.11. Let \((N_n, g_N) \) be a compact connected Riemannian manifold without boundary of dimension \(n \geq 2 \) and \(\Delta_{g_N} \) be the corresponding Laplace-Beltrami operator. Consider the equation of the form

\[
-\Delta_{g_N} u = f(\cdot,u), \quad u \in C^\infty_{>0}(N),
\]

where \(f \in C^\infty(N \times \mathbb{R}_{>0}). \) If there exist \(a_0 \) and \(a_1 \in \mathbb{R}_{>0} \) such that

\[
u < a_0 \Rightarrow f(\cdot,u) > 0 \quad \text{and} \quad u > a_1 \Rightarrow f(\cdot,u) < 0,
\]

then (4.16) has a solution satisfying \(a_0 \leq u \leq a_1 \).

Proposition 4.12. (Cases: \(-\infty < \mu < \mu_{\infty} \) or \(0 < \mu \)). If \(\max S_B < 0 \), then for all \(\lambda < 0 \) there exists \(\psi \in C^\infty_{>0}(B) \) such that the scalar curvature of \(B \times_{[\psi^p,\psi]} \) \(F \) is the constant \(\lambda \). Furthermore, the solution \(\psi \) is unique.
Proof. The conditions \((-\infty < \mu < \mu_{sc} \text{ or } 0 < \mu)\) imply that \(1 < p := 2\mu + 1\). On the other hand, since \(B\) is compact, by taking
\[
f(\cdot, u) = -S_B(\cdot)u + \lambda u^p = (-S_B + \lambda u^{p-1})u,
\]
we obtain that \(\lim_{u \to 0^+} f(\cdot, u) = 0^+\) and \(\lim_{u \to +\infty} f(\cdot, u) = -\infty\). Thus \((4.17)\) is verified.

Hence, the proposition is proved by applying lemma 4.11 on \((B_m, g_B)\). Note that \(\alpha_0\) can take positive values and eventually gets close enough to \(0^+\) due to the condition of \(\lim_{u \to 0^+} f(\cdot, u)\), and consequently the corresponding solution results positive. Again, since \(\lambda < 0\) and \(1 < p\), the uniqueness is a consequence of corollary 4.2. \(\square\)

Proof of theorem 2.5. This is an immediate consequence of the above results. \(\square\)

- The case of a fiber with negative constant scalar curvature, i.e. \(S_F < 0\).

Here, the \((Pb-sc)\) becomes equivalent to the study of the existence for the problem
\[
-\beta \Delta_B u + S_B u = \lambda u^p - S_F u^q, \quad u \in C^\infty_{>0}(B),
\]
where \(\lambda\) is a real parameter (i.e., the searched constant scalar curvature), \(\psi = u^\alpha, p = 2\mu + 1\) and \(q = 2(\mu - 1)\alpha + 1\).

Remark 4.13. Let \(u\) be a solution of \((4.18)\).

(i) If \(\lambda_1 \leq 0\), then \(\lambda < 0\). Indeed, multiplying the equation in \((4.18)\) by \(u_1\) and integrating by parts there results
\[
\lambda_1 \int_B u_1 u \, dv_{g_B} + S_F \int_B u_1 u^p \, dv_{g_B} = \lambda \int_B u_1 u^q \, dv_{g_B},
\]
where \(u_1\) and \(u\) are positive.

(ii) If \(\lambda = 0\), then \(\lambda_1 > 0\).

(iii) If \(\mu = 0\) (the warped product case), then \(\lambda < \lambda_1\). These cases have been studied in [23, 26].

(iv) If \(\mu = 1\) (the Yamabe problem for the usual product with the conformal factor in \(C^\infty_{>0}(B)\)), there results \(\text{sign}(\lambda) = \text{sign}(\lambda_1 + S_F)\).

An immediate consequence of remark 4.13 is the following lemma.

Lemma 4.14. Let \(B\) and \(F\) be given like in theorem 2.3(i). Suppose further that \(B\) is a compact connected Riemannian manifold and \(F\) is a pseudo-Riemannian manifold of constant scalar curvature \(S_F < 0\). If \(\lambda \geq 0\) and \(\lambda_1 \leq 0\) (for instance when \(S_B \leq 0\) on \(B\)), then there is no \(\psi \in C^\infty_{>0}(B)\) such that the scalar curvature of \(B \times [\psi^\mu, \psi] F\) is \(\lambda\).

Theorem 4.15 \((29,\text{ rows 6 and 8 in table } 4)\). Under the hypothesis of theorem 2.3(i), let \(B\) be a compact connected Riemannian manifold and \(F\) be a pseudo-Riemannian manifold of constant scalar curvature \(S_F < 0\). Suppose that \((m, k) \in D\) and \(\mu \in (0, 1) \cap C[\mu_-, \mu_+]\).

(i) If \(\lambda_1 \leq 0\), then \(\lambda \in \mathbb{R}\) is the scalar curvature of a \(B \times [\psi^\mu, \psi]^\ast F\) if and only if \(\lambda < 0\).

(ii) If \(\lambda_1 > 0\), then there exists \(\Lambda \in \mathbb{R}_{>0}\) such that \(\lambda \in \mathbb{R}\setminus [\Lambda]\) is the scalar curvature of a \(B \times [\psi^\mu, \psi]^\ast F\) if and only if \(\lambda < \Lambda\).

Furthermore, if \(\lambda < 0\), then there exists at most one \(\psi \in C^\infty_{>0}(B)\) such that \(B \times [\psi^\mu, \psi]^\ast F\) has scalar curvature \(\lambda\).

Proof. The proof of this theorem is the subject matter of section 5. \(\square\)
Once again we make use of lemma 4.11 for the next theorem about the singular case and the following propositions.

Theorem 4.16 (29, row 7, table 4). Under the hypothesis of theorem 2.3(i), let \(B \) be a compact connected Riemannian manifold and \(F \) be a pseudo-Riemannian manifold of constant scalar curvature \(S_F < 0 \). Suppose that \((m, k) \in CD \) and \(\mu \in (0, 1) \cap (\mu_-, \mu_+) \), then for any \(\lambda < 0 \) there exists \(\psi \in C_{\infty}^\infty(B) \) such that the scalar curvature of \(B \times \{\psi, \psi\} \) \(F \) is \(\lambda \). Furthermore, the solution \(\psi \) is unique.

Proof. First of all note that the conditions \((m, k) \in CD \) and \(\mu \in (0, 1) \cap (\mu_-, \mu_+) \) imply that \(q < 0 \) and \(1 < p \), i.e. problem (4.18) is superlinear in \(p \) but singular in \(q \).

On the other hand, since \(B \) is compact, taking
\[
f(\cdot, u) = -S_B(\cdot)u + \lambda u^p - S_F u^q = [-S_B(\cdot) + \lambda u^{p-q}]u^{1-q} - S_F u^q,\]
results in \(\lim_{u \to 0^+} f(\cdot, u) = +\infty \) and \(\lim_{u \to -\infty} f(\cdot, u) = -\infty \). Thus (4.17) is verified.

Thus by an application of lemma 4.11 for \((B_m, g_B)\), we conclude the proof for the existence part.

The uniqueness part just follows from corollary 4.2. \(\square \)

Remark 4.17. We observe that the arguments applied in the proof of theorem 4.16 can be adjusted to the case of a compact connected Riemannian manifold \(B \) with \(0 < q < 1 < p \), \(\lambda < 0 \) and \(S_F < 0 \), so that some of the situations included in theorem 4.15. However, both arguments are compatible but different.

Proof of theorem 2.6. This is an immediate consequence of the above results. \(\square \)

The approach in the next propositions is similar to proposition 4.12 and theorem 4.16.

Proposition 4.18 (29, row 10, table 4). Let \(1 < \mu < +\infty \). If \(\max S_B < 0 \), then for all \(\lambda < 0 \) there exists \(\psi \in C_{\infty}^\infty(B) \) such that the scalar curvature of \(B \times \{\psi, \psi\} \) \(F \) is the constant \(\lambda \).

Proof. The condition \(1 < \mu < +\infty \) implies that \(1 < q < p \).

On the other hand, since \(B \) is compact, taking
\[
f(\cdot, u) = -S_B(\cdot)u + \lambda u^p - S_F u^q = [-S_B(\cdot) + \lambda u^{p-q}]u^{1-q} - S_F u^q,\]
results in \(\lim_{u \to 0^+} f(\cdot, u) = 0^+ \) and \(\lim_{u \to -\infty} f(\cdot, u) = -\infty \). Thus (4.17) is satisfied.

Thus an elementary application of lemma 4.11 for \((B_m, g_B)\) proves the proposition. \(\square \)

Proposition 4.19 (29, rows 2, 4 and 3 in table 4). Let either \((m, k) \in D \) and \(\mu \in (\mu_- \infty, 0) \) or \((m, k) \in CD \) and \(\mu \in (\mu_- \infty, 0) \cap C[\mu-, \mu_+] \) or \((m, k) \in CD \) and \(\mu \in (\mu_- \infty, 0) \cap (\mu_-, \mu_+) \).

If \(\min S_B > 0 \), then for all \(\lambda < 0 \) there exists a smooth function \(\psi \in C_{\infty}^\infty(B) \) such that the scalar curvature of \(B \times \{\psi, \psi\} \) \(F \) is the constant \(\lambda \).

Proof. If either \((m, k) \in D \) and \(\mu \in (\mu_- \infty, 0) \) or \((m, k) \in CD \) and \(\mu \in (\mu_- \infty, 0) \cap C[\mu-, \mu_+] \), then \(0 < q < p < 1 \).

On the other hand, since \(B \) is compact, taking
\[
f(\cdot, u) = -S_B(\cdot)u + \lambda u^p - S_F u^q = [-S_B(\cdot) + \lambda u^{p-q}]u^{1-q} - S_F u^q,\]
results in \(\lim_{u \to 0^+} f(\cdot, u) = 0^+ \) and \(\lim_{u \to -\infty} f(\cdot, u) = -\infty \). Thus (4.17) is verified and again we can apply lemma 4.11 for \((B_m, g_B)\).

If \((m, k) \in CD \) and \(\mu \in (\mu_- \infty, 0) \cap (\mu_-, \mu_+) \), then \(q < 0 < p < 1 \). Considering the limits as above, \(\lim_{u \to 0^+} f(\cdot, u) = +\infty \) and \(\lim_{u \to -\infty} f(\cdot, u) = -\infty \). So, an application of lemma 4.11 concludes the proof. \(\square \)
Remark 4.20. Note that in theorems 4.15 and 4.16 we do not assume hypothesis related to the sign of $S_B(\cdot)$, unlike in propositions 4.12, 4.18 and 4.19.

Proposition 4.21. (29, rows 5 and 9 in table 4). Let $(m, k) \in CD$.

(i) If either $\mu \in (-\frac{1}{m-1}, 0) \cap \{\mu_-, \mu_+\}$ and $\min S_B > 0$ or $\mu \in (0, 1) \cap \{\mu_-, \mu_+\}$, then for all $\lambda < 0$ there exists a smooth function $\psi \in C^\infty_0(B)$ such that the scalar curvature of $B \times_{\{\psi\}, \psi} F$ is the constant λ. In the second case, ψ is also unique.

(ii) If either $\mu \in (-\frac{1}{m-1}, 0) \cap \{\mu_-, \mu_+\}$ or $\mu \in (0, 1) \cap \{\mu_-, \mu_+\}$ and furthermore $\lambda_1 > 0$, then there exists a smooth function $\psi \in C^\infty_0(B)$ such that the scalar curvature of $B \times_{\{\psi\}, \psi} F$ is 0.

Proof. In both cases $q = 0$, so by considering

$$f(\cdot, u) = -S_B(\cdot)u + \lambda u^p - S_F,$$

the proof of (1) follows as in the latter propositions, while that of (2) is a consequence of the linear theory and the maximum principle.

Remark 4.22. Finally, we observe a particular result about the cases studied in [26]. If $\mu = 0$, then $p = 1$ and $q = 1 - 2\alpha = \frac{k-3}{k+1}$. When the dimension of the fiber is $k = 2$, the exponent $q = -\frac{1}{2}$. So, writing the involved equation as

$$-\frac{8}{7} \Delta_B u = f(\cdot, u) = -S_B(\cdot)u + \lambda u - S_F u^{-\frac{1}{4}}$$

and by applying lemma 4.11 as above, we obtain that if $\lambda < \min S_B$, then there exists a smooth function $\psi \in C^\infty_0(B)$ such that the scalar curvature of $B \times_{\{\psi\}, \psi} F$ is the constant λ. Furthermore, by corollary 4.2 such ψ is unique (see [26, 24, 23]).

5. Proof of theorem 4.15

The subject matter of this section is the proof of theorem 4.15, so we naturally assume its hypothesis. Most of the time, we need to specify the dependence of λ of (4.18), we will do that by writing $(4.18)_\lambda$. Furthermore, we will denote the right-hand side of $(4.18)_\lambda$ by $f_\lambda(t) := \lambda t^p - S_F t^q$.

The conditions either $(m, k) \in D$ and $\mu \in (0, 1)$ or $(m, k) \in CD$ and $\mu \in (0, 1) \cap C[\mu_-, \mu_+]$ imply that $0 < q < 1 < p$. But the type of nonlinearity on the right-hand side of $(4.18)_\lambda$ changes with the sign λ, i.e. it is purely concave for $\lambda < 0$ and concave–convex for $\lambda > 0$.

The uniqueness for $\lambda \leq 0$ is again a consequence of corollary 4.2. In order to prove the existence of a solution for $(4.18)_\lambda$ with $\text{sign}\lambda \neq 0$, we adapt the approach of sub and upper solutions in [5].

Thus, the proof of theorem 4.15 will be an immediate consequence of the results that follows.

Lemma 5.1. $(4.18)_0$ has a solution if and only if $\lambda_1 > 0$.

Proof. This situation is included in the results of the second case of theorem 4.7 by replacing $-S_F$ with λ (see [23, proposition 3.1]).

Lemma 5.2. Let us assume that $(\lambda : (4.18)_\lambda$ has a solution) is non-empty and define

$$\overline{\Lambda} = \sup\{\lambda : (4.18)_\lambda$ has a solution\}.

(5.1)
(i) If \(\lambda_1 \leq 0 \), then \(\overline{\lambda} \leq 0 \).

(ii) If \(\lambda_1 > 0 \), then there exists \(\lambda > 0 \) finite such that \(\overline{\lambda} \leq \lambda \).

Proof.

(i) It is sufficient to observe remark 4.13 (i).

(ii) Like in [5], let \(\lambda > 0 \) such that \(\lambda_1 t < \lambda_1 t^p - SF \lambda_1 t^q \), \(\forall t \in \mathbb{R}, t > 0 \).

Thus, if \((\lambda, u)\) is a solution of \((4.18)_1\), then

\[
\frac{\lambda}{E} \int_B u_1 u^p - SF \int_B u_1 u^q \leq \frac{\lambda}{E} \int_B u_1 u^p - SF \int_B u_1 u^q,
\]

so \(\lambda < \overline{\lambda} \).

\[\square\]

Lemma 5.3. (see figure 1). Let

\[
\overline{\lambda} = \sup \{ \lambda : (4.18)_1 \text{ has a solution} \}.
\]

(i) Let \(E \in \mathbb{R}_{>0} \). There exist \(0 < \lambda_0 = \lambda_0(E) \) and \(0 < M = M(E, \lambda_0) \) such that \(\forall \lambda : 0 < \lambda \leq \lambda_0 \), so we have

\[
0 < E f_\lambda(EM) \left(\frac{1}{E} \right) < 1.
\]

(ii) If \(\lambda_1 > 0 \), then \(\{ \lambda > 0 : (4.18)_1 \text{ has a solution} \} \neq \emptyset \). As a consequence of that, \(\overline{\lambda} \) is finite.

(iii) If \(\lambda_1 > 0 \), then for all \(0 < \lambda < \overline{\lambda} \) there exists a solution of the problem \((4.18)_1\).

Proof.

(i) For any \(0 < \lambda < \lambda_0 \)

\[
0 < g_\lambda(r) := E f_\lambda(ER) \left(\frac{1}{ER} \right) = ER^{p-1}(\lambda_0 E^{p-1} r^{p-q} - SF E^{q-1}) < ER^{p-1}(\lambda_0 E^{p-1} r^{p-q} - SF E^{q-1}).
\]

It is easy to see that

\[
r_0 = \left(\frac{SF}{\lambda_0 p - 1} \right) \left(\frac{1}{E} \right)
\]

is a minimum point for \(g_{\lambda_0} \) and

\[
g_{\lambda_0}(r_0) = E \left(\frac{SF}{\lambda_0 p - 1} \right) \left(\frac{1}{SF} \right) S_F \left[\frac{q-1}{p-1} - 1 \right] \to 0^*, \quad \text{as} \quad \lambda_0 \to 0^*.
\]

Hence there exist \(0 < \lambda_0 = \lambda_0(E) \) and \(0 < M = M(E, \lambda_0) \) such that \((5.4)\) is verified.

(ii) Since \(\lambda_1 > 0 \), by the maximum principle, there exists a solution \(e \in C_0^\infty(B) \) of

\[
L_B(e) = -\beta \Delta_R e + SF e = 1.
\]

Then, applying item (i) above with \(E = \|e\|_\infty \) there exists \(0 < \lambda_0 = \lambda_0(\|e\|_\infty) \) and \(0 < M = M(\|e\|_\infty, \lambda_0) \) such that \(\forall \lambda \) with \(0 < \lambda \leq \lambda_0 \) we have that

\[
L_B(Me) = M \geq f_\lambda(Me),
\]

hence \(Me \) is a supersolution of \((4.18)_1\).
On the other hand, since \(\tilde{u}_1 := \inf u_1 > 0 \), for all \(\lambda > 0 \),
\[
\varepsilon^{-1} f_\lambda(\epsilon \tilde{u}_1) = \varepsilon^{-1}[\lambda \epsilon \rho - \tilde{u}_1] \to +\infty, \quad \text{as} \quad \epsilon \to 0^+ .
\] (5.7)
Furthermore, note that \(f_\lambda \) is nondecreasing when \(\lambda > 0 \). Hence for any \(0 < \lambda \) there exists a small enough \(0 < \epsilon \) verifying
\[
L_B(\epsilon u_1) = \epsilon \lambda_1 u_1 \leq \epsilon \lambda_1 \|u_1\|_\infty \leq f_\lambda(\epsilon \tilde{u}_1) \leq f_\lambda(\epsilon u_1),
\] (5.8)
thus \(\epsilon u_1 \) is a subsolution of (4.18)\textsubscript{\(\lambda\)}.

Then for any \(0 < \lambda < \bar{\lambda}_0 \), (taking eventually \(0 < \epsilon \) smaller if necessary), we have that the above-constructed couple sub-super solution satisfies
\[
\epsilon u_1 < M e.
\] (5.9)

Now, by applying the monotone iteration scheme, we have that \(\{ \lambda > 0 : (4.18)\textsubscript{\(\lambda\)} \) has a solution \(\neq \emptyset \). Furthermore, by lemma 5.2 (ii) there results \(\bar{\lambda} \) are finite.

(iii) The proof of this item is completely analogous to lemma 3.2 in [5]. We will rewrite this to be self-contained.

Given \(\lambda < \bar{\lambda} \), let \(u_\nu \) be a solution of (4.18)\textsubscript{\(\lambda\)}, with \(\lambda < \nu < \bar{\lambda} \). Then \(u_\nu \) is a supersolution of (4.18)\textsubscript{\(\lambda\)}, and for small enough \(0 < \epsilon \), the subsolution \(\epsilon u_1 \) of (4.18)\textsubscript{\(\lambda\)} verifies \(\epsilon u_1 < u_\nu \), then as above (4.18)\textsubscript{\(\lambda\)} has a solution. \(\square \)

Lemma 5.4. For any \(\lambda < 0 \), there exists \(\gamma_\lambda > 0 \) such that \(\|u\|_\infty \leq \gamma_\lambda \) for any solution \(u \) of (4.18)\textsubscript{\(\lambda\)}. Furthermore, if \(S_B \) is non-negative, then positive zero of \(f_\lambda \) can be chosen as \(\gamma_\lambda \).

Proof. Define \(\tilde{S}_B := \min S_B \) (recall that \(B \) is compact). There are two different situations, namely,

- \(0 \leq \tilde{S}_B \): since there exists \(x_1 \in B \) such that \(u(x_1) = \|u\|_\infty \) and \(0 \leq -\beta \Delta_B u(x_1) = -S_B(x_1)\|u\|_\infty + \lambda \|u\|_\infty^p - S_B u_\nu \|u\|_\infty^p \), there results \(\|u\|_\infty \leq \gamma_\lambda \), where \(\gamma_\lambda \) is the strictly positive zero of \(f_\lambda \).
- \(\tilde{S}_B < 0 \): we consider \(\tilde{f}_\lambda(t) := \lambda t^p - S_B t^q - \tilde{S}_B t \). Now, our problem (4.18)\textsubscript{\(\lambda\)} is equivalent to
 \[
 -\beta \Delta_B u + (S_B - \tilde{S}_B) u = \tilde{f}_\lambda(u), \quad u \in C_c^\infty(B).
 \]
 But here the potential of \((S_B - \tilde{S}_B) \) is non-negative and the function \(\tilde{f}_\lambda \) has the same behavior of \(f_\lambda \) with a positive zero \(\gamma_\lambda \) on the right-hand side of the positive zero \(\gamma_\lambda \) of \(f_\lambda \). Thus, repeating the argument for the case of \(\tilde{S}_B \geq 0 \), we proved \(\|u\|_\infty \leq \gamma_\lambda \). \(\square \)

Lemma 5.5. (See figure 2). Let \(\lambda_1 > 0 \). Then for all \(\lambda < 0 \) there exists a solution of (4.18)\textsubscript{\(\lambda\)}.

Proof. We will apply again the monotone iteration scheme. Define \(\tilde{S}_B := \min S_B \) (note that \(B \) is compact).

- \(0 \leq \tilde{S}_B \): Clearly, the strictly positive zero \(\gamma_\lambda \) of \(f_\lambda \) is a supersolution of
 \[
 -\beta \Delta_B u + (S_B + \nu) u = f_\lambda(u) + \nu u,
 \] (5.10)
for all \(\nu \in \mathbb{R} \).

On the other hand, for \(0 < \epsilon = \epsilon(\lambda) \) small enough,
\[
L_B(\epsilon u_1) = \epsilon \lambda_1 u_1 \leq f_\lambda(\epsilon u_1),
\] (5.11)
Then \(\epsilon u_1 \) is a subsolution of (5.10) for all \(\nu \in \mathbb{R} \).

By taking \(\epsilon \) possibly smaller, we also have
\[
0 < \epsilon u_1 < \gamma_\lambda.
\] (5.12)
We note that for large enough values of $\nu \in \mathbb{R}_{>0}$, the nonlinearity on the right-hand side of (5.10), namely $f_{\lambda}(t) + \nu t$, is an increasing function on $[0, \gamma_{\lambda}]$.

Thus applying the monotone iteration scheme we obtain a strictly positive solution of (5.10), and hence a solution of (4.18), (see [3, 4, 52]).

- $\tilde{S}_B < 0$: In this case, like in lemma 5.4 we consider $\tilde{f}_{\lambda}(t) := \lambda t^{\nu} - S_B t^q - \tilde{S}_B t$. Then, problem (4.18) is equivalent to

$$-\beta \Delta_B u + (S_B - \tilde{S}_B)u = \tilde{f}_{\lambda}(u), \quad u \in C^\infty_0(B).$$

where the potential is non-negative and the function \tilde{f}_{λ} has a similar behavior to f_{λ} with a positive zero $\tilde{\gamma}_{\lambda}$ on the right-hand side of the positive zero γ_{λ} of f_{λ}.

Here, it is clear that $\tilde{\gamma}_{\lambda}$ is a positive supersolution of

$$-\beta \Delta_B u + (S_B - \tilde{S}_B + \nu)u = \tilde{f}_{\lambda}(u) + \nu u,$$

for all $\nu \in \mathbb{R}$. Hence, we complete the proof similar to the case of $\tilde{S}_B \geq 0$. \hfill \square

Lemma 5.6. Let $\lambda_1 \leq \lambda < 0$, $\tilde{S}_B := \min S_B$ and also γ_{λ} be a positive zero of f_{λ} and $\tilde{\gamma}_{\lambda}$ be a positive zero of $\tilde{f}_{\lambda} := f_{\lambda} - \tilde{S}_B d_{B^2 \geq 0}$. Then there exists a solution u of (4.18)$_{\lambda}$. Furthermore, any solution of (4.18)$_{\lambda}$ satisfies $\gamma_{\lambda} \leq \|u\|_{\infty} \leq \tilde{\gamma}_{\lambda}$.

Proof. First of all we observe that if $S_B \equiv 0$ (so $\lambda_1 = 0$), then $u \equiv \gamma_{\lambda}$ is the searched solution of (4.18)$_{\lambda}$.

Now, we assume that $S_B \not\equiv 0$. Since $\lambda_1 \leq 0$, there results $\tilde{S}_B < 0$. In this case, one can note that $0 < \gamma_{\lambda} < \tilde{\gamma}_{\lambda}$.

On the other hand, problem (4.18)$_{\lambda}$ is equivalent to

$$-\beta \Delta_B u + (S_B - \tilde{S}_B)u = \tilde{f}_{\lambda}(u), \quad u \in C^\infty_0(B).$$

By the second part of the proof of lemma 5.4, if u is a solution of (4.18)$_{\lambda}$ (or equivalently (5.15)), then $\|u\|_{\infty} \leq \tilde{\gamma}_{\lambda}$. Besides, since

$$\int_B u_1(f_{\lambda} \circ u) = \lambda_1 \int_B u_1 u,$$

$u, u_1 > 0$ and $\lambda_1 \leq 0$ results $\gamma_{\lambda} \leq \|u\|_{\infty}$.

From this point, the proof of the existence of solutions for (5.15) follows the lines of the second part of lemma 5.5. \hfill \square

6. Conclusions and future directions

Now, we would like to summarize the content of the paper and to propose our future plans on this topic.

We inform the reader that several computations and proofs, along with other complementary results mentioned in this paper and references can be obtained in [28]. We have chosen this procedure to avoid the involved long computations.

In brief, we introduced and studied curvature properties of a particular family of warped products of two pseudo-Riemannian manifolds which we called as a base conformal warped product. Roughly speaking the metric of such a product is a mixture of a conformal metric on the base and a warped metric. We concentrated on a special subclass of this structure, where there is a specific relation between the conformal factor c and the warping function w, namely $c = w^{\mu}$, with μ being a real parameter.

As we mentioned in section 1 and the first part of section 2, these kinds of metrics and considerations about their curvatures are very frequent in different physical areas, for instance
theory of general relativity, extra-dimension theories (Kaluza–Klein, Randall–Sundrum),
string and super-gravity theories, also in global analysis for example in the study of the
spectrum of Laplace–Beltrami operators on \(p \)-forms, etc.

More precisely, in theorems 3.1 and 3.2, we obtained the classical relations among
the different involved Ricci tensors (respectively, scalar curvatures) for metrics of the form
\(c^2g_B \oplus w^2g_F \). Then the study of particular families of either scalar or tensorial nonlinear partial
differential operators on pseudo-Riemannian manifolds (see lemmas 3.3 and 3.7) allowed us
to find reduced expressions of the Ricci tensor and scalar curvature for metrics as above with
\(c = w^\mu \), where \(\mu \) is a real parameter (see theorems 2.2 and 2.3). The operated reductions
can be considered as generalizations of those used by Yamabe in [77] in order to obtain the
transformation law of the scalar curvature under a conformal change in the metric and those
used in [26] with the aim to obtain a suitable relation among the involved scalar curvatures in a
singly warped product (see also [50] for other particular application and our study on multiply
warped products in [27]).

In sections 4 and 5, under the hypothesis that \((B, g_B)\) be a ‘compact’ and connected
Riemannian manifold of dimension \(m \geq 3 \) and \((F, g_F)\) be a pseudo-Riemannian manifold of
dimension \(k \geq 0 \) with constant scalar curvature \(S_F \), we dealt with the problem (Pb-sc). This
question leads us to analyze the existence and uniqueness of solutions for nonlinear elliptic
partial differential equations with several kinds of nonlinearities. The type of nonlinearity
changes with the value of the real parameter \(\mu \) and the sign of \(S_F \). In this paper, we
concentrated our attention to the cases of constant scalar curvature \(S_F \leq 0 \) and accordingly
the central results are theorems 2.4 and 2.5. Although our results are partial so that there
are more cases to study in forthcoming works, we also obtained other complementary results
under more restricted hypothesis about the sign of the scalar curvature of the base.

Throughout our study, we meet several types of partial differential equations. Among
them, most important ones are those with concave–convex nonlinearities and the so-called
Lichnerowicz–York equation. About the former, we deal with the existence of solutions and
leave the question of multiplicity of solutions to a forthcoming study.

We observe that the previous problems as well as the study of the Einstein equation on
base conformal warped products, \((\psi, \mu)\)-bcwp’s and their generalizations to multi-fiber cases,
give rise to a reach family of interesting problems in differential geometry and physics (see
for instance, the several recent works of Argurio, Gauntlett, Katanaev, Kodama, Maldacena,
Schmidt, Strominger, Uzawa, Wesson among many others) and in nonlinear analysis (see the
different works of Ambrosetti, Aubin, Choquet-Bruat, Escobar, Hebey, Isenberg, Malchiodi,
Pollack, Schoen, Yau among others).

Appendix

Let us assume the hypothesis of theorem 2.3 (i), the dimensions of the base \(m \geq 2 \) and of
the fiber \(k \geq 1 \). In order to describe the classification of the type of nonlinearities involved
in (2.11), we will introduce some notation (for a complete study of these nonlinearities see
[28, section 5]). The example in figure 3 will help the reader to clarify the notation.

Note that the denominator in (2.12) is

\[
\eta := (m - 1)(m - 2)\mu^2 + 2(m - 2)k\mu + (k + 1)k
\]

and verifies \(\eta > 0 \) for all \(\mu \in \mathbb{R} \). Thus \(\alpha \) in (2.12) is positive if and only if \(\mu > -\frac{k}{m-1} \) and by
the hypothesis \(\mu \neq -\frac{k}{m-1} \) in theorem 2.3 (i), results \(\alpha \neq 0 \).
We now introduce the following notation:

\[
\begin{align*}
 p &= p(m, k, \mu) = 2\mu \alpha + 1 \\
 q &= q(m, k, \mu) = 2(\mu - 1)\alpha + 1 = p - 2\alpha,
\end{align*}
\]

where \(\alpha\) is defined by (2.12).

Thus, for all \(m, k, \mu\) given as above, \(p\) is positive. Indeed, by (A.1), \(p > 0\) if and only if \(\sigma > 0\), where

\[
\begin{align*}
\sigma := \sigma(m, k, \mu) \\
&:= 4\mu[k + (m - 1)\mu] + (m - 1)(m - 2)\mu^2 + 2(m - 2)k\mu + (k + 1)k \\
&= (m - 1)(m + 2)\mu^2 + 2mk\mu + (k + 1)k.
\end{align*}
\]

But \(\operatorname{discr}(\sigma) \leq -4km^2 \leq -16\) and \(m > 1\), so \(\sigma > 0\).
Unlike p, q changes the sign depending on m and k. Furthermore, it is important to determine the position of p and q with respect to 1 as a function of m and k. In order to do that, we define

$$D := \{(m, k) \in \mathbb{N}_{\geq 2} \times \mathbb{N}_{\geq 1} : \text{discr}(\varrho(m, k, \cdot)) < 0\},$$

where $\mathbb{N}_{\geq l} := \{j \in \mathbb{N} : j \geq l\}$ and

$$\varrho := \varrho(m, k, \mu) = 4(\mu - 1)(k + (m - 1)\mu) + (m - 1)(m - 2)\mu^2 + 2(m - 2)k\mu + (k + 1)k = (m - 1)(m + 2)\mu^2 + 2(mk - 2(m - 1))\mu + (k - 3)k.$$

Note that by (A.1), $q > 0$ if and only if $\varrho > 0$. Furthermore, $q = 0$ if and only if $\varrho = 0$. But here $\text{discr}(\varrho(m, k, \cdot))$ changes its sign as a function of m and k.

We adopt here the notation in [28, table 4] below, namely $CD = (\mathbb{N}_{\geq 2} \times \mathbb{N}_{\geq 1}) \setminus D$ if $D \subseteq \mathbb{N}_{\geq 2} \times \mathbb{N}_{\geq 1}$ and $CI = \mathbb{R} \setminus I$ if $I \subseteq \mathbb{R}$. Thus, if $(m, k) \in CD$, let μ_- and μ_+ two roots (eventually one, see [28, remark 5.3]) of q, $\mu_- \leq \mu_+$. Besides, if $\text{discr}(\varrho(m, k, \cdot)) > 0$, then $\mu_- < 0$, whereas μ_+ can take any sign.

References

About curvature, conformal metrics and warped products

[40] Hawking S W and Ellis G F 1973 The large scale structure of space-time Cambridge Monographs on Mathematical Physics

[43] Hebey E and Vaugon M 2001 From best constants to critical functions Math. Z. 237 737–67

[45] Ito M 2001 Five dimensional warped geometry with bulk scalar field Preprint

[46] Hebey E 2003 Variational methods and elliptic equations in Riemannian geometry

[59] Papadopoulos G and Townsend P K 1999 Introduction to the Maldacena conjecture on AdS

[64] Schmidt H-J 1997 A new proof of Birkoff’s theorem Grav. Cosmol. 3 185–90 (Preprint gr-qc/9709071)

[65] Schmidt H-J 2004 Lectures on mathematical cosmology Preprint gr-qc/0407095

[66] Schoen R 1984 Conformal deformation of a Riemannian metric to constant scalar curvature J. Differ. Geom. 20 479–95

[67] Schwarzschild K 1916 On the gravitational field of a mass point according to Einstein’s theory Sitzungsberichte der Koniglisch Preussischen Akademie der Wissenschaften zu Berlin pp 189–96 Preprint physics/9905030

[75] Wesson P S 2001 On higher-dimensional dynamics Preprint gr-qc/0105059
[76] Willem M 1996 Minimax Theorems (Boston: Birkhäuser)