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ABSTRACT

WHICH ALGEBRAIC K3 SURFACES DOUBLY COVER
AN ENRIQUES SURFACE: A COMPUTATIONAL

APPROACH

Oğuzhan Yörük

M.S. in Mathematics

Advisor: Ali Sinan Sertöz

2019

The relationship between K3 Surfaces and Enriques Surfaces is known to math-

ematicians for the last 30 years. We examined this relationship from a lattice

theoretical point of view by looking at transcendental lattice of a K3 surface in

the case of Picard number 18 and 19. We established a better way of attacking

this problem with the help of a computer assistance.
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ÖZET

HANGİ CEBİRSEL K3 YÜZEYLERİ ENRIQUES
YÜZEYİNİ ÖRTER: HESAPLAMALI YAKLAŞIM

Oğuzhan Yörük

Matematik, Yüksek Lisans

Tez Danışmanı: Ali Sinan Sertöz

2019

K3 Yüzeyleri ile Enriques Yüzeyleri arasındaki ilişki son 30 senedir biliniyor. Biz

bu ilişkiyi örgü teorisi bakış açısını kullanarak, Picard sayısı 18 ve 19 olan K3

yüzeylerinin aşkın örgüsüne bakarak inceledik. Bu problemi çözmek için bilgisa-

yar desteği ile daha hızlı bir çözüm yöntemi keşfettik.

Anahtar sözcükler : K3 Yüzeyleri, Picard Sayısı, Enriques Yüzeyleri, Örgü.
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Chapter 1

Introduction

1.1 Historical Background

K3 surface has its name coming from three important figures in Algebraic Geom-

etry, namely, Kodeira, Kahler, Kummer. It was named after these three brilliant

minds and the hill on Everest called K2. K2 is one of the hardest hill in Everest

to climb. To emphasize the hardness of understanding K3 surfaces, this object is

named to be K3, which indicates that it’s even harder to climb K2 hill.

The problem has its roots coming from the discussion about classification of

surfaces between Enriques and Castelnuovo. It was harder to classify algebraic

surfaces since there were much to consider comparing to curves which has only

one invariant, namely genus. Enriques and Castelnuovo has further investigated

the problem and concluded that for a surface X, it is enough to consider the

Kodeira dimension κ(X), geometric genus pg(X) and irregualarity q(X) as surface

invariants. From this point of view one first looks at the Kodeira dimension

κ(X) of the surface X. For κ(X) = 0, we have Enriques, K3, abelian and

hyperelliptic surfaces. The difference between these four surfaces are coming the

other invariants:

• The surface is called Enriques if q(X) = pg(X) = 0,
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• The surface is called K3 if q(X) = 0, pg(X) = 1,

• The surface is called hyperelliptic if q(X) = 1, pg(X) = 0,

• The surface is called abelian if q(X) = 2, pg(X) = 1

It’s known before Keum that every Enriques Surface is doubly covered by some

K3 surface. A natural follow-up was whether every K3 surface doubly covers an

Enriques Surface. Keum studied this problem and he concluded that it is not the

case. However, he gave a full description of the criterion for a K3 surface to cover

an Enriques Surface from a lattice theoretical point of view:

Theorem 1.1.1 (Keum’s Criterion [1]). Let X be an algebraic K3 surface over C.

Assume that `(TX)+2 ≤ ρ(X), where `(TX) is the minimal number of generators

of TX and ρ(X) is the Picard number of X. Then, the followings are equivalent:

• X admits a fixed point free involution.

• There exists a primitive embedding of TX into Λ− such that Im(TX)⊥ doesn’t

contain any vector of self intersection -2, where Λ− = U ⊕ U(2)⊕ E8(2).

Keum studied further with his criterion and he concluded that every alge-

braic K3 surface X that is Kummer doubly covers an Enriques surface when

17 ≤ ρ(X) ≤ 20 [1]. Following Keum’s lead Sertoz worked on the problem for

the singular K3 surfaces X (ρ(X) = 20) and he fully resolved the problem by

providing a clever lattice theoretical and quadratic form arguments. He worked

on the parity of the entries of transcendental lattice [2]. Then following his ideas,

Lee tried to solve the problem for the case ρ(X) = 19, he resolved all the case

solely depending on the parity of the entries of the transcendental lattice but

the problem still remains open for the cases that do not depends solely on them.

There are still 7 cases open in when ρ(X) = 19.
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1.2 Results

In this study, we essentially tried to figure out the relationship between different

transcendental lattices of K3 surfaces having the same Picard number. Our main

goal was to discover how parities behave if we apply a change of basis. We

discovered that some parities can be transformed into one another and they form

a nice equivalence class under the change of basis.

Definition 1.2.1. Let T1 and T2 be given as

T1 =


2a1,1 a1,2 · · · a1,n

a2,1 2a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · 2an,n



T2 =


2b1,1 b1,2 · · · b1,n

b2,1 2b2,2 · · · b2,n

...
...

. . .
...

bn,1 bn,2 · · · 2bn,n


Where ai,j’s and bi,j’s are integer for i, j = 1, 2, . . . n. Then, we say T1 is Z-

equivalent to T2 if ∃B ∈ {M ∈Matn(Z) : det(M) = ±1} such that BtT1B = T2.

We tried to characterize the problem in the light of Z-equivalence classes of

parities of ai,j’s and we were able to reduce the cases to doable small portions of

equivalence classes for ρ(X) = 19, 18.

In terms of parity we found all possible change of basis matrices(in terms of

parities) and we applied this change of basis operation to each possible transcen-

dental lattice(again, in terms of parity) of the same rank. We concluded that

there are equivalence classes of such transcendental lattices under the action of

change of basis. We have the following results for the case when ρ(X) = 19.

Theorem 1.2.2. Let L be the set of all even lattices of rank 3. Let L =
2a d e

d 2b f

e f 2c

 ∈ L. Then, the set consisting of lattices having different parities
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of a, b, c, d, e, f under the action of change of basis has 5 Z-equivalence classes.

These equivalence classes have number of elements 1, 7, 7, 21, 28 among 26 = 64

different.

The Theorem 1.2.2 gives a good insight for resolving the case ρ(X) = 19.

Theorem 1.2.3. Let X be an algebraic K3 surface over C. Let

TX =


2a d e

d 2b f

e f 2c


be the transcendental lattice of X. If a, b, c, d, e, f all are even, then such a K3

surface can doubly cover an Enriques Surface.

Theorem 1.2.4. For any algebraic K3 surface whose transcendental lattice has

parities matching any of the parities given in the Table 4.2, doubly covers an

Enriques Surface.

Theorem 1.2.5. For any algebraic K3 surfaces whose transcendental lattice has

parities matching to any in the Table 4.3 doesn’t cover an Enriques surface.

Theorem 1.2.6. For any algebraic K3 surfaces whose transcendental lattice has

parities matching to any in the Table 4.4 doesn’t cover an Enriques surface.

For the remaining case that is given in the Table 4.5, we provided a family

of K3 surfaces that cover an Enriques surface. However, we weren’t able bring a

closure to whole open part.

Theorem 1.2.7. Let X be an algebraic K3 surface of Picard number 19 whose

transcendental lattice TX be of the form TX =


2a a+ 2 e

a+ 2 2b e

e e 2c

 where a, c, e

are even, b is odd and c < 0, b > a ≥ 4, e is nonzero. Then, X doubly covers an

Enriques Surface.

We also have some partial results when ρ(X) = 18. Even though the number

of different parities grows exponentially, we used a similar trick that we employed

for the case ρ(X) = 19.

4



Theorem 1.2.8. Let L be the set of all even lattices of rank 4. Let L =
2a e f g

e 2b h i

f h 2c j

g i j 2d

 ∈ L. Then, the set consisting of lattices having dif-

ferent parities of a, b, c, d, e, f, g, h, i under the action of change basis has 7

Z-equivalence classes. These equivalence classes have number of elements

1, 15, 35, 105, 168, 280, 420 among 210 = 1024 different.

The Theorem 1.2.8 gives a good insight for resolving the case ρ(X) = 18.

Theorem 1.2.9. Any algebraic K3 surface of Picard number 18 whose transcen-

dental lattice

TX =


2a e f g

e 2b h i

f h 2c j

g i j 2d


has parities matching to any of the parity in Z-equivalence class having b, c, d are

even and h, i, j are odd do not cover an Enriques surface.

Theorem 1.2.10. Any algebraic K3 surface of Picard number 18 whose tran-

scendental lattice

TX =


2a e f g

e 2b h i

f h 2c j

g i j 2d


has parities matching to any of the paritiy in Z-equivalence class having a, b, e are

odd do not cover an Enriques surface.
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Chapter 2

Lattice Theory

Lattice Theory holds a key importance in dealing with some geometric objects.

The main objective is to turn algebraic problems, which originally arise from the

geometric problems, into arithmetic problems. The lattice theory is a very useful

tool to be used in algebraic geometry, as we will see in the next chapter. In this

section, for most of the definitions we will refer [3] and [4], [2], [5].

Definition 2.0.1. A symmetric bilinear form on Z-module X is a map ϕ :

X xX → Z where the following hold.

(1) ∀a, b ∈ X , ϕ(a, b) = ϕ(b, a)

(2) ∀a, b, c ∈ X , α ∈ Z, ϕ(αa+ c, b) = αϕ(a, b) + ϕ(c, b)

(3) ∀a, b, c ∈ X , α ∈ Z, ϕ(a, αb+ c) = αϕ(a, b) + ϕ(a, c)

Definition 2.0.2. If ∃a ∈ X\{0X} ∀b ∈ X , ϕ(a, b) = 0, then this symmetric

bilinear form is called degenerate, is called non-degenerate otherwise.

Definition 2.0.3. A free Z-module L is called a lattice if it has a finite rank and

is equipped with a non-degenerate symmetric bilinear form ϕ : L× L→ Z.

To avoid repetition of non-degenerate symmetric bilinear form, we will refer

the ϕ in the above definition as symmetric bilinear form unless stated otherwise.
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Definition 2.0.4. Let L be a lattice with a basis {e1, e2, . . . , en} and ϕ be the

symmetric bilinear form on the lattice L. Then,

(1) For the rational number q, the lattice L(q) refers to the lattice L with the

new symmetric bilinear form ϕ′ = q · ϕ with the condition that ∀`, `′ ∈ L,

we have ϕ′(`, `′) ∈ Z.

(2) The matrix defined by (TL)ij = ϕ(ei, ej) is called the matrix representation

of the lattice L. Note that T tL = TL.

(3) The signature of the lattice L is given by (s+, s−) where s+ is the number

of positive eigenvalues of the matrix TL and s− is the number of negative

eigenvalues of the matrix TL. An important observation is that such sym-

metric matrices are diagonalizable in R [5, p. 285]. Note that no eigenvalue

is zero.

(4) The disciriminant of the lattice L, Discr(L), is Det(TL).

(5) A lattice L is called unimodular if Discr(L) = ±1.

(6) A lattice L is called even if ∀` ∈ L, ϕ(`, `) takes only even values, and is

called odd otherwise.

(7) An element L 3 ` = `1e1 + `2e2 + . . . + `nen is called primitive if

gcd(`1, `2, . . . , `n) = 1.

Remark 2.0.5. Let L be a lattice with symmetric bilinear form ϕ and signature

{s+, s−} where s− > 0. Then, ∃` ∈ L s.t. ϕ(`, `) < 0. Otherwise, L becomes

positive definite; hence, it contradicts the fact that s− > 0.

Fact 2.0.6. Let ` ∈ L be a primitive element. Then ` can be completed into a

basis [4, p. 23].

Now, we will give some examples of lattices which will be widely used in

understanding K3 surfaces for the upcoming chapters.

Example 2.0.7. (1) U is called the hyperbolic unimodular even lattice of rank

2 with signature (1, 1). The matrix representation of U with respect to the

standard basis is given by the following matrix:(
0 1

1 0

)
7



(2) E8 is the unique unimodular even lattice of rank 8 with signature (0, 8).

The matrix representation of E8 with respect to the standard basis is given

by the following matrix:

−2 1 0 0 0 0 0 0

1 −2 1 0 0 0 0 0

0 1 −2 1 1 0 0 0

0 0 1 −2 0 0 0 0

0 0 1 0 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 1

0 0 0 0 0 0 1 −2


(3) For any n ∈ Z\{0}, 〈n〉 denotes the lattice Ze of rank 1 with the symmetric

bilinear form ϕ defined on it by ϕ(e, e) = n. Notice that this lattice has

signature (0, 1) if n is negative, has signature (1, 0) if n is positive.

Definition 2.0.8. Let L and M be two lattices with symmetric bilinear forms

ϕL and ϕM defined on them, respectively, {e1, e2, . . . en} is a basis for the lattice

L. A Z-module homomorphism φ : L ↪→ M is an embedding if it is one to one

and

∀i, j ∈ {1, 2, . . . n} ϕL(ei, ej) = ϕM (φ(ei), φ(ej))

Remark 2.0.9. Since φ also preserves the structure, we see that it is also a

Z-linear map, thus images of basis elements uniquely determin e the embedding.

Definition 2.0.10. The dual of a lattice L is L∗ = Hom(L,Z), the set of all

Z-module homomorphisms from L to Z making an abelian group with the com-

position operation.

It is easy to see that a lattice is naturally embedded in its dual, which is called

the canonical embedding, by the following map:

φ : L→ Hom(L,Z) = L∗

`� ϕ(`, ·)

In the above mapping, ϕ is the symmetric bilinear form defined on the lattice L

and for each ` ∈ L, the map ϕ(`, ·) is indeed a Z-module homomorphism since

ϕ is Z-linear in the second component; thus, making the map ϕ(`, ·) a Z-module

homomorphism.
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Definition 2.0.11. Let L, ϕ, φ be the same as above. Then, the finite abelian

group defined by the quotient L∗/φ(L) is called the discriminant group of the

lattice L and l(L) denotes the minimum number of generators of the discriminant

group of the lattice L.

Remark 2.0.12. The above definition is well defined since the discriminant

group is indeed finite abelian group and the order of this group actually divides

|Discr(L)| [3].

Definition 2.0.13. An embedding of lattices φ : L ↪→ M is called primitive if

the quotient M/φ(L) is a free Z-module. For the sake of simplicity, we will denote

the quotient as M/L instead of M/φ(L).

Theorem 2.0.14. An embedding φ : L → M is primitive if and only if the

greatest common divisor of the maximal minors of the matrix representation of

the embeddeing is 1 with respect to any choice of basis.

Proof. For the proof we will refer [2].

Notation 2.0.15. Let L and M be two lattices with symmetric bilinear forms

ϕL and ϕM defined on them, respectively. By L⊕M , we mean a new lattice with

new symmetric bilinear form ϕL⊕M such that ∀l, l′ ∈ L ∀m,m′ ∈M

ϕL⊕M(l,m) = 0

ϕL⊕M(l, l′) = ϕL(l, l′)

ϕL⊕M(m,m′) = ϕM(m,m′)

Definition 2.0.16. Let L and M be two lattices with symmetric bilinear forms

ϕL and ϕM defined on them respectively such that there is a primitive embedding

φ : L ↪→M . Let K := {α ∈M : ϕM(α, φ(l)) = 0 ∀l ∈ L}. Then K is called the

orthogonal complement of L in M and is denoted by K = (L)⊥M and usually M

is omitted in the subscript if it is easily understood from the context.

Remark 2.0.17. It is easy to see that in Def. 2.0.16, K is a sublattice of M and

we have φ(L)⊕K ⊂M .

The tools we prepared in this section will come in handy for the next two

chapters.
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Chapter 3

K3 Surfaces and Enriques

Surfaces

Before diving into what K3 surfaces and Enriques Surfaces are, we will first

introduce some useful theorems that we will be using throughout the chapter.

Our main references in this section will be [6], [7], [8], [1], [9], [10], [11].

Theorem 3.0.1 (Poincare Duality). Let M be an oriented n-manifold. Then we

have

Hk(M ;Z) ∼= Hn−k(M ;Z) (3.1)

a canonical isomorphism.

Proof. For the proof we will refer to [9, p. 9].

Theorem 3.0.2. Let M be an oriented n-manifold, Tk be the torsion submodule

of Hk(M ;Z) and Fk be a the free part of Hk(M ;Z) so that

Hk(M ;Z) ∼= Fk ⊕ Tk

Then we have,

Hk(M,Z) ∼= Fk ⊕ Tk−1 (3.2)

Proof. For the proof we will refer to [9, p. 15,16].

10



Corollary 3.0.3. By combining the two isomorphism given in 3.1 and 3.2, we

have the following:

Fk ∼= Fm−k (3.3)

Tk ∼= Tm−k−1 (3.4)

Corollary 3.0.4. For the case when M is an oriented 4-manifold we have the

following:

H0(M ;Z) ∼= H4(M ;Z) ∼= Z (3.5)

H1(M ;Z) ∼= H3(M ;Z) ∼= F1 ⊕ T1 (3.6)

H2(M ;Z) ∼= H2(M ;Z) ∼= F2 ⊕ T1 (3.7)

H3(M ;Z) ∼= H1(M ;Z) ∼= F1 (3.8)

H4(M ;Z) ∼= H0(M ;Z) ∼= Z (3.9)

Remark 3.0.5. The only torsion that we have above is T1 which originates from

H1(M ;Z). In the case of M is simply connected, we will have no torsion since

H1(M ;Z) is the abelianization of π1(M) and its trivial in the case of simply

connectedness.

Definition 3.0.6. Let X be a complex manifold of dimension 2. The set of

holomorphic line bundles on X forms a group with respect to the tensor product.

This group is called the Picard group of X and is denoted by Pic(X). Also we

say X.

Notation 3.0.7. ρ(X) denotes the rank of the Picard group.

Definition 3.0.8. The exponential sequence of sheaves

0→ ZX → OX → O∗X → 0

gives rise to the exponential cohomology sequence

. . .→ H1(ZX)→ H1(OX)→ H1(O∗X)
δ−→ H2(ZX)→ . . .

by putting ker(δ) = Pic0(X), we have Pic(X)/Pic0(X) is isomorphic to a sub-

group NS(X) of H2(X;Z). NS(X) is called the Neron-Severi group. .

Definition 3.0.9. The orthogonal complement TX of NS(X) inside H2(X;Z) is

called the transcendental lattice of X.

11



3.1 K3 Surface

Definition 3.1.1. A K3 surface X is a compact, simply connected complex 2-

dimensional manifold which has a nowhere vanishing holomorphic 2-form.

In the following chapters, all the K3 surfaces will be algebraic.

Remarks 3.1.2.

(1) Since X is connected, we have H0(X;Z) = Z, by Poincare duality we also

have H4(X;Z) = Z and since X is oriented, H4(X;Z) = Z as well. By again

Poincare duality we have that H0(X,Z) = Z.

(2) Since X is simply connected, by using Remark 3.0.5, we have

H1(X;Z) ∼= H3(X;Z) = 0

(3) Since there is no torsion, H2(X;Z) has only free part:

H2(X;Z) ∼= H2(X;Z) = Zk

for some k ∈ N.

Theorem 3.1.3. For K3 surface X we have that H2(M ;Z) is of rank 22; when

equipped with the cup product pairing, it is isomorphic U⊕3 ⊕ E⊕2
8 .

Proof. For the proof we refer to [6, p.241].

Notation 3.1.4. The lattice U⊕3⊕E⊕2
8 is called the K3-lattice and it is denoted

by Λ.

Remark 3.1.5. The K3-lattice Λ has signature (3, 19) and it is unimodular and

even.

Let ωX be the nowhere vanishing holomorphic 2-form on X and ΛC = Λ⊗ C,

with the extended symmetric C-bilinearity. Choose an isometry ψ : H2(X;Z)→
Λ. Let ψC be the extension of ψ to mC. Then the ψC image of ωX inside ΛC

determines a line, since the geometric genus of X is pg(X) = 1.

12



Definition 3.1.6. Let P(ΛC) be the projectivization of ΛC. Then the equivalence

class [ωX ] ⊆ ΛC representes a line. The point [ωX ] ∈ P(ΛC) is called the period

point of the marked K3 surface (X,ψ).

Fact 3.1.7. The set of all period points is denoted by Ω and we have

Ω = {[ω] ∈ P(ΛC) : (ω, ω) = 0, (ω, ω̄) > 0}

Theorem 3.1.8 (Weak Torelli Theorem). Two K3 surfaces X1, X2 are isomor-

phic if and only if there are markings for them ψ1, ψ2, respectively, such that the

corresponding period points [ωX1 ], [ωX2 ], respectively, are the same.

Proof. For the proof we refer to [6, p.239,240]

Theorem 3.1.9. Let X be a K3 surface, we have the following:

• Pic(X) ∼= NS(X)

• NS(X) is a sublattice of Λ.

• The signature of NS(X) is given by (1, ρ(X)− 1).

Proof. For the proof we refer to [6].

Corollary 3.1.10. Since the transcendental lattice TX of K3 Surface X is the

orthogonal complement of the Neron-Severi group of X inside Λ, we can say that

it’s signature is given by (3− 1, 19− (ρ(X)− 1)) = (2, 20− ρ(X)) and it is even.
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3.2 Enriques Surface

Definition 3.2.1. A smooth projective surface Y with irregularity q(Y ) = 0 and

KY 6= 0 but 2KY = 0 is called an Enriques surface, where KY is the canonical

divisor of Y and q(Y ) = h0,1 = H1(Y ;OY ).

Theorem 3.2.2. Let Y be an Enriques surface. Then we have the followings:

• π1(Y ) ∼= Z2.

• Pic(Y ) ∼= NS(Y ) ∼= H2(Y,Z) ∼= Z10 ⊕ Z2

• The torsion free part H2(Y,Z)f of H2(Y,Z) is isomorphic the lattice U⊕E8

when equipped with the intersection form.

Proof. For the proof we refer to [6, p.270].

Remark 3.2.3. H2(Y,Z)f has signature (1,9).

Theorem 3.2.4. Let ι be an involution that is fixed point free on a K3 surface

X. Then the quotient X/ι gives an Enriques surface.

Proof. For the proof we will refer to [6]

Remark 3.2.5. Actually all the Enriques surfaces are universal double covers of

some K3 surface.

Let {u(1)
1 , u

(1)
2 , u

(2)
1 , u

(2)
2 , u

(3)
1 , u

(3)
2 , e

(1)
1 , e

(1)
2 , . . . , e

(1)
8 , e

(2)
1 , e

(2)
2 , . . . , e

(2)
8 } be a ba-

sis for Λ where u
(i)
1 , u

(i)
2 ’s are the standard basis for U fo i = 1, 2, 3 and
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e
(j)
1 , e

(j)
2 , . . . , e

(j)
8 are the standard basis for E8 for j = 1, 2. Define an involu-

tion θ : Λ→ Λ by

θ(u
(1)
1 ) = −u(1)

1 θ(u
(1)
2 ) = −u(1)

2

θ(u
(2)
1 ) = u

(3)
1 θ(u

(2)
2 ) = u

(3)
2

θ(u
(3)
1 ) = u

(2)
1 θ(u

(3)
2 ) = u

(2)
2

θ(e
(1)
1 ) = e

(2)
1 θ(e

(2)
1 ) = e

(1)
1

θ(e
(1)
2 ) = e

(2)
2 θ(e

(2)
2 ) = e

(1)
2

...
...

θ(e
(1)
8 ) = e

(2)
8 θ(e

(2)
8 ) = e

(1)
8

We denote the θ-invariant sublattice of Λ to be Λ+, which is isomorphic to U(2)⊕
E8(2) and the θ-anti-invariant sublattice of Λ to be Λ− which is isomorphic U ⊕
U(2)⊕ E8(2). Both are primitive sublattices of Λ and we have (Λ+)⊥ = Λ−.

Remark 3.2.6. If P : X → Y is a covering projection from a K3 surface X to

an Enriques surface Y , then we have,

Pic(X) ⊇ P∗(Pic(Y )) ∼= Λ−.

Thus, we have ρ(X) ≥ 10 since NS(Y ) ∼= Pic(Y ) has a free part of rank 10 and

Pic(X) ∼= NS(X).

Lemma 3.2.7 ([7]). Let X be the K3 cover of an Enriques surface Y . Let

ι : X → X be the involution such that X/ι ∼= Y . Then ∃ ψ : Λ→ Λ an isometry

such that the following diagram

H2(X;Z) H2(X;Z)

Λ Λ

ι∗

ψ ψ

θ

commutes. In particular the ψ induces an isomorphism ψ̄ : P∗(Pic(Y ) → Λ+

where P is the covering projection. Also, ψ is unique up to

Γ = {γ ∈ O(Λ) : γ ◦ ψ = ψ ◦ γ}

where O(Λ) denotes the self isometries on Λ.
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Definition 3.2.8. A pair (Y, ψ) where Y is an Enriques surface and ψ is an

isometry as in Lemma 3.2.7. Since we have that ι∗ωX = −ωX , the period point

[ωX ] of the marked K3 surface (X,ψ) is called the period point of (Y, ψ) and is

contained in

Ω− =
{

[ω] ∈ P(Λ−C) : (ω, ω) = 0, (ω, ω̄) > 0
}

where Λ−C = Λ− ⊗ C.

Now see that the assignment of an Enriques Surface Y to [ωX ] ∈ Ω−/Γ− where

Γ− = {γ|Λ− : γ ∈ Γ} is well defined, because by taking the quotient we are

putting all the different possible isometries into the same equivalence class. The

assignment is actually called the period map for Enriques Surfaces and is known

to be injective by [7], [8]. Also the following theorem is due to [7], [8] and [6] is

about the conditions which the assignment is surjective.

Theorem 3.2.9. Let

Ω−0 = {[ω] ∈ Ω− :< ω, δ >6= 0,∀δ ∈ Λ− with (δ, δ) = 2}

D0 = Ω−0 /Γ
−.

Then, every point of D0 is the period point of an Enriques Surface, thus making

any point on Ω−0 is the period point of some marked K3 surface.
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3.3 Criterion for Which K3 Surfaces Doubly

Cover an Enriques Surface

After finding out that all the Enriques surfaces are doubly covered by a K3

surface, it is only natural to ask whether the converse is true, that is whether

all K3 surfaces doubly cover an Enriques Surfaces. Unfortunately, that is not

the case. In his article [1], Keum gives a criterion for which K3 surfaces doubly

cover an Enriques Surface. In tis section we will closely follow his proof for the

criterion.

Theorem 3.3.1 (Keum’s Criterion [1]). Let X be an algebraic K3 surface over C.

Assume that `(TX)+2 ≤ ρ(X), where `(TX) is the minimal number of generators

of TX . Then, the followings are equivalent:

(1) X admits a fixed point free involution.

(2) There exists a primitive embedding of TX into Λ− such that Im(TX)⊥ doesn’t

contain any vector of self intersection -2, where Λ− = U ⊕ U(2)⊕ E8(2).

Corollary 3.3.2. Using the fact that `(TX) + 2 ≤ ρ(X) is true when ρ(X) ≥ 12

and by Theorem 3.2.4, we can say that when ρ(X) ≥ 12,the theorem becomes a

K3 surface X doubly covers an Enriques surface if and only if (1) is satisfied.

We will prove the theorem when ρ(X) ≥ 12.

Proof. Let X be an algebraic K3 surface over C. Assume that X admits a fixed

point free involution. Then we know by Theorem 3.2.4 that there is a fixed point

free involution ι : X → X such that X/ι corresponds to an Enriques Surface

Y . Let P : X → Y be the covering projection. Then by using the commutative

diagram in Lemma 3.2.7, we have that ψ(Pic(X)) ⊇ ψ(P(Pic(Y ))) = Λ+. Since

TX ⊥ NS(X) = Pic(X), we have that ψ(TX) ⊆ Λ−. ψ|TX is primitive since TX

is primitive and ψ is an isometry, thus preserves the primitivity. Now assume

on the contrary that ψ(TX)⊥ has a vector ϑ such that < ϑ, ϑ >= −2. Then

the class d = ψ−1(ϑ) belongs to Pic(X). Using Riemann-Roch, we have that

h0(OX(d)) + h0(OX(−d)) =
1

2
< d, d > +2 + h0(OX(−d)) = 1 + h1(OX(−d)),

thus either d, or −d is effective but an effective class cannot be ι∗-anti-invariant,
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this contradicts the fact that such a ϑ do exists. Now for the converse, now

assume that there exists a primitive embedding ψ : TX ↪→ Λ−. ψ can easily be

extend to an isometry ψ̃ on Λ. Now the period point [ωX ] ∈ Ω−0 and thus by

Theorem 3.2.9 we have that [ωX ] is a period point for the marked K3 surface

(X, ψ̃). So, such K3 surface doubly covers an Enriques surfaces hence admits a

fixed point free involution.

For the next chapter, we will use this theorem to determine which K3 surfaces

of Picard rank 19 and 18 doubly cover an Enriques Surface.
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Chapter 4

Which K3 Surfaces Doubly

Covers an Enriques Surface

4.1 The Case When Picard Number of the K3

Surface is 20

This case has been handled by Sertoz in his paper [2]. Sertoz did realize that the

problem can be solved by using the parity argument. Sertoz fully characterized

which K3 surfaces doubly cover an Enriques surface with the help of quadratic

forms. His techniques were followed by Lee in his paper [12], and he solved nearly

all of the possible cases and only a small portion of the problem was left open.

In this chapter, we will mainly focus on the case when Picard number is 19 and

18. We will offer a better way of attacking the problem in terms of equivalences

of parities of entries.
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4.2 The Case When Picard Number of the K3

Surface is 19

4.2.1 Transcendental Lattice of a K3 Surface of Picard

Number 19

Let X be a K3 surface with ρ(X) = 19. Then the transcendental lattice of X,

denoted by TX is given by

TX =


2a d e

d 2b f

e f 2c

 (4.1)

where a, b, c, d, e, f are integers and TX has signature (2, 1). Here, observe that the

matrix TX can have 64 different form regarding to the parities of a, b, c, d, e, f .

By changing the basis of the lattice, we can reach to some other parities of

a, b, c, d, e, f . Remember the change of basis can be given by:

BtTXB

where B is a 3 by 3 integral matrix whose determinant is ±1. So by using an

appropriate change of basis matrix, we can easily change the parity of a given

transcendental lattice. However, this is not an easy task and we certainly may

not change every given transcendental lattice to any given parity.

A quick look at the matrix B will tell us that there are 29 = 512 different

possibilities for the parity of its entries but we should also force the fact that

any given B has to have determinant ±1. A quick computer search in the set

{M ∈ Mat3x3({0, 1}) will give us 168 different matrices whose determinant is odd

and have different parities of entries. Luckily all of these 168 matrices having

different parities have determinants ±1 (For further information on those ma-

trices refer to Appendix A). So, now all is left to check how these 168 matrices

can change the parities of the entries of a given transcendental lattice. With

further computer assistance we were able to find 5 equivalent classes of parities

of transcendental lattices under the action of change of basis:
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Theorem 4.2.1. Let L be the set of all even lattices of rank 3. Let L =
2a d e

d 2b f

e f 2c

 ∈ L. Then, the set consisting of lattices having different pari-

ties of a, b, c, d, e, f under the action of change basis has 5 Z-equivalence classes.

These equivalence classes have number of elements 1, 7, 7, 21, 28 among 26 = 64

different.

We will reconstruct some of Lee’s work [12] and follow his steps. Then, we will

take a different turn and reduce the number of cases regarding parities. Let X

be a K3 surface whose transcendental lattice TX ids given by
2a d e

d 2b f

e f 2c


and has a basis {x, y, z} and c < 0. Let {u1, u2} be a basis for U , {v1, v2} be a

basis for U(2). We will now prove a lemma that c can be made negative.

Lemma 4.2.2. Any matrix M of signature (2, 1) with entries


2a d e

d 2b f

e f 2c

 can

be made into


2a′ d′ e′

d′ 2b′ f ′

e′ f ′ 2c′

 where c′ < 0 by using change of basis.

Proof. If c < 0, we are done. If not, let {x, y, z} be a basis for the given matrix.

If a < 0 we use the change of basis
0 0 1

0 1 0

1 0 0


and we will get the new matrix 

2c f e

f 2b d

e d 2a

 .
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If b < 0 we use the change of basis with
1 0 0

0 0 1

0 1 0


and we get the new matrix 

2a e d

e 2c f

d f 2b

 .

If a, b, c ≥ 0 then take m ∈ M such that m · m < 0. Such element is possible

because of the signature. So m = αx + βy + γz. Let θ = gcd(α, β, γ). See that

m′ =
α

θ
x+

β

θ
y+

γ

θ
z is a primitive element in M , thus m′ can be extended to be a

basis for M [5]. Let {k, l,m′} be the new basis for M . Now we will have Gramm

Matrix of the lattice M
< k, k > < k, l > < k,m′ >

< k, l > < l, l > < l,m′ >

< k,m′ > < l,m′ > < m′,m′ >


where < ·, · > is the symmetric bilinear form on M , hence making c′ < 0.

Lemma 4.2.3. Any matrix M of signature (2, 1) with entries


2a d e

d 2b f

e f 2c


where c < 0 can be made into


2a′ d′ e′

d′ 2b′ f ′

e′ f ′ 2c′

 where b′, c′ < 0 and a′ = a by

using change of basis.

Proof. For the proof we refer to [12].

Lemma 4.2.4. Any matrix M of signature (2, 1) with entries


2a d e

d 2b f

e f 2c


where b, c < 0 can be made into


2a′ d′ e′

d′ 2b′ f ′

e′ f ′ 2c′

 where a′, b′, c′ < 0 by using

change of basis.
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Proof. For the proof we refer to [12].

4.2.2 Which K3 Surfaces Doubly Covers an Enriques Sur-

face

Lemma 4.2.5. Let T =


2a d e

d 2b f

e f 2c

 be a matrix of signature (2,1) with

a, b, c < 0 ad matches to a parity given in the Table 4.2. Then T is Z-equivalent

to a matrix T ′ =


2a′ d′ e′

d′ 2b′ f ′

e′ f ′ 2c′

 where a′, b′, c′, d′, e′ are even and f ′ is odd.

Moreover, c < 0.

Proof. All the necessary transformations are explicitly given in Appendix B.

a b c d e f

Even Even Even Even Even Even

Table 4.1: First Z-Equivalence Class

Theorem 4.2.6. Let X be an algebraic K3 surface over C. Let

TX =


2a d e

d 2b f

e f 2c


be the transcendental lattice of X. If a, b, c, d, e are even, and c < 0 then such a

K3 surface can doubly cover an Enriques Surface.
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Proof. Consider the following mapping from TX to U ⊕ U(2)⊕ E8(2).

ϕ(x) =
a

2
v1 + v2 (4.2)

ϕ(y) = bu1 + u2 +
d

2
v1 (4.3)

ϕ(z) = fu1 + +
e

2
v1 + ω (4.4)

where ω ∈ E8(2) is primitive(this is ensured by [3]) and ω2 = 2c First check that

it is indeed an embedding;

ϕ(x) · ϕ(x) = 2
a

2
v1v2 = 2a (4.5)

ϕ(y) · ϕ(y) = 2bu1u2 = 2b (4.6)

ϕ(z) · ϕ(z) = ω2 = 2c (4.7)

ϕ(x) · ϕ(y) =
d

2
v1v2 = d (4.8)

ϕ(x) · ϕ(z) =
e

2
v1v2 = e (4.9)

ϕ(y) · ϕ(z) = fu1u2 = f (4.10)

So we verified that ϕ is an embedding into U ⊕ U(2) ⊕ E8(2). Now we need to

prove the primitiveness of the embedding. Observe that the matrix representation

of the embedding is 

0 b f

0 1 0

a/2 d/2 e/2

1 0 0

0 0 ω1

...
...

...

0 0 ω8


where ω =

∑8
i=1 ωiei and {e1, . . . , e8} is a basis for E8(2). Primitiveness of ω

implies that gcd(ω1, . . . , ω8) = 1. See also that the maximal minors consisting

of the second, forth and another row from fifth to twelfth row is det

∣∣∣∣∣∣∣∣
0 1 0

1 0 0

0 0 ωi

∣∣∣∣∣∣∣∣
= −ωi, forcing the gcd of the maximal minors to be 1. Thus, the embedding

is primitive by Theorem 2.0.14. Now using Keum’s criterion we should look
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for (-2)-self intersection vector in the orthogonal complement of the image. Let

θ = θ1u1 + θ2u2 + θ3v1 + θ4v2 + ω′ ∈ ϕ(TX)⊥ ⊆ U ⊕ U(2) ⊕ E8(2). Since

θ is in orthogonal to the image of ϕ, we must have ϕ(y) · θ = 0. That is,

(bu1 + u2 + dv1) · (θ1u1 + θ2u2 + θ3v1 + θ4v2 + ω′) = bθ2 + θ1 + 2dθ4 = 0. Which

implies that bθ2 + θ1 is even, hence, θ1 is even since b is even. Thus, θ2 =

2θ1θ2 + 4θ3θ4 + (ω′)2 is divisible by 4, since θ1 is even, and (ω′)2 is divisible by 4.

Hence for any such θ it can not have square equals −2. So, by Keum’s criterion,

we can conclude that such K3 surface doubly covers an Enriques surface.

Theorem 4.2.7. A K3 surface whose transcendental lattice has parities matching

any of the parities given in the Table 4.1 doubly covers an Enriques Surface.

Proof. There is only one parity in the Table 4.1, and it is a, b, c, d, e, f are even.

So if c < 0, then we are done. If not, we apply the Lemma 4.2.2 and we will

still have the same parities but we will have a new c which will be negative.

Then by Theorem 4.2.6, we say that such a K3 surface doubly covers an Enriques

surface.

Theorem 4.2.8. A K3 surface whose transcendental lattice has parities matching

any of the parities given in the Table 4.2 doubly covers an Enriques Surface.

Proof.

• Case:1 a, b, c < 0

Let

TX =


2a d e

d 2b f

e f 2c


with a, b, c < 0. Then, by using Lemma 4.2.5, we have that TX can be

transformed into

T ′X =


2a′ d′ e′

d′ 2b′ f ′

e′ f ′ 2c′


where a′, b′, c′, d′, e′ are even, f ′ is odd and c < 0. So by Theorem 4.2.6 we

are done.
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• Case:2 At least one of a, b, c is greater than or equal to 0

(i) If c ≥ 0, apply Lemmas 4.2.2, 4.2.3, 4.2.4 consecutively.

(ii) If c < 0 and b ≥, apply Lemmas 4.2.3, 4.2.4 consecutively.

(iii) If c, b < 0 and a ≥, apply Lemma 4.2.4.

In each (i), (ii), (iii) we will end up with a matrix

T ′′X =


2a′′ d′′ e′′

d′′ 2b′′ f ′′

e′′ f ′′ 2c′′


where a′′, b′′, c′′ < 0. Thus, reducing the problem to Case 1.
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a b c d e f

Even Even Even Even Even Odd

Even Even Even Even Odd Even

Even Even Even Even Odd Odd

Even Even Even Odd Even Even

Even Even Even Odd Even Odd

Even Even Even Odd Odd Even

Even Even Odd Even Even Odd

Even Even Odd Even Odd Even

Even Even Odd Even Odd Odd

Even Even Odd Odd Odd Odd

Even Odd Even Even Even Odd

Even Odd Even Odd Even Even

Even Odd Even Odd Even Odd

Even Odd Even Odd Odd Odd

Even Odd Odd Odd Odd Even

Odd Even Even Even Odd Even

Odd Even Even Odd Even Even

Odd Even Even Odd Odd Even

Odd Even Even Odd Odd Odd

Odd Even Odd Odd Even Odd

Odd Odd Even Even Odd Odd

Table 4.2: Second Z-Equivalence Class

4.2.3 Which K3 Surfaces Don’t Doubly Cover an Enriques

Surface

Let X be a K3 surfaces with ρ(X) = 19. Here, we want to find for which parities

of a, b, c, d, e, f there will be no embedding of TX into U ⊕ U(2)⊕ E8(2).

Let {x, y, z} be a basis for TX , {u1, u2} be a basis for U , {v1, v2} be a basis
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for U(2) and ω1, ω2, ω3 ∈ E8(2). To show that, assume on the contrary that

ϕ : TX → U ⊕ U(2)⊕ E8(2) is an embedding given by

ϕ(x) = a1u1 + a2u2 + a3v1 + a4v2 + w1 (4.11)

ϕ(y) = b1u1 + b2u2 + b3v1 + b4v2 + w2 (4.12)

ϕ(z) = c1u1 + c2u2 + c3v1 + c4v2 + w3 (4.13)

where ai’s, bi’s and ci’s are integers and ω1, ω2, ω3 ∈ E8(2). Since ϕ is an embed-

ding we must have the followings;

ϕ(x) · ϕ(x) = 2a1a2 + 4a3a4 + w2
1 = 2a (4.14)

ϕ(y) · ϕ(y) = 2b1b2 + 4b3b4 + w2
2 = 2b (4.15)

ϕ(z) · ϕ(z) = 2c1c2 + 4c3c4 + w2
3 = 2c (4.16)

ϕ(x) · ϕ(y) = a1b2 + a2b1 + 2a3b4 + 2a4b3 + w1w2 = d (4.17)

ϕ(x) · ϕ(z) = a1c2 + a2c1 + 2a3c4 + 2a4c3 + w1w3 = e (4.18)

ϕ(y) · ϕ(z) = b1c2 + b2c1 + 2b3c4 + 2b4c3 + w2w3 = f (4.19)

Theorem 4.2.9. For any algebraic K3 surfaces whose transcendental lattice has

parities matching to any in the Table 4.3 doesn’t cover an Enriques surface.

Proof. We will prove for the case a, b, c is even and d, e, f is odd. The rest in the

Table 4.3 can be transformed into this case by using change of basis. Now assume

a, b, c is even and d, e, f is odd and assume that we have an embedding given us

by the Equations 4.11, 4.12 and 4.13 ,where w1, w2, w3 ∈ E8(2) Now since a, b, c

are even, we must have by Equations 4.14, 4.15, 4.16

2a1a2 + 4a3a4 + w2
1 ≡ 0 mod 4

2b1b2 + 4b3b4 + w2
2 ≡ 0 mod 4

2c1c2 + 4c3c4 + w2
3 ≡ 0 mod 4

So, we have a1a2, b1b2, c1c2 is divisible by two. Without loss of generality say

that a1 is even. Then by using Equation 4.17 and 4.18 we have

a2b1 ≡ 1 mod 2

a2c1 ≡ 1 mod 2
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Thus, we have a2, b1, c1 are odd and that makes c2, b2 even. But this is a contra-

diction since by Equation 4.19, f must be odd but

b1c2 + b2c1 + w2w3 ≡ 0 mod 2

So, there is no such an embedding, hence such a K3 surface cannot doubly cover

an Enriques surface.

Theorem 4.2.10. For any K3 algebraic surfaces whose transcendental lattice has

parities matching to any in the Table 4.4 doesn’t cover an Enriques surface.

Proof. Assume that a, d, e are even and b, c, f are odd. Then by Equation 4.15,

4.16 we have

2b1b2 ≡ 0 mod 4

2c1c2 ≡ 0 mod 4

So, a1a2 is even and b1b2, c1c2 are odd, making b1, b2, c1, c2 odd. Hence, we have

b1c2+b2c1 is even. But we have b1c2+b2c1+w2w3 is odd since f is odd by Equation

4.19. So this is a contradiction, hence, a K3 surface having such parities in its

transcendental lattice doesn’t cover an Enriques surface. The rest of the Table

4.4 can be transformed into the this case by using change of basis. This completes

the proof.
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a b c d e f

Even Even Even Odd Odd Odd

Even Even Odd Odd Even Even

Even Even Odd Odd Even Odd

Even Even Odd Odd Odd Even

Even Odd Even Even Odd Even

Even Odd Even Even Odd Odd

Even Odd Even Odd Odd Even

Even Odd Odd Even Odd Even

Even Odd Odd Even Odd Odd

Even Odd Odd Odd Even Even

Even Odd Odd Odd Even Odd

Even Odd Odd Odd Odd Odd

Odd Even Even Even Even Odd

Odd Even Even Even Odd Odd

Odd Even Even Odd Even Odd

Odd Even Odd Even Even Odd

Odd Even Odd Even Odd Odd

Odd Even Odd Odd Even Even

Odd Even Odd Odd Odd Even

Odd Even Odd Odd Odd Odd

Odd Odd Even Even Even Odd

Odd Odd Even Even Odd Even

Odd Odd Even Odd Even Odd

Odd Odd Even Odd Odd Even

Odd Odd Even Odd Odd Odd

Odd Odd Odd Even Even Odd

Odd Odd Odd Even Odd Even

Odd Odd Odd Odd Even Even

Table 4.3: Third Z-Equivalence Class
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a b c d e f

Even Odd Odd Even Even Odd

Odd Even Odd Even Odd Even

Odd Odd Even Odd Even Even

Odd Odd Odd Even Odd Odd

Odd Odd Odd Odd Even Odd

Odd Odd Odd Odd Odd Even

Odd Odd Odd Odd Odd Odd

Table 4.4: Fourth Z-Equivalance Class

a b c d e f

Even Even Odd Even Even Even

Even Odd Even Even Even Even

Even Odd Odd Even Even Even

Odd Even Even Even Even Even

Odd Even Odd Even Even Even

Odd Odd Even Even Even Even

Odd Odd Odd Even Even Even

Table 4.5: Fifth Z-Equivalence Class

For the remaining case there is not a solution at the moment. Lee hasn’t found

any solution regarding the cases but only showed that all them are equal [12]. We

will give a family of transcendental lattices that will correspond to K3 surfaces

that can doubly cover an Enriques surface. The next theorem does show that

there are some family of cases whose transcendental lattice has parity matches to

one in the Table 4.5.
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4.2.4 Missing Cases

Theorem 4.2.11. Let X be a K3 surface of Picard number 19 and whose tran-

scendental lattice TX is of the form TX =


2a a+ 2 e

a+ 2 2b e

e e 2c

 where a, c, e are

even, b is odd and c < 0, b > a ≥ 4, e is nonzero. Then, X doubly covers an

Enriques Surface.

Proof. Let U be the even unimodular lattice whose signature is (1,1) and E8 be

the even unimodular lattice whose signature is (0,8) and {x, y, z} be a basis for

TX , {u1, u2}, {v1, v2} be the standard basis of U and U(2), respectively. Define

the map ϕ : TX → U ⊕ U(2)⊕ E8(2) by

ϕ(x) = v1 +
a

2
v2

ϕ(y) = (b− 2)u1 + u2 + v1 + v2

ϕ(z) =
e

2
v2 + ω

where ω2 = 2c and ω is a primitive element in E8(2). Existence of such primitive

element is ensured by the corollary 1.12.3 in Nikulin’s paper [3]. Now, firstly we

will show that this is an embedding, then show that it is a primitive embedding.

See that,

ϕ(x)ϕ(x) = 2 · a
2
v1v2 = 2a

ϕ(y)ϕ(y) = 2(b− 2)u1u2 + 2v1v2 = 2b− 4 + 4 = 2b

ϕ(z)ϕ(z) = ω2 = 2c

ϕ(x)ϕ(y) = v1v2 +
a

2
v1v2 = 2 + a

ϕ(x)ϕ(z) =
e

2
v1v2 = e

ϕ(y)ϕ(z) =
e

2
v1v2 = e

Hence, showing that ϕ is an embedding. Now, see that the embedding matrix of
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ϕ is of the form 

0 b− 2 0

0 1 0

1 1 0

a/2 1 e/2

0 0 ω1

...
...

...

0 0 ω8


where ω =

∑8
i=1 ωiei and {e1, . . . , e8} is a basis for E8(2). Primitiveness of ω

implies that gcd(ω1, . . . , ω8) = 1. See also that the maximal minors consisting of

the second, third and another row from fifth to twelfth row is det

∣∣∣∣∣∣∣∣
0 1 0

1 1 0

0 0 ωi

∣∣∣∣∣∣∣∣=−ωi,

forcing the greatest common divisors of the maximal minors of the embedding

matrix to be 1. Hence, using the Theorem 2.0.14 [2], we can say that ϕ is a

primitive embedding. Now take any element s = x1u1 +x2u2 +x3v1 +x4v2 +ω′ ∈
ϕ(TX)⊥ ⊂ U ⊕ U(2)⊕ E8(2) where ω′ ∈ E8(2), we have the following equations:

s · ϕ(x) = 2x4 + ax3 = 0 (4.20)

s · ϕ(y) = (b− 2)x2 + x1 + 2x3 + 2x4 = 0 (4.21)

s · ϕ(z) = ex3 + ω · ω′ = 0 (4.22)

Now, assume that ω · ω′ = 0. Then, we have, x3 = 0 (since e is nonzero),

x4 = 0,x1 = (2− b)x2. So, s2 = 2x1x2 + 4x3x4 + (ω′)2 = 2(2− b)x2
2 + (ω′)2 < −2

since b > 4 by assumption and (ω′)2 = −4n for non-negative integer n.

Now, let ω · ω′ 6= 0. By equation 4.22 have x3 =
−ω · ω′

e
, since x3 ∈ Z we must

have e | −ω · ω′, thus ω · ω′ = ek for some nonzero integer k. So, x3 = −k.

Putting this in Equation 4.20 we get 2x4 = ak, x4 =
ak

2
∈ Z since a is even by

the assumption. Continuing with Equation 4.21 and putting all the info we have

we get (b− 2)x2 + x1 + ak − 2k = 0, hence; x1 = (2− b)x2 + k(2− a).

Define m := (2− b) and n := k(2− a). See that m < 0 since b > a ≥ 4 and n > 0

if k < 0 and n < 0 if k > 0. So we have the following graphs that explains the

relation between x1 and x2.
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x2

x1

for k < 0

− n
m

n

Figure 4.2.1: k < 0

x2

x1

for k > 0

− n
m

n

Figure 4.2.2: k > 0

Now, we will show that for both cases s2 < −2. First, assume that k < 0.

See that n ≥ 2 because a ≥ 4 and k < 0. If x1 ≥ n we have x2 ≤ 0. So,

s2 = 2x1x2 + 4x3x4 + (ω′)2 < −2 because s2 ≤ 4x2− 2ak2 + (ω′)2 < −2 since a is

even and is greater than 4, k is nonzero and x2 ≤ 0. Similarly, if x2 ≥ −
n

m
we have

x1 ≤ 0. So s2 < −2 since −2ak2 ≤ −8, 2x1x2 ≤ 0 and (ω′)2 ≤ 0. Now, consider

only the points (x2, x1) on the first quadrant and on the line in Figure 4.2.1, see

that 2x1x2 ≤ −
2n2

m
. So s2 = 2x1x2 + 4x3x4 + (ω′)2 ≤ −2n2

m
− 2ak2 + (ω′)2 ≤
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−2n2

m
− 2ak2 since (ω′)2 ≤ 0. Now putting m = (2 − b) and n = k(2 − a)

in the inequality, we have s2 ≤ 2k2(a− 2)2

b− 2
− 2ak2 ≤ 2k2(a− 2)2

a− 2
− 2ak2 =

2ak2 − 4k2 − 2ak2 = −4k2 ≤ −4. Now we showed that s2 < −2 if k < 0.

Assume that k > 0, we will have the graph in Figure 4.2.2. Observe that we have

the same inequality for the points (x2, x1) are on the third quadrant as in the

above case when the points (x2, x1) are on the first quadrant(the sign of k doesn’t

change anything because we have k2 in both cases.). Again using a symmetric

argument as above it can be shown that s2 < −2 for the rest as well. Hence,

by using Keum’s Criterion [1] we have that such K3 surfaces doubly covers an

Enriques surface.
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4.3 The Case When Picard Number of the K3

Surface is 18

4.3.1 Transcendental Lattice of a K3 Surface of Picard

Number 18

Let X be a K3 surface with ρ(X) = 19. Then the transcendental lattice of X,

denoted by TX is given by

TX =


2a e f g

e 2b h i

f h 2c j

g i j 2d

 (4.23)

where a, b, c, d, e, f, g, h, i, j are integers and TX has signature (2, 2). Here, again

observe that the matrix TX can have 1024 different form regarding to the parities

of a, b, c, d, e, f, g, h, i, j. By changing the basis of the lattice, we can reach to some

other parities of a, b, c, d, e, f, g, h, i, j. Running the similar computer search for

this case as we did with the case 19, we find 7 Z-Equivalence Classes:

Theorem 4.3.1. Let L be the set of all even lattices of rank 4. Let L =
2a e f g

e 2b h i

f h 2c j

g i j 2d

 ∈ L. Then, the set consisting of lattices having dif-

ferent parities of a, b, c, d, e, f, g, h, i under the action of change basis has 7

Z-equivalence classes. These equivalence classes have number of elements

1, 15, 35, 105, 168, 280, 420 among 210 = 1024 different.

Lemma 4.3.2. Any integral matrix
2a e f g

e 2b h i

f h 2c j

g i j 2d
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can be made into 
2a′ e 0 0

e′ 2b′ h′ 0

0 h′ 2c′ j′

0 0 j′ 2d′


by using change of basis.

Proof. We refer to [13] for the proof.

Remark 4.3.3. This is actually quite a known result in quadratic forms for

centuries.

It becomes harder to solve the problem as the Picard number gets lower,

because the variables in the transcendental lattice grows exponentially. Here we

will only show the Z-equivalence classes that do not cover an Enriques surface.

4.3.2 Which K3 Surfaces of Picard Number 18 Do Not

Cover an Enriques Surface

Theorem 4.3.4. Any algebraic K3 surface of Picard number 18 whose transcen-

dental lattice

TX =


2a e f g

e 2b h i

f h 2c j

g i j 2d


has parities matching to any of the paritiy in Z-equivalence class having b, c, d are

even and h, i, j are odd do not cover an Enriques surface.

Remark 4.3.5. The Z-equivalence class having a, b, c, d, e, f, g are even, h, i, j

are odd has 420 different parities in the class and the Z-equivalence class having

a, b, c, d, e, f are even, g, h, i, j are odd has 280 different parities in the class and

the Z-equivalence class having a, b, c, d are even, e, f, g, h, i, j are odd has 168

different parities in the class Thus, this theorem singlehandedly solves 868 cases.
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Proof. Let X be a K3 surface of Picard number 18 whose transcendental lattice

TX =


2a e f g

e 2b h i

f h 2c j

g i j 2d

 and TX has basis x, y, z, t. Assume on the contrary that

there exist an embedding ϕ : TX ↪→ U ⊕ U(2)⊕ E8(2) given by

ϕ(x) = a1u1 + a2u2 + a3v1 + a4v2 + w1 (4.24)

ϕ(y) = b1u1 + b2u2 + b3v1 + b4v2 + w2 (4.25)

ϕ(z) = c1u1 + c2u2 + c3v1 + c4v2 + w3 (4.26)

ϕ(t) = d1u1 + d2u2 + d3v1 + d4v2 + w4 (4.27)

Since by assumption ϕ is an embedding, we have the followings

ϕ(x) · ϕ(x) = 2a1a2 + 4a3a4 + w2
1 = 2a (4.28)

ϕ(y) · ϕ(y) = 2b1b2 + 4b3b4 + w2
2 = 2b (4.29)

ϕ(z) · ϕ(z) = 2c1c2 + 4c3c4 + w2
3 = 2c (4.30)

ϕ(t) · ϕ(t) = 2d1d2 + 4d3d4 + w2
4 = 2d (4.31)

ϕ(x) · ϕ(y) = a1b2 + a2b1 + 2a3b4 + 2a4b3 + w1w2 = e (4.32)

ϕ(x) · ϕ(z) = a1c2 + a2c1 + 2a3c4 + 2a4c3 + w1w3 = f (4.33)

ϕ(x) · ϕ(t) = a1d2 + a2d1 + 2a3d4 + 2a4d3 + w1w4 = g (4.34)

ϕ(y) · ϕ(z) = b1c2 + b2c1 + 2b3c4 + 2b4c3 + w2w3 = h (4.35)

ϕ(y) · ϕ(t) = b1d2 + b2d1 + 2b3d4 + 2b4d3 + w2w4 = i (4.36)

ϕ(z) · ϕ(t) = c1d2 + c2d1 + 2c3d4 + 2c4d3 + w3w4 = j (4.37)

By inspecting Equation 4.29 we have that b1 or b2, by Equation 4.30 c1 or c2,

by Equation 4.31 d1 or d2 are even. Assume that b1 is even(for the second case

follows in parentheses b2 is even). Then by Equation 4.35 we have that b2, c1 are

odd (b1, c2 are odd) since h is odd. Thus making c2 even (c1 even). By Equation

4.37 d2 is odd (d1 is odd) since j is odd, making d1 even (d2 is even). But now we

have b1d2 + b2d1 is even in both cases, which contradicts the fact that i is even

by Equation 4.36. Thus, such embedding do not exists.
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Theorem 4.3.6. Any algebraic K3 surface of Picard number 18 whose transcen-

dental lattice

TX =


2a e f g

e 2b h i

f h 2c j

g i j 2d


has parities matching to any of the parity in Z-equivalence class having a, b, e are

odd do not cover an Enriques surface.

Remark 4.3.7. This Z-equivalence class has 35 different parities.

Proof. By observing Equation 4.28 and 4.29, we have that a1, a2, b1, b2 are all

odd, thus making the sum a1b2 + a2b1 even. But this contradicts the fact that e

is odd, hence such an embedding is not possible.

After showing the ones that doesn’t have any embedding we have left with the

Z-equivalence classes with 1,15,105 elements. Sonel partially solved some parts

of the remaining cases in his thesis [14]. For those cases we will not offer any new

solutions. Curious readers can have a look at Sonel’s thesis.

4.3.3 Closing Discussion

The problem can be reduced by using computer search on possible Z-Equivalence

classes as we did in the two cases. This drastically reduces the time to spend

on proving the cases as it grows exponentially without reducing them. It stays

linear -at least by the observation we made with cases 20,19,18- and gives better

possibilities for solving it for the other cases.
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Appendix A

Change of Basis Transformation

Matrices

Here is the list of change of basis matrices used in Chapter 4:

T1 =


0 0 1

0 1 0

1 0 0

 T2 =


1 0 1

0 1 0

1 0 0

 T3 =


0 1 1

0 1 0

1 0 0

 T4 =


1 1 1

0 1 0

1 0 0



T5 =


0 0 1

1 1 0

1 0 0

 T6 =


1 0 1

1 1 0

1 0 0

 T7 =


0 1 1

1 1 0

1 0 0

 T8 =


1 1 1

1 1 0

1 0 0



T9 =


0 1 0

0 0 1

1 0 0

 T10 =


1 1 0

0 0 1

1 0 0

 T11 =


0 1 1

0 0 1

1 0 0

 T12 =


1 1 1

0 0 1

1 0 0



T13 =


0 1 0

1 0 1

1 0 0

 T14 =


1 1 0

1 0 1

1 0 0

 T15 =


0 1 1

1 0 1

1 0 0

 T16 =


1 1 1

1 0 1

1 0 0



T17 =


0 1 0

0 1 1

1 0 0

 T18 =


1 1 0

0 1 1

1 0 0

 T19 =


0 0 1

0 1 1

1 0 0

 T20 =


1 0 1

0 1 1

1 0 0
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T21 =


0 1 0

1 1 1

1 0 0

 T22 =


1 1 0

1 1 1

1 0 0

 T23 =


0 0 1

1 1 1

1 0 0

 T24 =


1 0 1

1 1 1

1 0 0



T25 =


0 0 1

1 0 0

0 1 0

 T26 =


1 0 1

1 0 0

0 1 0

 T27 =


0 1 1

1 0 0

0 1 0

 T28 =


1 1 1

1 0 0

0 1 0



T29 =


0 0 1

1 1 0

0 1 0

 T30 =


1 0 1

1 1 0

0 1 0

 T31 =


0 1 1

1 1 0

0 1 0

 T32 =


1 1 1

1 1 0

0 1 0



T33 =


1 0 0

0 0 1

0 1 0

 T34 =


1 1 0

0 0 1

0 1 0

 T35 =


1 0 1

0 0 1

0 1 0

 T36 =


1 1 1

0 0 1

0 1 0



T37 =


1 0 0

1 0 1

0 1 0

 T38 =


1 1 0

1 0 1

0 1 0

 T39 =


0 0 1

1 0 1

0 1 0

 T40 =


0 1 1

1 0 1

0 1 0



T41 =


1 0 0

0 1 1

0 1 0

 T42 =


1 1 0

0 1 1

0 1 0

 T43 =


1 0 1

0 1 1

0 1 0

 T44 =


1 1 1

0 1 1

0 1 0



T45 =


1 0 0

1 1 1

0 1 0

 T46 =


1 1 0

1 1 1

0 1 0

 T47 =


0 0 1

1 1 1

0 1 0

 T48 =


0 1 1

1 1 1

0 1 0



T49 =


0 0 1

1 0 0

1 1 0

 T50 =


1 0 1

1 0 0

1 1 0

 T51 =


0 1 1

1 0 0

1 1 0

 T52 =


1 1 1

1 0 0

1 1 0



T53 =


0 0 1

0 1 0

1 1 0

 T54 =


1 0 1

0 1 0

1 1 0

 T55 =


0 1 1

0 1 0

1 1 0

 T56 =


1 1 1

0 1 0

1 1 0



T57 =


1 0 0

0 0 1

1 1 0

 T58 =


0 1 0

0 0 1

1 1 0

 T59 =


1 0 1

0 0 1

1 1 0

 T60 =


0 1 1

0 0 1

1 1 0
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T61 =


1 0 0

1 0 1

1 1 0

 T62 =


0 1 0

1 0 1

1 1 0

 T63 =


0 0 1

1 0 1

1 1 0

 T64 =


1 1 1

1 0 1

1 1 0



T65 =


1 0 0

0 1 1

1 1 0

 T66 =


0 1 0

0 1 1

1 1 0

 T67 =


0 0 1

0 1 1

1 1 0

 T68 =


1 1 1

0 1 1

1 1 0



T69 =


1 0 0

1 1 1

1 1 0

 T70 =


0 1 0

1 1 1

1 1 0

 T71 =


1 0 1

1 1 1

1 1 0

 T72 =


0 1 1

1 1 1

1 1 0



T73 =


0 1 0

1 0 0

0 0 1

 T74 =


1 1 0

1 0 0

0 0 1

 T75 =


0 1 1

1 0 0

0 0 1

 T76 =


1 1 1

1 0 0

0 0 1



T77 =


1 0 0

0 1 0

0 0 1

 T78 =


1 1 0

0 1 0

0 0 1

 T79 =


1 0 1

0 1 0

0 0 1

 T80 =


1 1 1

0 1 0

0 0 1



T81 =


1 0 0

1 1 0

0 0 1

 T82 =


0 1 0

1 1 0

0 0 1

 T83 =


1 0 1

1 1 0

0 0 1

 T84 =


0 1 1

1 1 0

0 0 1



T85 =


0 1 0

1 0 1

0 0 1

 T86 =


1 1 0

1 0 1

0 0 1

 T87 =


0 1 1

1 0 1

0 0 1

 T88 =


1 1 1

1 0 1

0 0 1



T89 =


1 0 0

0 1 1

0 0 1

 T90 =


1 1 0

0 1 1

0 0 1

 T91 =


1 0 1

0 1 1

0 0 1

 T92 =


1 1 1

0 1 1

0 0 1



T93 =


1 0 0

1 1 1

0 0 1

 T94 =


0 1 0

1 1 1

0 0 1

 T95 =


1 0 1

1 1 1

0 0 1

 T96 =


0 1 1

1 1 1

0 0 1



T97 =


0 1 0

1 0 0

1 0 1

 T98 =


1 1 0

1 0 0

1 0 1

 T99 =


0 1 1

1 0 0

1 0 1

 T100 =


1 1 1

1 0 0

1 0 1
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T101 =


1 0 0

0 1 0

1 0 1

 T102 =


1 1 0

0 1 0

1 0 1

 T103 =


0 0 1

0 1 0

1 0 1

 T104 =


0 1 1

0 1 0

1 0 1



T105 =


1 0 0

1 1 0

1 0 1

 T106 =


0 1 0

1 1 0

1 0 1

 T107 =


0 0 1

1 1 0

1 0 1

 T108 =


1 1 1

1 1 0

1 0 1



T109 =


0 1 0

0 0 1

1 0 1

 T110 =


1 1 0

0 0 1

1 0 1

 T111 =


0 1 1

0 0 1

1 0 1

 T112 =


1 1 1

0 0 1

1 0 1



T113 =


1 0 0

0 1 1

1 0 1

 T114 =


0 1 0

0 1 1

1 0 1

 T115 =


0 0 1

0 1 1

1 0 1

 T116 =


1 1 1

0 1 1

1 0 1



T117 =


1 0 0

1 1 1

1 0 1

 T118 =


1 1 0

1 1 1

1 0 1

 T119 =


0 0 1

1 1 1

1 0 1

 T120 =


0 1 1

1 1 1

1 0 1



T121 =


0 1 0

1 0 0

0 1 1

 T122 =


1 1 0

1 0 0

0 1 1

 T123 =


0 0 1

1 0 0

0 1 1

 T124 =


1 0 1

1 0 0

0 1 1



T125 =


1 0 0

0 1 0

0 1 1

 T126 =


1 1 0

0 1 0

0 1 1

 T127 =


1 0 1

0 1 0

0 1 1

 T128 =


1 1 1

0 1 0

0 1 1



T129 =


1 0 0

1 1 0

0 1 1

 T130 =


0 1 0

1 1 0

0 1 1

 T131 =


0 0 1

1 1 0

0 1 1

 T132 =


1 1 1

1 1 0

0 1 1



T133 =


1 0 0

0 0 1

0 1 1

 T134 =


1 1 0

0 0 1

0 1 1

 T135 =


1 0 1

0 0 1

0 1 1

 T136 =


1 1 1

0 0 1

0 1 1



T137 =


1 0 0

1 0 1

0 1 1

 T138 =


0 1 0

1 0 1

0 1 1

 T139 =


0 0 1

1 0 1

0 1 1

 T140 =


1 1 1

1 0 1

0 1 1
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T141 =


0 1 0

1 1 1

0 1 1

 T142 =


1 1 0

1 1 1

0 1 1

 T143 =


0 0 1

1 1 1

0 1 1

 T144 =


1 0 1

1 1 1

0 1 1



T145 =


0 1 0

1 0 0

1 1 1

 T146 =


1 1 0

1 0 0

1 1 1

 T147 =


0 0 1

1 0 0

1 1 1

 T148 =


1 0 1

1 0 0

1 1 1



T149 =


1 0 0

0 1 0

1 1 1

 T150 =


1 1 0

0 1 0

1 1 1

 T151 =


0 0 1

0 1 0

1 1 1

 T152 =


0 1 1

0 1 0

1 1 1



T153 =


1 0 0

1 1 0

1 1 1

 T154 =


0 1 0

1 1 0

1 1 1

 T155 =


1 0 1

1 1 0

1 1 1

 T156 =


0 1 1

1 1 0

1 1 1



T157 =


1 0 0

0 0 1

1 1 1

 T158 =


0 1 0

0 0 1

1 1 1

 T159 =


1 0 1

0 0 1

1 1 1

 T160 =


0 1 1

0 0 1

1 1 1



T161 =


1 0 0

1 0 1

1 1 1

 T162 =


1 1 0

1 0 1

1 1 1

 T163 =


0 0 1

1 0 1

1 1 1

 T164 =


0 1 1

1 0 1

1 1 1



T165 =


0 1 0

0 1 1

1 1 1

 T166 =


1 1 0

0 1 1

1 1 1

 T167 =


0 0 1

0 1 1

1 1 1

 T168 =


1 0 1

0 1 1

1 1 1



47



Appendix B

Making c Even and Negative

Let TX be given by 
2a d e

d 2b f

e f 2c


where a, b, c are all negative and for any change of basis matrix T with det(T ) =

±1 let T ′X be 
2a′ d′ e′

d′ 2b′ f ′

e′ f ′ 2c′


the matrix after applying change of basis T to TX . In this part we will give the

exact method of how to change the parities given in Table 4.2 to the parities

given in top position of the Table while preserving the negativity of the entry at

(3,3).

• a is even, b is even, c is even, d is odd, e is even, f is even

Using the change of basis T =


0 0 1

0 1 0

1 0 0

, we can transform TX to the

matrix T ′X where a′ = c, b′ = b, c′ = a, d′ = f , e′ = e, f ′ = d.

• a is odd, b is even, c is even, d is odd, e is even, f is even
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Using the change of basis T =


0 1 0

0 1 1

1 0 0

, we can transform TX to the

matrix T ′X where a′ = c, b′ = a + b + d, c′ = b, d′ = e + f , e′ = f ,

f ′ = 2b+ d.

• a is even, b is even, c is even, d is even, e is odd, f is even

Using the change of basis T =


0 0 1

1 0 0

0 1 0

, we can transform TX to the

matrix T ′X where a′ = b, b′ = c, c′ = a, d′ = f , e′ = d, f ′ = e.

• a is odd, b is even, c is even, d is even, e is odd, f is even

Using the change of basis T =


0 1 0

1 0 0

0 1 1

, we can transform TX to the

matrix T ′X where a′ = b, b′ = a+c+e, c′ = c, d′ = d+f , e′ = f , f ′ = 2c+e.

• a is even, b is even, c is even, d is odd, e is odd, f is even

Using the change of basis T =


0 0 1

1 1 0

1 0 0

, we can transform TX to the

matrix T ′X where a′ = b + c + f , b′ = b, c′ = a, d′ = 2b + f , e′ = d + e,

f ′ = d.

• a is odd, b is even, c is even, d is odd, e is odd, f is even

Using the change of basis T =


0 1 0

1 1 1

1 0 0

, we can transform TX to the

matrix T ′X where a′ = b+ c+ f , b′ = a+ b+ d, c′ = b, d′ = 2b+ d+ e+ f ,

e′ = 2b+ f , f ′ = 2b+ d.

• a is even, b is odd, c is even, d is odd, e is even, f is even

Using the change of basis T =


0 1 1

0 1 0

1 0 0

, we can transform TX to the

matrix T ′X where a′ = c, b′ = a + b + d, c′ = a, d′ = e + f , e′ = e,

f ′ = 2a+ d.
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• a is even, b is even, c is even, d is odd, e is even, f is odd

Using the change of basis T =


1 0 1

0 1 0

1 0 0

, we can transform TX to the

matrix T ′X where a′ = a + c + e, b′ = b, c′ = a, d′ = d + f , e′ = 2a + e,

f ′ = d.

• a is even, b is even, c is even, d is even, e is odd, f is odd

Using the change of basis T =


1 0 1

1 0 0

0 1 0

, we can transform TX to the

matrix T ′X where a′ = a + b + d, b′ = c, c′ = a, d′ = e + f , e′ = 2a + d,

f ′ = e.

• a is odd, b is even, c is even, d is odd, e is odd, f is odd

Using the change of basis T =


1 1 0

1 1 1

1 0 0

, we can transform TX to the

matrix T ′X where a′ = a + b + c + d + e + f , b′ = a + b + d, c′ = b,

d′ = 2a+ 2b+ 2d+ e+ f , e′ = 2b+ d+ f , f ′ = 2b+ d.

• a is even, b is odd, c is even, d is even, e is even, f is odd

Using the change of basis T =


1 0 0

0 1 0

0 1 1

, we can transform TX to the

matrix T ′X where a′ = a, b′ = b+c+f , c′ = c, d′ = d+e, e′ = e, f ′ = 2c+f .

• a is even, b is odd, c is even, d is odd, e is even, f is odd

Using the change of basis T =


1 1 1

0 1 0

1 0 0

, we can transform TX to the

matrix T ′X where a′ = a+ c+ e, b′ = a+ b+ d, c′ = a, d′ = 2a+ d+ e+ f ,

e′ = 2a+ e, f ′ = 2a+ d.

• a is odd, b is odd, c is even, d is even, e is odd, f is odd

Using the change of basis T =


1 1 0

1 0 0

0 1 1

, we can transform TX to the

50



matrix T ′X where a′ = a+ b+ d, b′ = a+ c+ e, c′ = c, d′ = 2a+ d+ e+ f ,

e′ = e+ f , f ′ = 2c+ e.

• a is even, b is odd, c is even, d is odd, e is odd, f is odd

Using the change of basis T =


1 1 1

1 1 0

1 0 0

, we can transform TX to the

matrix T ′X where a′ = a + b + c + d + e + f , b′ = a + b + d, c′ = a,

d′ = 2a+ 2b+ 2d+ e+ f , e′ = 2a+ d+ e, f ′ = 2a+ d.

• a is even, b is even, c is odd, d is even, e is odd, f is even

Using the change of basis T =


0 1 1

1 0 0

0 1 0

, we can transform TX to the

matrix T ′X where a′ = b, b′ = a + c + e, c′ = a, d′ = d + f , e′ = d,

f ′ = 2a+ e.

• a is even, b is odd, c is odd, d is odd, e is odd, f is even

Using the change of basis T =


0 1 1

1 1 0

1 0 0

, we can transform TX to the

matrix T ′X where a′ = b+ c+ f , b′ = a+ b+ d, c′ = a, d′ = 2b+ d+ e+ f ,

e′ = d+ e, f ′ = 2a+ d.

• a is even, b is even, c is odd, d is even, e is even, f is odd

Using the change of basis T =


1 0 0

0 1 1

0 1 0

, we can transform TX to the

matrix T ′X where a′ = a, b′ = b + c + f , c′ = b, d′ = d + e, e′ = d,

f ′ = 2b+ f .

• a is odd, b is even, c is odd, d is odd, e is even, f is odd

Using the change of basis T =


1 1 0

0 1 1

1 0 0

, we can transform TX to the

matrix T ′X where a′ = a+ c+ e, b′ = a+ b+ d, c′ = b, d′ = 2a+ d+ e+ f ,

e′ = d+ f , f ′ = 2b+ d.
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• a is even, b is even, c is odd, d is even, e is odd, f is odd

Using the change of basis T =


1 1 1

1 0 0

0 1 0

, we can transform TX to the

matrix T ′X where a′ = a+ b+ d, b′ = a+ c+ e, c′ = a, d′ = 2a+ d+ e+ f ,

e′ = 2a+ d, f ′ = 2a+ e.

• a is even, b is even, c is odd, d is odd, e is odd, f is odd

Using the change of basis T =


1 0 1

1 1 0

1 0 0

, we can transform TX to the

matrix T ′X where a′ = a+ b+ c+ d+ e+ f , b′ = b, c′ = a, d′ = 2b+ d+ f ,

e′ = 2a+ d+ e, f ′ = d.
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Appendix C

Equivalence Classes of Picard

Number 18

C.0.1 Equivalence Class for the Case 18 of 1 Element

a b c d e f g h i j

Even Even Even Even Even Even Even Even Even Even
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C.0.2 Equivalence Class for the Case 18 of 105 Elements

a b c d e f g h i j

Even Even Even Even Even Even Even Even Even Odd

Even Even Even Even Even Even Even Even Odd Even

Even Even Even Even Even Even Even Even Odd Odd

Even Even Even Even Even Even Even Odd Even Even

Even Even Even Even Even Even Even Odd Even Odd

Even Even Even Even Even Even Even Odd Odd Even

Even Even Even Even Even Even Odd Even Even Even

Even Even Even Even Even Even Odd Even Even Odd

Even Even Even Even Even Even Odd Even Odd Even

Even Even Even Even Even Even Odd Even Odd Odd

Even Even Even Even Even Odd Even Even Even Even

Even Even Even Even Even Odd Even Even Even Odd

Even Even Even Even Even Odd Even Odd Even Even

Even Even Even Even Even Odd Even Odd Even Odd

Even Even Even Even Even Odd Odd Even Even Even

Even Even Even Even Even Odd Odd Odd Odd Even

Even Even Even Even Odd Even Even Even Even Even

Even Even Even Even Odd Even Even Even Odd Even

Even Even Even Even Odd Even Even Odd Even Even

Even Even Even Even Odd Even Even Odd Odd Even

Even Even Even Even Odd Even Odd Even Even Even

Even Even Even Even Odd Even Odd Odd Even Odd

Even Even Even Even Odd Odd Even Even Even Even

Even Even Even Even Odd Odd Even Even Odd Odd

Even Even Even Even Odd Odd Odd Even Even Even

Even Even Even Odd Even Even Even Even Even Odd

Even Even Even Odd Even Even Even Even Odd Even

Even Even Even Odd Even Even Even Even Odd Odd

Even Even Even Odd Even Even Even Odd Odd Odd
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Even Even Even Odd Even Even Odd Even Even Even

Even Even Even Odd Even Even Odd Even Even Odd

Even Even Even Odd Even Even Odd Even Odd Even

Even Even Even Odd Even Even Odd Even Odd Odd

Even Even Even Odd Even Odd Odd Even Even Odd

Even Even Even Odd Even Odd Odd Odd Odd Odd

Even Even Even Odd Odd Even Odd Even Odd Even

Even Even Even Odd Odd Even Odd Odd Odd Odd

Even Even Even Odd Odd Odd Odd Even Odd Odd

Even Even Odd Even Even Even Even Even Even Odd

Even Even Odd Even Even Even Even Odd Even Even

Even Even Odd Even Even Even Even Odd Even Odd

Even Even Odd Even Even Even Even Odd Odd Odd

Even Even Odd Even Even Odd Even Even Even Even

Even Even Odd Even Even Odd Even Even Even Odd

Even Even Odd Even Even Odd Even Odd Even Even

Even Even Odd Even Even Odd Even Odd Even Odd

Even Even Odd Even Even Odd Odd Even Even Odd

Even Even Odd Even Even Odd Odd Odd Odd Odd

Even Even Odd Even Odd Odd Even Odd Even Even

Even Even Odd Even Odd Odd Even Odd Odd Odd

Even Even Odd Even Odd Odd Odd Odd Even Odd

Even Even Odd Odd Even Even Even Odd Odd Even

Even Even Odd Odd Even Odd Odd Even Even Even

Even Even Odd Odd Even Odd Odd Odd Odd Even

Even Even Odd Odd Odd Odd Odd Odd Odd Even

Even Odd Even Even Even Even Even Even Odd Even

Even Odd Even Even Even Even Even Odd Even Even

Even Odd Even Even Even Even Even Odd Odd Even

Even Odd Even Even Even Even Even Odd Odd Odd

Even Odd Even Even Odd Even Even Even Even Even

55



a b c d e f g h i j

Even Odd Even Even Odd Even Even Even Odd Even

Even Odd Even Even Odd Even Even Odd Even Even

Even Odd Even Even Odd Even Even Odd Odd Even

Even Odd Even Even Odd Even Odd Even Odd Even

Even Odd Even Even Odd Even Odd Odd Odd Odd

Even Odd Even Even Odd Odd Even Odd Even Even

Even Odd Even Even Odd Odd Even Odd Odd Odd

Even Odd Even Even Odd Odd Odd Odd Odd Even

Even Odd Even Odd Even Even Even Odd Even Odd

Even Odd Even Odd Odd Even Odd Even Even Even

Even Odd Even Odd Odd Even Odd Odd Even Odd

Even Odd Even Odd Odd Odd Odd Odd Even Odd

Even Odd Odd Even Even Even Even Even Odd Odd

Even Odd Odd Even Odd Odd Even Even Even Even

Even Odd Odd Even Odd Odd Even Even Odd Odd

Even Odd Odd Even Odd Odd Odd Even Odd Odd

Even Odd Odd Odd Odd Odd Odd Even Even Even

Odd Even Even Even Even Even Odd Even Even Even

Odd Even Even Even Even Odd Even Even Even Even

Odd Even Even Even Even Odd Odd Even Even Even

Odd Even Even Even Even Odd Odd Even Even Odd

Odd Even Even Even Odd Even Even Even Even Even

Odd Even Even Even Odd Even Odd Even Even Even

Odd Even Even Even Odd Even Odd Even Odd Even

Odd Even Even Even Odd Odd Even Even Even Even

Odd Even Even Even Odd Odd Even Odd Even Even

Odd Even Even Even Odd Odd Odd Even Even Even

Odd Even Even Even Odd Odd Odd Even Odd Odd

Odd Even Even Even Odd Odd Odd Odd Even Odd

Odd Even Even Even Odd Odd Odd Odd Odd Even

Odd Even Even Odd Even Odd Even Even Even Odd

Odd Even Even Odd Odd Even Even Even Odd Even

56



a b c d e f g h i j

Odd Even Even Odd Odd Odd Even Even Odd Odd

Odd Even Even Odd Odd Odd Even Odd Odd Odd

Odd Even Odd Even Even Even Odd Even Even Odd

Odd Even Odd Even Odd Even Even Odd Even Even

Odd Even Odd Even Odd Even Odd Odd Even Odd

Odd Even Odd Even Odd Even Odd Odd Odd Odd

Odd Even Odd Odd Odd Even Even Odd Odd Even

Odd Odd Even Even Even Even Odd Even Odd Even

Odd Odd Even Even Even Odd Even Odd Even Even

Odd Odd Even Even Even Odd Odd Odd Odd Even

Odd Odd Even Even Even Odd Odd Odd Odd Odd

Odd Odd Even Odd Even Odd Even Odd Even Odd

Odd Odd Odd Even Even Even Odd Even Odd Odd

C.0.3 Equivalence Class for the Case 18 of 420 Elements

a b c d e f g h i j

Even Even Even Even Even Even Even Odd Odd Odd

Even Even Even Even Even Odd Odd Even Even Odd

Even Even Even Even Even Odd Odd Odd Odd Odd

Even Even Even Even Odd Even Odd Even Odd Even

Even Even Even Even Odd Even Odd Odd Odd Odd

Even Even Even Even Odd Odd Even Odd Even Even

Even Even Even Even Odd Odd Even Odd Odd Odd

Even Even Even Even Odd Odd Odd Even Odd Odd

Even Even Even Even Odd Odd Odd Odd Even Odd

Even Even Even Even Odd Odd Odd Odd Odd Even

Even Even Even Odd Even Even Even Odd Even Even

Even Even Even Odd Even Even Even Odd Even Odd

Even Even Even Odd Even Even Even Odd Odd Even
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Even Even Even Odd Even Odd Even Even Even Even

Even Even Even Odd Even Odd Even Even Even Odd

Even Even Even Odd Even Odd Even Odd Even Even

Even Even Even Odd Even Odd Even Odd Even Odd

Even Even Even Odd Even Odd Odd Even Even Even

Even Even Even Odd Even Odd Odd Odd Odd Even

Even Even Even Odd Odd Even Even Even Even Even

Even Even Even Odd Odd Even Even Even Odd Even

Even Even Even Odd Odd Even Even Odd Even Even

Even Even Even Odd Odd Even Even Odd Odd Even

Even Even Even Odd Odd Even Odd Even Even Even

Even Even Even Odd Odd Even Odd Odd Even Odd

Even Even Even Odd Odd Odd Even Even Even Even

Even Even Even Odd Odd Odd Even Even Odd Odd

Even Even Even Odd Odd Odd Even Odd Even Even

Even Even Even Odd Odd Odd Even Odd Odd Odd

Even Even Even Odd Odd Odd Odd Even Even Even

Even Even Even Odd Odd Odd Odd Odd Even Odd

Even Even Even Odd Odd Odd Odd Odd Odd Even

Even Even Odd Even Even Even Even Even Odd Even

Even Even Odd Even Even Even Even Even Odd Odd

Even Even Odd Even Even Even Even Odd Odd Even

Even Even Odd Even Even Even Odd Even Even Even

Even Even Odd Even Even Even Odd Even Even Odd

Even Even Odd Even Even Even Odd Even Odd Even

Even Even Odd Even Even Even Odd Even Odd Odd

Even Even Odd Even Even Odd Odd Even Even Even

Even Even Odd Even Even Odd Odd Odd Odd Even

Even Even Odd Even Odd Even Even Even Even Even

Even Even Odd Even Odd Even Even Even Odd Even

Even Even Odd Even Odd Even Even Odd Even Even

Even Even Odd Even Odd Even Even Odd Odd Even
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Even Even Odd Even Odd Even Odd Even Even Even

Even Even Odd Even Odd Even Odd Even Odd Even

Even Even Odd Even Odd Even Odd Odd Even Odd

Even Even Odd Even Odd Even Odd Odd Odd Odd

Even Even Odd Even Odd Odd Even Even Even Even

Even Even Odd Even Odd Odd Even Even Odd Odd

Even Even Odd Even Odd Odd Odd Even Even Even

Even Even Odd Even Odd Odd Odd Even Odd Odd

Even Even Odd Even Odd Odd Odd Odd Odd Even

Even Even Odd Odd Even Even Even Even Odd Even

Even Even Odd Odd Even Even Even Even Odd Odd

Even Even Odd Odd Even Even Even Odd Even Even

Even Even Odd Odd Even Even Even Odd Even Odd

Even Even Odd Odd Even Even Even Odd Odd Odd

Even Even Odd Odd Even Even Odd Even Even Even

Even Even Odd Odd Even Even Odd Even Even Odd

Even Even Odd Odd Even Even Odd Even Odd Even

Even Even Odd Odd Even Even Odd Even Odd Odd

Even Even Odd Odd Even Odd Even Even Even Even

Even Even Odd Odd Even Odd Even Even Even Odd

Even Even Odd Odd Even Odd Even Odd Even Even

Even Even Odd Odd Even Odd Even Odd Even Odd

Even Even Odd Odd Even Odd Odd Even Even Odd

Even Even Odd Odd Even Odd Odd Odd Odd Odd

Even Even Odd Odd Odd Even Even Even Even Even

Even Even Odd Odd Odd Even Even Even Odd Even

Even Even Odd Odd Odd Even Even Odd Even Even

Even Even Odd Odd Odd Even Even Odd Odd Even

Even Even Odd Odd Odd Even Odd Even Even Even

Even Even Odd Odd Odd Even Odd Even Odd Even

Even Even Odd Odd Odd Even Odd Odd Even Odd

Even Even Odd Odd Odd Even Odd Odd Odd Odd
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Even Even Odd Odd Odd Odd Even Even Even Even

Even Even Odd Odd Odd Odd Even Even Odd Odd

Even Even Odd Odd Odd Odd Even Odd Even Even

Even Even Odd Odd Odd Odd Even Odd Odd Odd

Even Even Odd Odd Odd Odd Odd Even Even Even

Even Even Odd Odd Odd Odd Odd Even Odd Odd

Even Even Odd Odd Odd Odd Odd Odd Even Odd

Even Odd Even Even Even Even Even Even Even Odd

Even Odd Even Even Even Even Even Even Odd Odd

Even Odd Even Even Even Even Even Odd Even Odd

Even Odd Even Even Even Even Odd Even Even Even

Even Odd Even Even Even Even Odd Even Even Odd

Even Odd Even Even Even Even Odd Even Odd Even

Even Odd Even Even Even Even Odd Even Odd Odd

Even Odd Even Even Even Odd Even Even Even Even

Even Odd Even Even Even Odd Even Even Even Odd

Even Odd Even Even Even Odd Even Odd Even Even

Even Odd Even Even Even Odd Even Odd Even Odd

Even Odd Even Even Even Odd Odd Even Even Even

Even Odd Even Even Even Odd Odd Even Even Odd

Even Odd Even Even Even Odd Odd Odd Odd Even

Even Odd Even Even Even Odd Odd Odd Odd Odd

Even Odd Even Even Odd Even Odd Even Even Even

Even Odd Even Even Odd Even Odd Odd Even Odd

Even Odd Even Even Odd Odd Even Even Even Even

Even Odd Even Even Odd Odd Even Even Odd Odd

Even Odd Even Even Odd Odd Odd Even Even Even

Even Odd Even Even Odd Odd Odd Even Odd Odd

Even Odd Even Even Odd Odd Odd Odd Even Odd

Even Odd Even Odd Even Even Even Even Even Odd

Even Odd Even Odd Even Even Even Even Odd Odd

Even Odd Even Odd Even Even Even Odd Even Even
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Even Odd Even Odd Even Even Even Odd Odd Even

Even Odd Even Odd Even Even Even Odd Odd Odd

Even Odd Even Odd Even Even Odd Even Even Even

Even Odd Even Odd Even Even Odd Even Even Odd

Even Odd Even Odd Even Even Odd Even Odd Even

Even Odd Even Odd Even Even Odd Even Odd Odd

Even Odd Even Odd Even Odd Even Even Even Even

Even Odd Even Odd Even Odd Even Even Even Odd

Even Odd Even Odd Even Odd Even Odd Even Even

Even Odd Even Odd Even Odd Even Odd Even Odd

Even Odd Even Odd Even Odd Odd Even Even Even

Even Odd Even Odd Even Odd Odd Even Even Odd

Even Odd Even Odd Even Odd Odd Odd Odd Even

Even Odd Even Odd Even Odd Odd Odd Odd Odd

Even Odd Even Odd Odd Even Even Even Even Even

Even Odd Even Odd Odd Even Even Even Odd Even

Even Odd Even Odd Odd Even Even Odd Even Even

Even Odd Even Odd Odd Even Even Odd Odd Even

Even Odd Even Odd Odd Even Odd Even Odd Even

Even Odd Even Odd Odd Even Odd Odd Odd Odd

Even Odd Even Odd Odd Odd Even Even Even Even

Even Odd Even Odd Odd Odd Even Even Odd Odd

Even Odd Even Odd Odd Odd Even Odd Even Even

Even Odd Even Odd Odd Odd Even Odd Odd Odd

Even Odd Even Odd Odd Odd Odd Even Even Even

Even Odd Even Odd Odd Odd Odd Even Odd Odd

Even Odd Even Odd Odd Odd Odd Odd Odd Even

Even Odd Odd Even Even Even Even Even Even Odd

Even Odd Odd Even Even Even Even Even Odd Even

Even Odd Odd Even Even Even Even Odd Even Odd

Even Odd Odd Even Even Even Even Odd Odd Even

Even Odd Odd Even Even Even Even Odd Odd Odd
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Even Odd Odd Even Even Even Odd Even Even Even

Even Odd Odd Even Even Even Odd Even Even Odd

Even Odd Odd Even Even Even Odd Even Odd Even

Even Odd Odd Even Even Even Odd Even Odd Odd

Even Odd Odd Even Even Odd Even Even Even Even

Even Odd Odd Even Even Odd Even Even Even Odd

Even Odd Odd Even Even Odd Even Odd Even Even

Even Odd Odd Even Even Odd Even Odd Even Odd

Even Odd Odd Even Even Odd Odd Even Even Even

Even Odd Odd Even Even Odd Odd Even Even Odd

Even Odd Odd Even Even Odd Odd Odd Odd Even

Even Odd Odd Even Even Odd Odd Odd Odd Odd

Even Odd Odd Even Odd Even Even Even Even Even

Even Odd Odd Even Odd Even Even Even Odd Even

Even Odd Odd Even Odd Even Even Odd Even Even

Even Odd Odd Even Odd Even Even Odd Odd Even

Even Odd Odd Even Odd Even Odd Even Even Even

Even Odd Odd Even Odd Even Odd Even Odd Even

Even Odd Odd Even Odd Even Odd Odd Even Odd

Even Odd Odd Even Odd Even Odd Odd Odd Odd

Even Odd Odd Even Odd Odd Even Odd Even Even

Even Odd Odd Even Odd Odd Even Odd Odd Odd

Even Odd Odd Even Odd Odd Odd Even Even Even

Even Odd Odd Even Odd Odd Odd Odd Even Odd

Even Odd Odd Even Odd Odd Odd Odd Odd Even

Even Odd Odd Odd Even Even Even Even Even Odd

Even Odd Odd Odd Even Even Even Even Odd Even

Even Odd Odd Odd Even Even Even Odd Even Even

Even Odd Odd Odd Even Even Odd Even Even Even

Even Odd Odd Odd Even Even Odd Even Even Odd

Even Odd Odd Odd Even Even Odd Even Odd Even

Even Odd Odd Odd Even Even Odd Even Odd Odd
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Even Odd Odd Odd Even Odd Even Even Even Even

Even Odd Odd Odd Even Odd Even Even Even Odd

Even Odd Odd Odd Even Odd Even Odd Even Even

Even Odd Odd Odd Even Odd Even Odd Even Odd

Even Odd Odd Odd Even Odd Odd Even Even Even

Even Odd Odd Odd Even Odd Odd Even Even Odd

Even Odd Odd Odd Even Odd Odd Odd Odd Even

Even Odd Odd Odd Even Odd Odd Odd Odd Odd

Even Odd Odd Odd Odd Even Even Even Even Even

Even Odd Odd Odd Odd Even Even Even Odd Even

Even Odd Odd Odd Odd Even Even Odd Even Even

Even Odd Odd Odd Odd Even Even Odd Odd Even

Even Odd Odd Odd Odd Even Odd Even Even Even

Even Odd Odd Odd Odd Even Odd Even Odd Even

Even Odd Odd Odd Odd Even Odd Odd Even Odd

Even Odd Odd Odd Odd Even Odd Odd Odd Odd

Even Odd Odd Odd Odd Odd Even Even Even Even

Even Odd Odd Odd Odd Odd Even Even Odd Odd

Even Odd Odd Odd Odd Odd Even Odd Even Even

Even Odd Odd Odd Odd Odd Even Odd Odd Odd

Even Odd Odd Odd Odd Odd Odd Even Odd Odd

Even Odd Odd Odd Odd Odd Odd Odd Even Odd

Even Odd Odd Odd Odd Odd Odd Odd Odd Even

Odd Even Even Even Even Even Even Even Even Odd

Odd Even Even Even Even Even Even Even Odd Even

Odd Even Even Even Even Even Even Even Odd Odd

Odd Even Even Even Even Even Even Odd Even Even

Odd Even Even Even Even Even Even Odd Even Odd

Odd Even Even Even Even Even Even Odd Odd Even

Odd Even Even Even Even Even Even Odd Odd Odd

Odd Even Even Even Even Even Odd Even Even Odd

Odd Even Even Even Even Even Odd Even Odd Even
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Odd Even Even Even Even Even Odd Even Odd Odd

Odd Even Even Even Even Odd Even Even Even Odd

Odd Even Even Even Even Odd Even Odd Even Even

Odd Even Even Even Even Odd Even Odd Even Odd

Odd Even Even Even Even Odd Odd Odd Odd Even

Odd Even Even Even Even Odd Odd Odd Odd Odd

Odd Even Even Even Odd Even Even Even Odd Even

Odd Even Even Even Odd Even Even Odd Even Even

Odd Even Even Even Odd Even Even Odd Odd Even

Odd Even Even Even Odd Even Odd Odd Even Odd

Odd Even Even Even Odd Even Odd Odd Odd Odd

Odd Even Even Even Odd Odd Even Even Odd Odd

Odd Even Even Even Odd Odd Even Odd Odd Odd

Odd Even Even Odd Even Even Even Even Even Odd

Odd Even Even Odd Even Even Even Even Odd Even

Odd Even Even Odd Even Even Even Even Odd Odd

Odd Even Even Odd Even Even Even Odd Even Even

Odd Even Even Odd Even Even Even Odd Even Odd

Odd Even Even Odd Even Even Even Odd Odd Even

Odd Even Even Odd Even Even Even Odd Odd Odd

Odd Even Even Odd Even Even Odd Even Even Odd

Odd Even Even Odd Even Even Odd Even Odd Even

Odd Even Even Odd Even Even Odd Even Odd Odd

Odd Even Even Odd Even Odd Even Even Even Even

Odd Even Even Odd Even Odd Even Odd Even Even

Odd Even Even Odd Even Odd Even Odd Even Odd

Odd Even Even Odd Even Odd Odd Even Even Even

Odd Even Even Odd Even Odd Odd Even Even Odd

Odd Even Even Odd Even Odd Odd Odd Odd Even

Odd Even Even Odd Even Odd Odd Odd Odd Odd

Odd Even Even Odd Odd Even Even Even Even Even

Odd Even Even Odd Odd Even Even Odd Even Even
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Odd Even Even Odd Odd Even Even Odd Odd Even

Odd Even Even Odd Odd Even Odd Even Even Even

Odd Even Even Odd Odd Even Odd Even Odd Even

Odd Even Even Odd Odd Even Odd Odd Even Odd

Odd Even Even Odd Odd Even Odd Odd Odd Odd

Odd Even Even Odd Odd Odd Even Even Even Even

Odd Even Even Odd Odd Odd Even Odd Even Even

Odd Even Even Odd Odd Odd Odd Even Even Even

Odd Even Even Odd Odd Odd Odd Even Odd Odd

Odd Even Even Odd Odd Odd Odd Odd Even Odd

Odd Even Even Odd Odd Odd Odd Odd Odd Even

Odd Even Odd Even Even Even Even Even Even Odd

Odd Even Odd Even Even Even Even Even Odd Even

Odd Even Odd Even Even Even Even Even Odd Odd

Odd Even Odd Even Even Even Even Odd Even Even

Odd Even Odd Even Even Even Even Odd Even Odd

Odd Even Odd Even Even Even Even Odd Odd Even

Odd Even Odd Even Even Even Even Odd Odd Odd

Odd Even Odd Even Even Even Odd Even Even Even

Odd Even Odd Even Even Even Odd Even Odd Even

Odd Even Odd Even Even Even Odd Even Odd Odd

Odd Even Odd Even Even Odd Even Even Even Odd

Odd Even Odd Even Even Odd Even Odd Even Even

Odd Even Odd Even Even Odd Even Odd Even Odd

Odd Even Odd Even Even Odd Odd Even Even Even

Odd Even Odd Even Even Odd Odd Even Even Odd

Odd Even Odd Even Even Odd Odd Odd Odd Even

Odd Even Odd Even Even Odd Odd Odd Odd Odd

Odd Even Odd Even Odd Even Even Even Even Even

Odd Even Odd Even Odd Even Even Even Odd Even

Odd Even Odd Even Odd Even Even Odd Odd Even

Odd Even Odd Even Odd Even Odd Even Even Even
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Odd Even Odd Even Odd Even Odd Even Odd Even

Odd Even Odd Even Odd Odd Even Even Even Even

Odd Even Odd Even Odd Odd Even Even Odd Odd

Odd Even Odd Even Odd Odd Even Odd Even Even

Odd Even Odd Even Odd Odd Even Odd Odd Odd

Odd Even Odd Even Odd Odd Odd Even Even Even

Odd Even Odd Even Odd Odd Odd Even Odd Odd

Odd Even Odd Even Odd Odd Odd Odd Even Odd

Odd Even Odd Even Odd Odd Odd Odd Odd Even

Odd Even Odd Odd Even Even Even Even Even Odd

Odd Even Odd Odd Even Even Even Even Odd Even

Odd Even Odd Odd Even Even Even Even Odd Odd

Odd Even Odd Odd Even Even Even Odd Even Even

Odd Even Odd Odd Even Even Even Odd Even Odd

Odd Even Odd Odd Even Even Even Odd Odd Even

Odd Even Odd Odd Even Even Even Odd Odd Odd

Odd Even Odd Odd Even Even Odd Even Even Even

Odd Even Odd Odd Even Even Odd Even Odd Even

Odd Even Odd Odd Even Even Odd Even Odd Odd

Odd Even Odd Odd Even Odd Even Even Even Even

Odd Even Odd Odd Even Odd Even Odd Even Even

Odd Even Odd Odd Even Odd Even Odd Even Odd

Odd Even Odd Odd Even Odd Odd Odd Odd Even

Odd Even Odd Odd Even Odd Odd Odd Odd Odd

Odd Even Odd Odd Odd Even Even Even Even Even

Odd Even Odd Odd Odd Even Even Even Odd Even

Odd Even Odd Odd Odd Even Even Odd Even Even

Odd Even Odd Odd Odd Even Odd Even Even Even

Odd Even Odd Odd Odd Even Odd Even Odd Even

Odd Even Odd Odd Odd Even Odd Odd Even Odd

Odd Even Odd Odd Odd Even Odd Odd Odd Odd

Odd Even Odd Odd Odd Odd Even Even Even Even
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Odd Even Odd Odd Odd Odd Even Even Odd Odd

Odd Even Odd Odd Odd Odd Even Odd Even Even

Odd Even Odd Odd Odd Odd Even Odd Odd Odd

Odd Even Odd Odd Odd Odd Odd Even Even Even

Odd Even Odd Odd Odd Odd Odd Even Odd Odd

Odd Even Odd Odd Odd Odd Odd Odd Even Odd

Odd Even Odd Odd Odd Odd Odd Odd Odd Even

Odd Odd Even Even Even Even Even Even Even Odd

Odd Odd Even Even Even Even Even Even Odd Even

Odd Odd Even Even Even Even Even Even Odd Odd

Odd Odd Even Even Even Even Even Odd Even Even

Odd Odd Even Even Even Even Even Odd Even Odd

Odd Odd Even Even Even Even Even Odd Odd Even

Odd Odd Even Even Even Even Even Odd Odd Odd

Odd Odd Even Even Even Even Odd Even Even Even

Odd Odd Even Even Even Even Odd Even Even Odd

Odd Odd Even Even Even Even Odd Even Odd Odd

Odd Odd Even Even Even Odd Even Even Even Even

Odd Odd Even Even Even Odd Even Even Even Odd

Odd Odd Even Even Even Odd Even Odd Even Odd

Odd Odd Even Even Even Odd Odd Even Even Even

Odd Odd Even Even Even Odd Odd Even Even Odd

Odd Odd Even Even Odd Even Even Even Odd Even

Odd Odd Even Even Odd Even Even Odd Even Even

Odd Odd Even Even Odd Even Even Odd Odd Even

Odd Odd Even Even Odd Even Odd Even Even Even

Odd Odd Even Even Odd Even Odd Even Odd Even

Odd Odd Even Even Odd Even Odd Odd Even Odd
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Odd Odd Even Even Odd Odd Even Odd Odd Odd

Odd Odd Even Even Odd Odd Odd Even Even Even

Odd Odd Even Even Odd Odd Odd Even Odd Odd

Odd Odd Even Even Odd Odd Odd Odd Even Odd

Odd Odd Even Even Odd Odd Odd Odd Odd Even

Odd Odd Even Odd Even Even Even Even Even Odd

Odd Odd Even Odd Even Even Even Even Odd Even

Odd Odd Even Odd Even Even Even Even Odd Odd

Odd Odd Even Odd Even Even Even Odd Even Even

Odd Odd Even Odd Even Even Even Odd Even Odd
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Odd Odd Even Odd Even Even Odd Even Even Odd
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Odd Odd Even Odd Even Odd Even Even Even Odd

Odd Odd Even Odd Even Odd Even Odd Even Even

Odd Odd Even Odd Even Odd Odd Even Even Even

Odd Odd Even Odd Even Odd Odd Even Even Odd
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Odd Odd Even Odd Odd Odd Odd Even Odd Odd

Odd Odd Even Odd Odd Odd Odd Odd Even Odd

Odd Odd Even Odd Odd Odd Odd Odd Odd Even

Odd Odd Odd Even Even Even Even Even Even Odd

Odd Odd Odd Even Even Even Even Even Odd Even

Odd Odd Odd Even Even Even Even Even Odd Odd

Odd Odd Odd Even Even Even Even Odd Even Even

Odd Odd Odd Even Even Even Even Odd Even Odd

Odd Odd Odd Even Even Even Even Odd Odd Even

Odd Odd Odd Even Even Even Even Odd Odd Odd

Odd Odd Odd Even Even Even Odd Even Even Even

Odd Odd Odd Even Even Even Odd Even Even Odd

Odd Odd Odd Even Even Even Odd Even Odd Even

Odd Odd Odd Even Even Odd Even Even Even Even

Odd Odd Odd Even Even Odd Even Even Even Odd

Odd Odd Odd Even Even Odd Even Odd Even Odd
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Odd Odd Odd Even Even Odd Odd Even Even Odd
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Odd Odd Odd Even Odd Even Odd Even Odd Even

Odd Odd Odd Even Odd Even Odd Odd Even Odd
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Odd Odd Odd Even Odd Odd Odd Odd Odd Even
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Odd Odd Odd Odd Even Even Even Even Odd Even
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Odd Odd Odd Odd Even Even Even Odd Even Even
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Odd Odd Odd Odd Even Even Odd Even Odd Even
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Odd Odd Odd Odd Odd Even Odd Even Odd Even
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Odd Odd Odd Odd Odd Odd Even Odd Even Even
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Even Even Even Even Even Even Odd Odd Even Even

Even Even Even Even Even Even Odd Odd Even Odd

Even Even Even Even Even Even Odd Odd Odd Even

Even Even Even Even Even Even Odd Odd Odd Odd
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Even Even Even Even Even Odd Even Even Odd Odd
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Even Even Even Odd Even Even Odd Odd Even Odd
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Even Even Odd Even Even Odd Odd Even Odd Even

Even Even Odd Even Even Odd Odd Even Odd Odd

Even Even Odd Even Even Odd Odd Odd Even Even
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Even Even Odd Odd Odd Odd Even Odd Odd Even

Even Even Odd Odd Odd Odd Odd Even Odd Even

Even Even Odd Odd Odd Odd Odd Odd Even Even

Even Even Odd Odd Odd Odd Odd Odd Odd Odd

Even Odd Even Even Even Even Odd Odd Even Even

Even Odd Even Even Even Even Odd Odd Even Odd

Even Odd Even Even Even Even Odd Odd Odd Even

Even Odd Even Even Even Even Odd Odd Odd Odd

Even Odd Even Even Even Odd Even Even Odd Even

Even Odd Even Even Even Odd Even Even Odd Odd

Even Odd Even Even Even Odd Even Odd Odd Even

Even Odd Even Even Even Odd Even Odd Odd Odd

Even Odd Even Even Even Odd Odd Even Odd Even

Even Odd Even Even Even Odd Odd Odd Even Even

Even Odd Even Even Odd Even Even Even Even Odd

Even Odd Even Even Odd Even Even Even Odd Odd

Even Odd Even Even Odd Even Even Odd Even Odd

Even Odd Even Even Odd Even Even Odd Odd Odd

Even Odd Even Even Odd Even Odd Even Even Odd

Even Odd Even Even Odd Even Odd Even Odd Odd

Even Odd Even Even Odd Even Odd Odd Even Even

Even Odd Even Even Odd Even Odd Odd Odd Even

Even Odd Even Even Odd Odd Even Even Even Odd

Even Odd Even Even Odd Odd Even Even Odd Even

Even Odd Even Even Odd Odd Even Odd Even Odd

Even Odd Even Even Odd Odd Even Odd Odd Even

Even Odd Even Even Odd Odd Odd Even Odd Even

Even Odd Even Even Odd Odd Odd Odd Even Even

Even Odd Even Even Odd Odd Odd Odd Odd Odd

Even Odd Even Odd Even Even Odd Odd Even Even

Even Odd Even Odd Even Even Odd Odd Even Odd

Even Odd Even Odd Even Even Odd Odd Odd Even
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Even Odd Even Odd Even Even Odd Odd Odd Odd

Even Odd Even Odd Even Odd Odd Even Odd Odd

Even Odd Even Odd Even Odd Odd Odd Even Odd

Even Odd Even Odd Odd Even Even Even Even Odd

Even Odd Even Odd Odd Even Even Even Odd Odd

Even Odd Even Odd Odd Even Even Odd Even Odd
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Even Odd Even Odd Odd Even Odd Odd Even Even
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Even Odd Even Odd Odd Odd Even Odd Even Odd
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Even Odd Even Odd Odd Odd Odd Even Even Odd
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Even Odd Even Odd Odd Odd Odd Odd Odd Odd
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Even Odd Odd Even Odd Even Odd Odd Odd Even
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Even Odd Odd Even Odd Odd Even Odd Even Odd

Even Odd Odd Even Odd Odd Even Odd Odd Even

75



a b c d e f g h i j

Even Odd Odd Even Odd Odd Odd Even Even Odd

Even Odd Odd Even Odd Odd Odd Even Odd Even

Even Odd Odd Even Odd Odd Odd Odd Odd Odd

Even Odd Odd Odd Even Odd Odd Even Odd Even

Even Odd Odd Odd Even Odd Odd Odd Even Even

Even Odd Odd Odd Odd Even Odd Even Even Odd

Even Odd Odd Odd Odd Even Odd Odd Even Even

Even Odd Odd Odd Odd Odd Even Even Even Odd

Even Odd Odd Odd Odd Odd Even Even Odd Even

Even Odd Odd Odd Odd Odd Odd Even Even Odd

Even Odd Odd Odd Odd Odd Odd Even Odd Even

Even Odd Odd Odd Odd Odd Odd Odd Even Even

Odd Even Even Even Even Even Odd Odd Even Even

Odd Even Even Even Even Even Odd Odd Even Odd

Odd Even Even Even Even Even Odd Odd Odd Even

Odd Even Even Even Even Odd Even Even Odd Even

Odd Even Even Even Even Odd Even Even Odd Odd

Odd Even Even Even Even Odd Even Odd Odd Even

Odd Even Even Even Even Odd Odd Even Odd Even

Odd Even Even Even Even Odd Odd Even Odd Odd

Odd Even Even Even Even Odd Odd Odd Even Even

Odd Even Even Even Even Odd Odd Odd Even Odd

Odd Even Even Even Odd Even Even Even Even Odd

Odd Even Even Even Odd Even Even Even Odd Odd

Odd Even Even Even Odd Even Even Odd Even Odd

Odd Even Even Even Odd Even Odd Even Even Odd

Odd Even Even Even Odd Even Odd Even Odd Odd

Odd Even Even Even Odd Even Odd Odd Even Even

Odd Even Even Even Odd Even Odd Odd Odd Even

Odd Even Even Even Odd Odd Even Even Even Odd

Odd Even Even Even Odd Odd Even Even Odd Even

Odd Even Even Even Odd Odd Even Odd Even Odd
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Odd Even Even Even Odd Odd Even Odd Odd Even

Odd Even Even Even Odd Odd Odd Even Even Odd

Odd Even Even Even Odd Odd Odd Even Odd Even

Odd Even Even Even Odd Odd Odd Odd Even Even

Odd Even Even Even Odd Odd Odd Odd Odd Odd

Odd Even Even Odd Even Even Odd Odd Odd Odd

Odd Even Even Odd Even Odd Even Even Odd Even

Odd Even Even Odd Even Odd Even Even Odd Odd

Odd Even Even Odd Even Odd Even Odd Odd Odd

Odd Even Even Odd Even Odd Odd Even Odd Even

Odd Even Even Odd Even Odd Odd Even Odd Odd

Odd Even Even Odd Odd Even Even Even Even Odd

Odd Even Even Odd Odd Even Even Even Odd Odd

Odd Even Even Odd Odd Even Even Odd Odd Odd

Odd Even Even Odd Odd Even Odd Even Even Odd

Odd Even Even Odd Odd Even Odd Even Odd Odd

Odd Even Even Odd Odd Odd Even Even Even Odd

Odd Even Even Odd Odd Odd Even Even Odd Even

Odd Even Even Odd Odd Odd Even Odd Even Odd

Odd Even Even Odd Odd Odd Even Odd Odd Even

Odd Even Even Odd Odd Odd Odd Even Even Odd

Odd Even Even Odd Odd Odd Odd Even Odd Even

Odd Even Even Odd Odd Odd Odd Odd Even Even

Odd Even Even Odd Odd Odd Odd Odd Odd Odd

Odd Even Odd Even Even Even Odd Odd Even Even

Odd Even Odd Even Even Even Odd Odd Even Odd

Odd Even Odd Even Even Even Odd Odd Odd Odd

Odd Even Odd Even Even Odd Even Odd Odd Odd

Odd Even Odd Even Even Odd Odd Odd Even Even

Odd Even Odd Even Even Odd Odd Odd Even Odd

Odd Even Odd Even Odd Even Even Even Even Odd

Odd Even Odd Even Odd Even Even Odd Even Odd
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Odd Even Odd Even Odd Even Even Odd Odd Odd

Odd Even Odd Even Odd Even Odd Even Even Odd

Odd Even Odd Even Odd Even Odd Even Odd Odd

Odd Even Odd Even Odd Even Odd Odd Even Even

Odd Even Odd Even Odd Even Odd Odd Odd Even

Odd Even Odd Even Odd Odd Even Even Even Odd

Odd Even Odd Even Odd Odd Even Odd Even Odd

Odd Even Odd Even Odd Odd Odd Even Even Odd

Odd Even Odd Even Odd Odd Odd Even Odd Even

Odd Even Odd Even Odd Odd Odd Odd Even Even

Odd Even Odd Even Odd Odd Odd Odd Odd Odd

Odd Even Odd Odd Even Even Odd Odd Odd Even

Odd Even Odd Odd Even Odd Even Odd Odd Even

Odd Even Odd Odd Odd Even Even Even Odd Odd

Odd Even Odd Odd Odd Even Even Odd Even Odd

Odd Even Odd Odd Odd Even Even Odd Odd Odd

Odd Even Odd Odd Odd Even Odd Odd Even Even

Odd Even Odd Odd Odd Even Odd Odd Odd Even

Odd Even Odd Odd Odd Odd Even Even Odd Even

Odd Even Odd Odd Odd Odd Even Odd Odd Even

Odd Odd Even Even Even Even Odd Odd Even Even

Odd Odd Even Even Even Even Odd Odd Odd Even

Odd Odd Even Even Even Even Odd Odd Odd Odd

Odd Odd Even Even Even Odd Even Even Odd Even

Odd Odd Even Even Even Odd Even Odd Odd Even

Odd Odd Even Even Even Odd Even Odd Odd Odd

Odd Odd Even Even Even Odd Odd Even Odd Even

Odd Odd Even Even Even Odd Odd Even Odd Odd

Odd Odd Even Even Even Odd Odd Odd Even Even

Odd Odd Even Even Even Odd Odd Odd Even Odd

Odd Odd Even Even Odd Even Even Odd Odd Odd

Odd Odd Even Even Odd Even Odd Odd Even Even

78



a b c d e f g h i j

Odd Odd Even Even Odd Even Odd Odd Odd Even

Odd Odd Even Even Odd Odd Even Even Odd Even

Odd Odd Even Even Odd Odd Even Odd Odd Even

Odd Odd Even Even Odd Odd Odd Even Even Odd

Odd Odd Even Even Odd Odd Odd Even Odd Even

Odd Odd Even Even Odd Odd Odd Odd Even Even

Odd Odd Even Even Odd Odd Odd Odd Odd Odd

Odd Odd Even Odd Even Even Odd Odd Even Odd

Odd Odd Even Odd Even Odd Even Even Odd Odd

Odd Odd Even Odd Even Odd Even Odd Odd Even

Odd Odd Even Odd Even Odd Even Odd Odd Odd

Odd Odd Even Odd Even Odd Odd Odd Even Even

Odd Odd Even Odd Even Odd Odd Odd Even Odd

Odd Odd Even Odd Odd Even Even Odd Even Odd

Odd Odd Even Odd Odd Odd Even Even Even Odd

Odd Odd Even Odd Odd Odd Even Odd Even Odd

Odd Odd Odd Even Even Even Odd Odd Even Odd

Odd Odd Odd Even Even Even Odd Odd Odd Even

Odd Odd Odd Even Even Even Odd Odd Odd Odd

Odd Odd Odd Even Even Odd Even Even Odd Odd
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Even Even Even Even Odd Odd Odd Odd Odd Odd

Even Even Even Odd Odd Odd Even Odd Even Odd

Even Even Even Odd Odd Odd Even Odd Odd Even

Even Even Even Odd Odd Odd Odd Odd Even Even

Even Even Odd Even Odd Even Odd Even Odd Odd

Even Even Odd Even Odd Even Odd Odd Odd Even

Even Even Odd Even Odd Odd Odd Even Odd Even

Even Even Odd Odd Odd Even Even Even Even Odd

Even Even Odd Odd Odd Even Even Even Odd Odd

Even Even Odd Odd Odd Even Even Odd Even Odd

Even Even Odd Odd Odd Even Even Odd Odd Odd

Even Even Odd Odd Odd Even Odd Even Even Odd

Even Even Odd Odd Odd Even Odd Odd Even Even

Even Even Odd Odd Odd Odd Even Even Even Odd

Even Even Odd Odd Odd Odd Even Even Odd Even

Even Even Odd Odd Odd Odd Odd Even Even Odd

Even Odd Even Even Even Odd Odd Even Odd Odd

Even Odd Even Even Even Odd Odd Odd Even Odd

Even Odd Even Even Odd Odd Odd Even Even Odd

Even Odd Even Odd Even Odd Even Even Odd Even

Even Odd Even Odd Even Odd Even Even Odd Odd

Even Odd Even Odd Even Odd Even Odd Odd Even

Even Odd Even Odd Even Odd Even Odd Odd Odd

Even Odd Even Odd Even Odd Odd Even Odd Even

Even Odd Even Odd Even Odd Odd Odd Even Even

Even Odd Even Odd Odd Odd Even Even Even Odd

Even Odd Even Odd Odd Odd Even Even Odd Even

Even Odd Even Odd Odd Odd Odd Even Odd Even
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Even Odd Odd Even Even Even Odd Odd Even Even

Even Odd Odd Even Even Even Odd Odd Even Odd

Even Odd Odd Even Even Even Odd Odd Odd Even

Even Odd Odd Even Even Even Odd Odd Odd Odd

Even Odd Odd Even Even Odd Odd Even Odd Even

Even Odd Odd Even Even Odd Odd Odd Even Even

Even Odd Odd Even Odd Even Odd Even Even Odd

Even Odd Odd Even Odd Even Odd Odd Even Even

Even Odd Odd Even Odd Odd Odd Odd Even Even

Even Odd Odd Odd Even Even Odd Odd Even Even

Even Odd Odd Odd Even Even Odd Odd Even Odd

Even Odd Odd Odd Even Even Odd Odd Odd Even

Even Odd Odd Odd Even Even Odd Odd Odd Odd

Even Odd Odd Odd Even Odd Even Even Odd Even

Even Odd Odd Odd Even Odd Even Even Odd Odd

Even Odd Odd Odd Even Odd Even Odd Odd Even

Even Odd Odd Odd Even Odd Even Odd Odd Odd

Even Odd Odd Odd Even Odd Odd Even Odd Odd

Even Odd Odd Odd Even Odd Odd Odd Even Odd

Even Odd Odd Odd Odd Even Even Even Even Odd

Even Odd Odd Odd Odd Even Even Even Odd Odd

Even Odd Odd Odd Odd Even Even Odd Even Odd

Even Odd Odd Odd Odd Even Even Odd Odd Odd

Even Odd Odd Odd Odd Even Odd Even Odd Odd

Even Odd Odd Odd Odd Even Odd Odd Odd Even

Even Odd Odd Odd Odd Odd Even Odd Even Odd

Even Odd Odd Odd Odd Odd Even Odd Odd Even

Even Odd Odd Odd Odd Odd Odd Odd Odd Odd

Odd Even Even Even Even Even Odd Odd Odd Odd

Odd Even Even Even Even Odd Even Odd Odd Odd

Odd Even Even Even Odd Even Even Odd Odd Odd

Odd Even Even Odd Even Even Odd Odd Even Even
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Odd Even Even Odd Even Even Odd Odd Even Odd

Odd Even Even Odd Even Even Odd Odd Odd Even

Odd Even Even Odd Even Odd Even Odd Odd Even

Odd Even Even Odd Even Odd Odd Odd Even Even

Odd Even Even Odd Even Odd Odd Odd Even Odd

Odd Even Even Odd Odd Even Even Odd Even Odd

Odd Even Even Odd Odd Even Odd Odd Even Even

Odd Even Even Odd Odd Even Odd Odd Odd Even

Odd Even Odd Even Even Even Odd Odd Odd Even

Odd Even Odd Even Even Odd Even Even Odd Even

Odd Even Odd Even Even Odd Even Even Odd Odd

Odd Even Odd Even Even Odd Even Odd Odd Even

Odd Even Odd Even Even Odd Odd Even Odd Even

Odd Even Odd Even Even Odd Odd Even Odd Odd

Odd Even Odd Even Odd Even Even Even Odd Odd

Odd Even Odd Even Odd Odd Even Even Odd Even

Odd Even Odd Even Odd Odd Even Odd Odd Even

Odd Even Odd Odd Even Even Odd Odd Even Even

Odd Even Odd Odd Even Even Odd Odd Even Odd

Odd Even Odd Odd Even Even Odd Odd Odd Odd

Odd Even Odd Odd Even Odd Even Even Odd Even

Odd Even Odd Odd Even Odd Even Even Odd Odd

Odd Even Odd Odd Even Odd Even Odd Odd Odd

Odd Even Odd Odd Even Odd Odd Even Odd Even

Odd Even Odd Odd Even Odd Odd Even Odd Odd

Odd Even Odd Odd Even Odd Odd Odd Even Even

Odd Even Odd Odd Even Odd Odd Odd Even Odd

Odd Even Odd Odd Odd Even Even Even Even Odd

Odd Even Odd Odd Odd Even Odd Even Even Odd

Odd Even Odd Odd Odd Even Odd Even Odd Odd

Odd Even Odd Odd Odd Odd Even Even Even Odd

Odd Even Odd Odd Odd Odd Even Odd Even Odd
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Odd Even Odd Odd Odd Odd Odd Even Even Odd

Odd Even Odd Odd Odd Odd Odd Even Odd Even

Odd Even Odd Odd Odd Odd Odd Odd Even Even

Odd Even Odd Odd Odd Odd Odd Odd Odd Odd

Odd Odd Even Even Even Even Odd Odd Even Odd

Odd Odd Even Even Even Odd Even Even Odd Odd

Odd Odd Even Even Odd Even Even Even Even Odd

Odd Odd Even Even Odd Even Even Even Odd Odd

Odd Odd Even Even Odd Even Even Odd Even Odd

Odd Odd Even Even Odd Even Odd Even Even Odd

Odd Odd Even Even Odd Even Odd Even Odd Odd

Odd Odd Even Even Odd Odd Even Even Even Odd

Odd Odd Even Even Odd Odd Even Odd Even Odd

Odd Odd Even Odd Even Even Odd Odd Even Even

Odd Odd Even Odd Even Even Odd Odd Odd Even

Odd Odd Even Odd Even Even Odd Odd Odd Odd

Odd Odd Even Odd Even Odd Even Even Odd Even

Odd Odd Even Odd Even Odd Odd Even Odd Even

Odd Odd Even Odd Even Odd Odd Even Odd Odd

Odd Odd Even Odd Odd Even Even Even Even Odd

Odd Odd Even Odd Odd Even Even Even Odd Odd
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Odd Odd Even Odd Odd Even Odd Even Even Odd

Odd Odd Even Odd Odd Even Odd Even Odd Odd

Odd Odd Even Odd Odd Even Odd Odd Even Even

Odd Odd Even Odd Odd Even Odd Odd Odd Even

Odd Odd Even Odd Odd Odd Even Even Odd Even

Odd Odd Even Odd Odd Odd Even Odd Odd Even

Odd Odd Even Odd Odd Odd Odd Even Even Odd

Odd Odd Even Odd Odd Odd Odd Even Odd Even

Odd Odd Even Odd Odd Odd Odd Odd Even Even

Odd Odd Even Odd Odd Odd Odd Odd Odd Odd
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Odd Odd Odd Even Even Even Odd Odd Even Even

Odd Odd Odd Even Even Odd Even Even Odd Even

Odd Odd Odd Even Even Odd Even Odd Odd Even

Odd Odd Odd Even Even Odd Even Odd Odd Odd

Odd Odd Odd Even Even Odd Odd Odd Even Even

Odd Odd Odd Even Even Odd Odd Odd Even Odd

Odd Odd Odd Even Odd Even Even Even Even Odd

Odd Odd Odd Even Odd Even Even Odd Even Odd

Odd Odd Odd Even Odd Even Even Odd Odd Odd

Odd Odd Odd Even Odd Even Odd Odd Even Even

Odd Odd Odd Even Odd Even Odd Odd Odd Even

Odd Odd Odd Even Odd Odd Even Even Even Odd
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Odd Odd Odd Even Odd Odd Even Odd Even Odd
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