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ABSTRACT

TEN MILLION-ATOM INGAAS EMBEDDED
QUANTUM DOT ELECTRON G FACTOR
CALCULATIONS USING SEMI-EMPIRICAL

PSEUDOPOTENTIALS

Mustafa Kahraman

Ph.D. in Physics

Advisor: Ceyhun Bulutay

October 2022

Quantum technologies rely on key capabilities such as electron spin control over

the full-Bloch sphere, generation of indistinguishable single photons, or entangled

photon pairs. For all these purposes, arguably the most established semiconduc-

tor structure currently is the self-assembled InGaAs quantum dots (QDs). In

this thesis, electron ground state g tensors of embedded InGaAs QDs are calcu-

lated employing an atomistic empirical pseudopotential method. Computed QDs

have varied size, shape, indium molar fraction but uniform strain. The compo-

nents of the g tensor do not show appreciable deviation even though the shape is

anisotropic for some of the studied QDs. Universality is observed when family of

g factor curves is plotted with respect to energy gap which generalizes the find-

ings of a recent study under more restricted conditions. Our work expands its

applicability to alloy QDs with different shapes, and finite confinement putting

it on a more realistic foundation by allowing penetration to the matrix material.

Our regression model shows that the effect of magnetic field on the electron in

an InGaAs QD will be the minimal when the so-called, s-shell optical transition

energy is around 1.13 eV. Furthermore, low indium molar fraction is unfavorable

in terms of g factor tunability. Our findings could be beneficial in the fabrication

of g-near-zero QDs or other desired g values aimed for spintronic or electron spin

resonance applications.

Keywords: g factor, g tensor, quantum dot, atomistic electronic structure, In-

GaAs.
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ÖZET

ON MILYON ATOMLU, GÖMÜLÜ INGAAS KUANTUM
NOKTALARIN YARI-DENEYSEL POTANSIYELLERLE

ELEKTRON G ÇARPANI HESAPLAMALARI

Mustafa Kahraman

Fizik, Doktora

Tez Danışmanı: Ceyhun Bulutay

Ekim 2022

Kuantum teknolojileri elektron spininin tüm Bloch küresi üzerinde kontrolü,

ayırt edilemeyen tek foton üretimi, ya da dolanık foton çifti gibi yeteneklere

gereksinim duyar. Bütün bu amaçlar için en iyi yarıiletken yapı şu anda In-

GaAs kuantum noktalardır. Bu tezde farklı şekile, boyuta, indiyum yoğunluğuna

ve tekdüze gerinmeye sahip gömülü InGaAs kuantum noktaların temel elektron

durumlarının g tensörleri atom düzeyinde deneysel potansiyel yöntemiyle hesa-

planmıştır. Bazı kuantum nokta şekillerinin anizotropik olmasına rağmen bulu-

nan tensör değerlerinin birbirinden kayda değer bir farkı yoktur. g çarpanı - enerji

aralığı eğrileri çizdirildiğinde g çarpanının evrenselliği daha önceki bir çalışmada

kısıtlı parametreler için gösterilmişti. Bizim çalışmamız bu evrenselliğin alaşım

InGaAs kuantum noktalarda ve çevreleyen matrisine nüfuz ettiği daha gerçekçi

durumlarda görüldüğünü ortaya koymaktadır. Regresyon modelimiz optik geçiş

enerjisinin 1.13 eV olduğu durumda manyetik alanın elektron üzerindeki etkisinin

en az olduğunu söylemektedir. Ayrıca, az indiyum yoğunluğundaki kuantum nok-

taların g çarpanı ayarlanabilirliklerinin düşük olduğu bulunmuştur. Çalışmamız

sıfıra yakın g çarpanlı kuantum nokta üretimi ya da başka arzulanan g çarpanlı

kuantum noktaların spintronik veya elektron spin yankısı çalışmaları için yararlı

olacaktır.

Anahtar sözcükler : g çarpanı, g tensor, kuantum nokta, atomsal elekronik yapı,

InGaAs.
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Chapter 1

Introduction

g factor is the coupling constant which determines the strength of the interaction

of a charge with an external magnetic field. For a free electron according to Dirac

equation g = 2, in solids mainly due to spin-orbit coupling it gets renormalized,

which is denoted as g∗ [3, 4]. For the nanostructures like quantum dots (QDs), the

confinement further renormalizes the g factor by altering the orbital contribution

inside a heterogeneous environment [5], therewithal offers electrical tunability

[6, 7, 8, 9, 10]. One prominent structure is self-assembled InGaAs QDs, where

some quantum technological breakthroughs have been shown, such as indistin-

guishable single-photon sources [11], also on demand [12], spin-resolved resonance

fluorescence [13], spin-photon interface [14], entangled photon pairs [15], entan-

glement swapping [16], as well as simultaneous antibunching and squeezing [17].

The electron spin resonance (ESR) has also been shown in embedded InGaAs

QDs but it has not been reproduced since [18]. This is quite important as it

would have allowed direct magnetic field control of the carrier spin over the full

Bloch sphere.
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1.1 Tunability of g

g-near-zero (g∗ ∼ 0) QDs which would result in intriguing physics are also worth

considering for number of reasons. External magnetic field affects nuclear spins

three orders of magnitude less than the free electrons due to their Landé factor

ratio [19]. Therefore, ESR and nuclear magnetic resonance (NMR) frequencies

would mismatch by that amount. g-near-zero QDs reduce this mismatch which

allows for electron-nucleus counter spin flips. Comparable to Hartman-Hahn

double resonance [20, 21, 22], this can enable strong coupling between electron

and nuclear spin bath. From a fundamental scientific perspective, g-near-zero can

allow a spin-density wave state where the spins are perpendicular to the magnetic

field [23], and spin texture of skyrmionic excitations [24]. Electric gating can

change the sign of g∗ which promote controlled spin rotation [6, 25]. Furthermore,

g-near-zero allows for quantum state transfer between a resident electron spin

qubit in a QD and a flying photon qubit [26]. Therefore, a better grasp of the

variables that influence the g factor in InGaAs QDs, is very beneficial for many

research paths.

1.2 Current Challenges

The experimental studies that characterize the g factor [27, 28, 29, 30, 1, 31, 32,

33, 34, 2] suffer from inability to extract the sign using magnetoluminescence-

based measurements [28, 29, 8, 1, 31, 10, 33, 34], magnetocapacitance [30], and

photocurrent spectroscopy [2]. Another challenge is the lack of accurate structural

information, such as the alloy composition, shape, and consequently the strain

profile of the single QD. The efforts for incorporating the structural information to

the model that agree with both the cross-sectional scanning tunneling microscopy

and spectroscopy measurements [35, 36] do not clear the ambiguity as they would

ignore the decaying indium concentration around the periphary of the QD and

the wetting layer [37, 38].
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On the theoretical side, although more refined calculations exist [39, 40, 41, 42]

g factor calculations usually employ k ·p model which generally neglects the struc-

tural information [43, 44, 45, 46, 47]. As mentioned in these works, g factor has

direct dependence to the energy gap which renders lack of structural information

not crucial. These works verify the Roth-Lax-Zwerdling bulk expression for g fac-

tor [48] in nanostructures. Studying only compound QDs, a recent tight-binding

calculation validated that bulk term comprises the majority of the contribution

to the g factor [49]. These statements surely warrant additional theoretical re-

search, ideally using an atomistic electronic structure method that may provide

better insights into g∗ of alloy InGaAs QDs [27, 28, 29, 6, 8, 9, 1, 31].

1.3 This Work

In this work, we study g factor of InxGa1−xAs QDs where the core is under

homogeneous compressive strain [50, 51, 52]. There are a few choices for the host

material such as GaAs with band gap of 1.52 eV which is the most common one,

InxAl1−xAs with 2 eV [53] and (InxGa1−x)2O3 with 5 eV band gaps [54]. Here,

these wide range of band gap materials in mind, the host material is chosen to

be an artificial material with a band gap that is sufficient to confine the s-shell

ground state electron. The QDs that were studied have spherical and hydrophobic

and lens geometries which are cut from a sphere with respect to [111] axis. Alloy

profile of the QDs are chosen as uniform with various mole fractions considered.

For the QDs targeted in this Thesis, the total number of atoms inside the

nanostructures including the host material is around 10 million. Therefore, it is

important to use an efficient electronic structure method for the calculations. For

this purpose we used linear combination of bulk bands (LCBB) method which

can deal with such large number of atoms with low computational cost [55].

This method has been previously employed for the linear optical response [56],

third-order nonlinear optics [57], electroabsorption [58], and coherent population

transfer [59] in nanocrystals and for electronic structure [60] and ballistic trans-

port [61] in nanowire structures.
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Our findings verify aforementioned tight-binding study where universality of

g∗ with respect to energy gap has been reported [49]. Additionally, the regression

model that we have found applies to not only compound InAs but also InGaAs

alloy QDs with various shapes where the wavefunction penetrates to the host

material as in the real-world samples due to finite confinement. This can be valu-

able for controlled ESR in InGaAs QDs [18] or for avoiding it. Precise frequency

should be known for achieving ESR, hence the g factor. Our fit can be used for

predicting g factor from energy gap without having any information on indium

molar fraction, shape or other structural characteristics. Furthermore, we have

found that if electron spin qubit should be protected from the magnetic effects

(g∗ ∼ 0) [62], transition energy of the InGaAs QDs should be around 1.13 eV

according to our regression model [63].

This thesis is organized as follows: In Chapter 2 theory of LCBB technique, g

factor and spin-orbit interaction is described. Our results on g factor for numerous

QD structures are presented in Chapter 3 and conclusion in Chapter 4. The

computational details are given in Appendix.

4



Chapter 2

Theory

2.1 Linear Combination of Bulk Bands

For an atomistic electronic structure calculation, a large basis set such as plane

waves or localized Gaussian orbitals increases the computational cost in order

for the accuracy not to be compromised. The linear combination of bulk bands

(LCBB) technique solves the necessity of large basis set problem by the use of

small, physically intiutive basis set for a restricted energy window of interest [55].

Bulk Bloch functions of the constituent materials of the nanostructure is used to

form the basis set. Therefore, expanding the jth stationary state wave function

by (of say a QD) is given by

ψj(r) =
1√
N

∑
n,k,µ

Cµ,j
nk u

µ
nk(r)e

ik·r, (2.1)

where N is the number of unit cells of the supercell of the nanostructure, n is the

index of the bulk band, k is the wavevector in the first Brillouin zone, µ is the

material index, and Cµ,j
nk is the expansion coefficient. uµnk(r) is the cell-periodic

part of the Bloch functions of each constituent material µ which can be expanded

as a Fourier series as

uµnk(r) =
1√
Ω0

∑
G

Bµ
nk(G)eiG·r ,
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where G is the reciprocal lattice vector, and Ω0 is the volume of the primitive

cell [4]. The expansion coefficients Bµ
nk(G) come from the diagonalization of the

bulk Hamiltonian at each k point for a constituent material µ.

The total of kinetic energy and crystal potential give the single-particle Hamil-

tonian of a nanostructure. The crystal potential of the atomistic environment

comes from the empirical pseudopotentials [64]

H = T + Vxtal

= −ℏ2∇2

2m0

+
∑

µ,Rl,α

W µ
α (Rl) υ

µ
α(r−Rl − dµ

α) ,

where m0 is the free electron mass, Rl is the direct lattice vector pointing to each

primitive cell l, and dµ
α is the position vector of the basis atom α of material µ.

W µ
α (Rl) is the weight and takes the value of 1 if atom α of material µ is present at

Rl+dµ
α, zero otherwise. υµα is the local screened spherical atomic pseudopotential

[64].

Energy eigenvalues Ej and coefficients Cµ,j
nk are determined by the generalized

eigenvalue equation∑
n,k,µ

⟨n′k′µ′|T + Vxtal|nkµ⟩Cµ,j
nk =Ej

∑
n,k,µ

Cµ,j
nk ⟨n′k′µ′|nkµ⟩ ,

where the each matrix elements can be written as

⟨n′k′µ′|nkµ⟩ = δk,k′

∑
G

[
Bµ′

n′k(G)
]∗
Bµ

nk(G) ,

⟨n′k′µ′|T |nkµ⟩ = δk,k′

∑
G

ℏ2|k+G|2
2m0

[
Bµ′

n′k(G)
]∗
Bµ

nk(G) ,

⟨n′k′µ′|Vxtal|nkµ⟩ =
∑

G,G′

[
Bµ′

n′k′(G′)
]∗
Bµ

nk(G)

×∑
µ′′,α Vµ′′

α (|k+G− k′ −G′|)
×Wµ′′

α (k− k′)e−i(k+G−k′−G′)·dµ′′
α .

Here, Vµ′′
α and Wµ′′

α are the Fourier transforms of atomic pseudopotentials and
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the weight functions

Vµ′′

α (|k+G− k′ −G′|) =
1

Ω0

∫
υµ

′′

α (r)ei(k+G−k′−G′)·rd3r,

(2.2)

Wµ
α(k− k′) =

∑
j

W µ′′

α (Rj)e
i(k−k′)·Rj . (2.3)

2.2 Spin-Orbit Interaction

Up until now, we have considered only the spinless Hamiltonian. The spin-orbit

interaction can be added by following Hybertsen and Louie [65]. Spin-orbit in-

teraction Hamiltonian is given as

HSO =
∞∑
ℓ=1

|ℓ⟩V SO
ℓ (r)ℓ · σ ⟨ℓ| , (2.4)

where, ℓ is the orbital angular momentum, V SO
ℓ (r) is the nonlocal radial spin-orbit

potential, and σ is the Pauli spin operator. Instead of all ℓ, we limit ourselves

with the dominant p (ℓ = 1) component. With this simplification, we write the

matrix elements for the spin-orbit interaction as

⟨s,K|HSO |s′,K′⟩ = −i ⟨s|σ |s′⟩ ·
[
12π

K×K′

KK ′

×V SO
ℓ=1(K,K

′)

]
S(K′ −K) , (2.5)

where K = k + G, K′ = k + G′, |s⟩ is a spinor state, S(K′ − K) is the bulk

structure factor. V SO
ℓ (K,K ′) can be written as

V SO
ℓ (K,K ′) =

∫ ∞

0

dr

Ω0

r2jℓ(Kr) V
SO
ℓ (r) jℓ(K

′r) , (2.6)

where jℓ is the spherical Bessel function of the first kind and V SO
ℓ (r) is chosen as

a Gaussian function [66] and its amplitude being a fit parameter. V SO
ℓ (K,K ′) is

calculated once, and stored in a look-up table for further use.
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2.3 g Factor

The coupling between an external magnetic field and a nanostructure is

anisotropic which renders g factor to be rank-2 tensor
↔
g , which has nine lin-

early independent components [43]. The Zeeman Hamiltonian which describes

the interaction is

HZ =
1

2
µB σ · ↔

g ·B, (2.7)

where µB is the Bohr magneton. The formulation of
↔
g corresponds to incorpo-

rating spin-orbit interaction as a first-order perturbation [67, 4]. With respect to

the matrix elements between two confined states n and j, this bulk formulation

can be applied to QDs

pnj =
(2π)3

ΩSC

∫
SC

ψ∗
n(r) p ψj(r) d

3r , (2.8)

hnj =
(2π)3

ΩSC

∫
SC

ψ∗
n(r) h ψj(r) d

3r , (2.9)

where the integrations are over the volume of the supercell (ΩSC), p is the mo-

mentum operator, and h is an operator related to spin-orbit as HSO = h ·σ; see,
Eq. (2.4). The g factor for a chosen state n can be found as

↔
gn = 2

↔

I +
2

iℏ2m0

∑
jl

′ 1

ωnj

[
(hjl − hlj)(pnj × pln)

ωjl

+
(hln − hnl)(pnj × pjl)

ωnl

]
, (2.10)

where
↔

I is the identity matrix. The prime over the summation denotes j ̸= l,

and ωnj = (En − Ej)/ℏ. With some algebraic manipulations, we can arrive at

Roth’s bulk g factor expression [67]

↔
gn = 2

↔

I +
2

iℏ2m0

∑
jl

′ 1

ωnjωnl

(hnjpjl × pln

+ hjlpnj × pln + hlnpnj × pjl) , (2.11)

where we choose n and j as the nanostructure’s confined states as opposed to

bulk.

8



Chapter 3

Results1

3.1 Wavefunctions of InAs QDs

To highlight the atomistic nature of our electronic structure approach, we would

like to start with a small album of wavefunctions of typical QDs. They illustrate

the energetic hierarchy of low-lying electron states subject to band mixing and

quantum confinement. In Fig. 3.1 we present an atomistic wavefunction and

its envelope function of an InAs QD that are calculated employing LCBB. In

Fig. 3.2 and Fig. 3.3 conduction band envelopes of freestanding spherical and

hemispherical InAs QDs with 10 nm diameter are shown, respectively. Due to

anisotropy of hemispherical QD, the wavefunctions get mixed in orbital angular

momentum. Mixing is more pronounced in lens shaped QDs that we will eloborate

in the remainder of the chapter.

1The results in this chapter are published in Ref. [63]
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Figure 3.1: Atomistic wavefunction of InAs QD (left) and its extracted envelope
(right).

Figure 3.2: Conduction band wavefunction envelopes of freestanding spherical
InAs QD with 10 nm diameter.
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Figure 3.3: Conduction band wavefunction envelopes of freestanding hemispher-
ical InAs QD with 10 nm diameter.
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Figure 3.4: Principal
↔
g values for spherical, hydrophobic-contact-angle, hemi-

spherical, lens shaped QDs under uniform compressive strain of ϵxx = ϵyy = ϵzz =
−0.02. Non-spherical shapes were cut by (111) planes from the spherical QD.

3.2 Geometrical Construction of QDs and g

Tensor

In this section we are looking at embedded spherical InAs QD of 45 nm diameter

which is under hydrostatic strain of ϵH = −0.06 or i.e. 2% compressive strain. In

Fig. 3.4, the spherical QD is cut by (111) planes such that the cut QDs correspond

to a hydrophobic-contact-angle, hemispherical and lens shaped QDs. We are

interested in the variation in principal values of
↔
g . Confinement increases by

the decreasing volume of the QD which alters the g∗ from -2.47 to 0.21, while

g∗ ∼ 0 corresponds to a lens shaped QD with bigger height than the one given

in Fig 3.4. The anisotropy between principal values of
↔
g is greater in spherical

QD with an absolute difference of 0.03 even though other QDs have anisotropic

shapes. This negligible difference shows the accuracy of our results so that only

the major principal value will be given in the remaining plots.
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3.3 Indium Mole Fraction Dependence

We consider spherical, hemispherical and lens shaped InxGa1−xAs QDs under

-2% uniform compressive strain with fixed diameters of about 46 nm and and

for the lens shaped QD with a height of 11-12 nm. By varying indium molar

fraction we will examine g factor and the energy gap Eg between highest occupied

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). In

Fig. 3.5 both the g∗ and the energy gap decreases as the indium molar fraction

increases. In Fig. 3.5(a) g∗ decreases drastically for the indium rich QDs which

shows increase in g-tunability. Also, the sign of g∗ changes in this region.

13
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Figure 3.5: (a) g factor, and (b) HOMO-LUMO energy gap, Eg of the spherical,
hemispherical and lens-shaped InxGa1−xAs QDs under −2% homogeneous strain
as a function of the indium molar fraction. QDs have the same diameter of 46 nm,
and the height of the lens QDs are about 11-12 nm. Lines are to guide the eye.
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3.4 Dimensional Dependence in Lens QDs

In this section and the next, dimensional dependence to g factor in lens shaped

QDs is studied. In Fig. 3.6 we fix the aspect ratio to 0.2 which is the height over

diameter of the lens QDs under compressive strain and show family of curves

for varying indium molar fraction. Looking at the QDs having the same indium

molar fractions, we conclude that due to increased strain energy gap increases

in Fig. 3.6(b). This is due to the negative deformation potentials of the InAs

and GaAs [68]. Energy gap comes into play in Eqs. (2.11) in the denominator.

Therefore, the increase in energy gap means less contribution to the g factor as in

Fig. 3.6(a). The same conclusion can also be reached by the similarity between

conduction band effective mass formula and the g factor expression, increase of

energy gap decreases the effective mass [69]. Furthermore, spin-orbit interaction

contribution increases with increasing indium molar fraction which means contri-

bution to g factor also increases. For the lower indium molar fractions, g factor

being almost size independent also holds true for Fig. 3.5.

In Fig. 3.7 we keep basal diameter constant at 35 nm and height was varied. As

same as previous discussions, g factor decreases with decreasing energy gap but

this time the change in g factor larger due to increasing aspect ratio. g-near-zero

corresponds to an InAs QD. In Fig. 3.7 we see data points for (x = 0.5, ϵii =

−0.01) and (x = 0.8, ϵii = −0.03) overlaps with each other in accordance with a

universal behavior.

3.5 Universality with respect to gap energy

In Fig. 3.8 we plot all of the g factor data in Figs. 3.5, 3.6, 3.7 with respect to

energy gap Eg which could even be improved by addition of excitonic binding en-

ergies [58]. We see that all the data that corresponds to various strain conditions,

alloy fractions, dimensions, and host material follow a universal curve which is
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the bulk expression for the g factor [48, 44]

g∗(Eg) = 2− 2.06

Eg(Eg − 0.22)
, (3.1)

where Eg is in eV. This is the main result of this Thesis. This expression, while

supporting the previous findings in Ref. [49], also extends it for the cases of

different settings that our data provides that are stated above.

3.6 Utility of the Universal Expression

The regression curve in Eq. 3.1 allows us to predict the case where g ∼ 0 to

be around 1.13 eV where the QD would be least prone to magnetic field. Pho-

tocurrent spectroscopy, magnetocapacitance and magnetoluminescence experi-

ments that can extract g factor cannot resolve its sign. In Fig. 3.8(a) two ex-

perimental data is given where g factor - energy gap pairs for an InGaAs lens

QD with a diameter of 30 nm and height of 7− 8 nm [1] designated by pink star

and for another with pink cross [2]. Making use of the fit function in Eq. 3.1, we

can determine their signs to be positive. Furthermore, Eq. 3.1 can be used for

engineering g factor [29, 70] to a desired value by tuning the energy gap.
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19



Chapter 4

Conclusion

Spintronics, which primarily relies on spin as opposed to electrical charge, gives

unique opportunities for highly sophisticated quantum applications. Being opti-

cally active, the direct gap semiconductors, and in particular InGaAs based QDs

are unsurpassed for spin-dependent quantum technologies. Some quantum phe-

nomena exhibited on this system are single photon sources, dynamical nuclear

spin polarization, optically detected nuclear magnetic resonance, spin-photon in-

terface as well as entanglement swapping. Despite of all these impressive achieve-

ments, as a major shortcoming, reproducible ESR that can be singled out from

the background spin noise has not been unambiguously demonstrated for embed-

ded QDs.

In this Thesis, g tensors of embedded InGaAs QDs having various shapes,

sizes, indium molar fractions and strain profiles are calculated by employing an

atomistic electronic structure method. The analysis of the computed g factors

reveals general trends. Our findings can be valuable for achieving g-near-zero

InGaAs QDs or ESR-based quantum logic operations. Our study verifies a recent

tight-binding article on universal behavior of g factor with respect to energy gap

in compound QDs [49]. We demonstrated that this universality also covers alloy

InGaAs QDs with different strain profiles and shapes where the penetration to

the host material is allowed.
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4.1 Suggestions as Follow-up Directions

On the order of 10-million atom QD g-factor computation is rather an ambitious

task. This inevitably obliged us to make a number of simplifying assumptions in

our atomistic model, mainly posed by its prohibitive computational budget. In

this final part, we would like to list several directions in which our research can

be improved from both methodological as well as materials aspects. Foremost,

the LCBB technique is non-selfconsistent, unlike the state-of-the-art electronic

structure codes like VASP [71]. As a matter of fact, we owe this simplification to

reaching 10 million-atom scale with modest computational powers. Nevertheless,

it brings adverse issues such as tuning the pseudopotential energy line-ups (hence

additional ad hoc parameters) under strain or interfaces etc, which would not be

the case for a self- consistent approach. Therefore, bringing a computationally-

cheap self-consistency to LCBB is always welcomed. Another limitation that we

ought to introduce was assuming a homogeneous strain in QDs which enabled

the use of standard FFT routines. In realistic InGaAs QDs as relaxed by molec-

ular static force fields [52], an inhomogeneous atomistic strain profile exists that

necessitate non-uniform FFT [72, 73], or linearized handling of inhomogeneous

strain using standard FFT [55] . As another concern in LCBB we should also

note its non-monotonic k-grid convergence.

Regarding specifically the g-factor calculation, as opposed to the generalized

Roth expression [67] as we used in this Thesis, an alternative is to make use

of geometric phase concepts [74]. Here, the numerical problem arising from the

random phases introduced to eigenvectors by eigensolvers need to be confronted.

On the materials side, g-factor of few-percentage antimony containing InGaAs

QDs would be interesting which would bring wider tunability for spintronic ap-

plications.
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Appendix A

Computational Details

We use empirical pseudopotentials for strained/natural InAs and GaAs that are

fitted to band structures from hybrid density functional theory [68] where they

are fitted with approximately 120 reciprocal lattice vectors up to an energy cut-off

below about 10 Ry. To represent alloy InxGa1−xAs core, Vegard’s law was used in

mixing InAs and GaAs pseudopotentials. Experimental spin-orbit splittings are

used to fit the spin-orbit interaction in the bulk InAs and GaAs which contributes

to g factor.

The sum in the
↔
gn expression in Eq. (2.11) are over all QD states, but it is

important to characterise the states that are close to the state n in terms of

energy which are dependent to the quality of the LCBB basis set. The basis set

are constructed by employing top four valence bands and a lowest conduction

band of the core/host materials under strain and without spin on a 5 × 5 × 5

reciprocal space grid around the Γ point. The LCBB sets that we use in this work

accommodate around two thousand elements and we verified the convergence for

the supercell dimensions of the nanostructures of interest.

Due to non-self-consistency of the emprirical psuedopotentials [64], an extra

parameter was required for the alignment of the bulk bands under strain which
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is implemented as a hydrostatic strain dependent pseudopotential

V (q; ϵ) = [1 + γ ϵH ] V (q) , (A.1)

where γ is the fitting parameter and ϵH = ϵxx+ ϵyy+ ϵzz is hydrostatic strain [66].

In our calculations lattice constant was chosen to be the same across the supercell

which corresponds to a uniformly strained QD. Due to this simplification, choise of

the basis sets gets easier and the use of fast Fourier transform (FFT) is allowed in

Eq. (2.3) [75]. Due to the strain-dependent band gap, incorporating the existing

theoretical and experimental band offset data [76, 77, 78] is still hard. The

use of uniform lattice constant requires various artificial matrix materials where

the lattice constant matches with that of strained core QD. Their band gap are

between 1.52 eV (corresponds to GaAs) and 5 eV (corresponds to InxGa1−x)2O3.

In reality, for an embedded InGaAs QD, the strain is position dependent due

to relaxation [77, 66, 50]. For LCBB, this corresponds to using non-uniform FFT

and bigger and richer basis set which increases computational cost significantly,

even if we use optimized non-uniform FFT packages [72, 73]. That is why we

have limited this work on various uniformly strained QDs where the uniform

strain corresponds to average strain in a QD [50, 51, 52].
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