Variations on a theme of Mirsky

Yıldırım Akbal
Department of Mathematics
Atılım University, 06830 Gölbaşı, Ankara, Turkey
yildirim.akbal@gmail.com

Ahmet M. Güloğlu
Department of Mathematics
SA 131, Bilkent University, 06800 Bilkent, Ankara, Turkey
guloglua@fen.bilkent.edu.tr

Received 13 September 2021
Revised 2 February 2022
Accepted 7 April 2022
Published 5 July 2022

Let \(k \) and \(r \) be non-zero integers with \(r \geq 2 \). An integer is called \(r \)-free if it is not divisible by the \(r \)th power of a prime. A result of Mirsky states that there are infinitely many primes \(p \) such that \(p + k \) is \(r \)-free. In this paper, we study an additive Goldbach-type problem and prove two uniform distribution results using these primes. We also study certain properties of primes \(p \) such that \(p + a_1, \ldots, p + a_\ell \) are simultaneously \(r \)-free, where \(a_1, \ldots, a_\ell \) are non-zero integers and \(\ell \geq 1 \).

Keywords: Hardy–Littlewood circle method; \(r \)-free shifted primes; Goldbach-type additive problems.

Mathematics Subject Classification 2020: 11P32, 11N05, 11P55

1. Introduction and Statement of Results

Let \(k \) be a non-zero integer and \(r \geq 2 \) be an integer. Let \(\mathcal{P}_{r,k} \) denote the set of primes \(p \) such that \(p + k \) is positive and not divisible by an \(r \)th power of a prime. In [13] Mirsky showed that \(\mathcal{P}_{r,k} \) has positive density in the set of primes. More precisely, he showed that for every sufficiently large \(x \), the asymptotic formula

\[
\# (\mathcal{P}_{r,k} \cap [1, x]) = \prod_{p \mid k} \left(1 - \frac{1}{\phi(p^r)}\right) \frac{x}{\log^A x} + O \left(\frac{x}{\log^A x} \right)
\]

holds for any \(A > 0 \), where \(\phi \) is the Euler-totient function and \(\text{li}(x) = \int_2^x 1/(\log t)\,dt \). Mirsky’s result is based on inclusion and exclusion principle together with an

*Corresponding author.
application of the Siegel–Walfisz theorem; therefore, the error term here is very weak compared to the best error term in the prime number theorem due to Vinogradov and Korobov (cf. [10, 23]). Furthermore, assuming that there are no Siegel zeros, the result of Languasco [12] can be recast that the above error term can be taken as small as the standard error term in the prime number theorem (cf. [8, §18]). Following the work of Mirsky, it can be easily verified that under GRH for all Dirichlet L-functions the above error term can be taken $\ll x^{(r+1)/(2r)}(\log x)^{(r-2)/r}$.

In this paper, our first goal is to study primes that lie in the set $\cap_{i=1}^{r} P_{r,a_i}$, where a_1, a_2, \ldots, a_r are non-zero integers, for a fixed $r \geq 2$. In Theorem 1.1 we give an asymptotic formula for the counting function of these primes. Similar results appeared in [11, 13], but our theorem allows the ℓ tuple and ℓ itself to vary. A similar result using the circle method was proved in [8] (not published) for primes in the set $\cap_{i=1}^{r} P_{r,a_i}$, where $2 \leq r_1 \leq \cdots \leq r_{\ell}$ are fixed. In [8], an asymptotic formula is given for the number of primes p such that $p + 1$ and $p + 2$ are square-free under GRH.

Our second goal is to prove an asymptotic formula for the number of representations of a given integer as the sum of s primes from $P_{r,k}$. Our third goal is to give two uniform distribution results using the primes in $P_{r,k}$ for a fixed non-zero integer k and $r \geq 2$.

Let a denote an ℓ-tuple $(a_1, a_2, \ldots, a_{\ell})$ of non-zero integers, where $\ell \geq 1$. Define

$$\pi_r(x, a) := \# \{p \leq x : p + a_i \text{ is positive and } r\text{-free for each } i = 1, \ldots, \ell \}.$$

Put $|a| = \max_i |a_i|$, and

$$\mathcal{S}_r(a) = \prod_p \left(1 - \frac{\nu_p(a)}{\phi(p^s)}\right),$$

where $\nu_p(a)$ is the number of distinct residue classes a_i modulo p^s that are coprime to p. We call a a permissible tuple of non-zero integers if there are infinitely many primes p such that $p + a_1, \ldots, p + a_{\ell}$ are r-free. It is not hard to see that if $\nu_p(a) = \phi(p^s)$ for some p, then a is not permissible. The next theorem establishes the converse.

Theorem 1.1. Let $r \geq 2$ be a fixed integer, and a denote any ℓ-tuple $(a_1, a_2, \ldots, a_{\ell})$ of non-zero integers, where $\ell \geq 1$. Given $0 < \varepsilon < (\log 2)^{-1}$ and $A > 0$, the estimate

$$\pi_r(x, a) - \mathcal{S}_r(a) \text{li}(x) \ll \ell(\log x)^{(r-1)|a|} + \text{li}(x)(\log x)^{-A}$$

holds uniformly for

$$1 \leq \ell < ((\log 2)^{-1} - \varepsilon) \log \log \log x$$

for every sufficiently large x. Here, the implied constant depends at most on r, A and ε.

Under GRH for all Dirichlet L-functions the error estimate above is to be replaced by [24, 25], wherein the implied constant depends only on r. Furthermore, the largest range of ℓ and $|a|$ such that the error is still $x/(\log x)^2$ is given by [27].
Compared with the main results of [1, 3, 8], our result goes one step further as the parameters \(\ell \) and \(|a| \) in the above theorem are allowed to increase as a function of \(x \), which is not addressed in these papers.

Remark 1.2. By a simple argument, we can always find a permissible \(\ell \)-tuple for a given \(\ell \geq 2 \). This fact, as well as the lower bound

\[
\mathfrak{G}_r(a) \geq e^{-C(r)},
\]

for some \(C = C(r) > 0 \), whenever \(a \) is a permissible \(\ell \)-tuple, will be proved subsequent to the proof of Theorem 1.1.

Theorem 1.3. Let \(0 < \epsilon < 1/(\log 2) \) and \(r \geq 2 \) be given. Then, for all sufficiently large \(H \), the equation

\[
\sum_{|a| \leq H} \mathfrak{G}_r(a) = \left(\frac{2H}{\zeta(r)} \right)^{\ell} A \ll (2H)^{\ell-\epsilon-1}(\log H)^{\frac{x^\ell}{1+\epsilon}}(\zeta(r)+1)^{\frac{(r-1)(\ell-1)}{r}}
\]

(1.1)

holds uniformly for \(1 \leq \ell \leq (1/\log 2 - \epsilon) \log \log H \), where \(\zeta(s) \) is the Riemann zeta function and the sum is taken over \(\ell \)-tuples \(a \) with non-zero coordinates. The implied constant depends only on \(r \) and \(\epsilon \).

Theorem 1.4. Let \(0 < \epsilon < (\log 2)^{-1} \), \(r \geq 2 \), and \(A \) with \(A > 1/(r-1) \) be given. Then, for every sufficiently large \(x \), the estimate

\[
\sum_{|a| \leq H} \pi_r(x, a) = \left(\frac{2H}{\zeta(r)} \right)^{\ell} \pi(x) \ll \frac{x\ell(2H)^{\ell-\epsilon-1}(\log H)^{\frac{x^\ell}{1+\epsilon}}(\zeta(r)+1)^{\frac{(r-1)(\ell-1)}{r}}}{\log^{1-1/r} x} + \frac{\ell (\log x)^{\frac{x^\ell}{1+\epsilon}}(2H)^{\ell-1}(\log H)^{\frac{(x^\ell)(\ell-1)}{r}}}{(H + x^{1/r})^{(1 + \zeta(r))^{\frac{(r-1)}{r}}}}
\]

holds uniformly for

\[
\log^A x \leq H \leq \frac{x}{2.1 \log x} \exp(-\log x)^{1-\epsilon} \log^2 \log x), \quad \ell \leq (1/\log 2 - \epsilon) \log \log H,
\]

(1.2)

where the sum is taken over \(\ell \)-tuples \(a \) with non-zero coordinates and the implied constant depends only on \(r \) and \(\epsilon \). Here, \(\pi(x) \) denotes the number of primes not exceeding \(x \).

Remark 1.5. Although a similar result can be obtained directly using Theorem 1.1, the latter gives a power saving in \(H \).
4. Akbal & A. M. G"ulo"glu

Theorem 1.6. For every sufficiently large integer N, the asymptotic formula

$$
\sum_{\begin{subarray}{c}
p_1, \ldots, p_s \in \mathcal{P}_{r,k} \\
p_1 + p_2 + \cdots + p_s = N
\end{subarray}} \prod_{1 \leq i \leq s} \log p_i = \mathcal{S}_{r,k}(N) \frac{N^{s-1}}{(s-1)!} + O \left(\frac{N^s}{\log^A N} \right) \quad (1.3)
$$

holds for every $A > 0$ and $s \geq 3$, where $\mathcal{S}_{r,k}(N)$ is given by

$$
\mathcal{S}_{r,k}(N) = \sum_{q \geq 1 \ (a, q) = 1} \phi(q) \sum_{l \leq q} \frac{\mu_k(d)}{\phi(q, a q')} \sum_{q \rightarrow \infty} e \left(\frac{a}{q} \right) \sum_{d \mid k, d' \mid s} \frac{\alpha}{\phi(q, d')} \left(1 + o \left(\frac{1}{\log q} \right) \right) \quad (1.4)
$$

The implied constant depends on s, r, k and A. Furthermore, $\mathcal{S}_{r,k}(N) > C(s, r, k)$ for some positive absolute constant $C(s, r, k)$, provided that the parities of N and s are the same and in the case $r = 2$ and k is odd, $4 \nmid ks + N$ when N is odd, and $4 \mid ks + N$ when N is even.

For the explicit formula of $\mathcal{S}_{r,k}(N)$, see (2.29).

As we go through the proof of Theorem 1.6, the techniques that we develop allow us to give a uniform distribution result on the fractional parts of αp when $p \in \mathcal{P}_{r,k}$. To do so, we first define irrational numbers that are of finite type. An irrational number α is called of finite type if

$$
\tau = \sup \left\{ \beta \in \mathbb{R} : \liminf_{q \to \infty} q^\beta ||\alpha q|| = 0 \right\} < \infty,
$$

where the notation $||x||$ is used to denote the distance from the real number x to the nearest integer. We note here that by Dirichlet’s approximation theorem one has $\tau \geq 1$. The celebrated theorems of Khinchin [9] and of Roth [19, 20] state that $\tau = 1$ for almost all (in the sense of the Lebesgue measure) real numbers and for all irrational algebraic numbers, respectively.

Theorem 1.7. Given a real number x, let $\{x\}$ denote the fractional part of x. For any positive irrational number α and any real number β, the fractional parts of $ap + \beta$ for $p \in \mathcal{P}_{r,k}$ are uniformly distributed in the unit interval; that is,

$$
\# \{ p \leq x : p \in \mathcal{P}_{r,k} \text{ and } a \leq \{ap + \beta\} \leq b \} = (b - a)\#\mathcal{P}_{r,k}(x)(1 + o(1)),
$$

uniformly for $0 \leq a < b \leq 1$.

Furthermore, if α is of finite type τ, then for every $\epsilon > 0$ and every $0 \leq a < b \leq 1$,

$$
\# \{p \leq x : p \in \mathcal{P}_{r,k} \text{ and } a \leq \{ap + \beta\} \leq b \} - (b - a)\#\mathcal{P}_{r,k}(x) \\
\ll x^{1 - \frac{1}{(\tau + 1)(r + 1) - 1}} + \epsilon.
$$

The implied constant is independent of a and b.

We now give a corollary of Theorem 1.7. For any irrational number $\alpha > 1$ and any real number β, the non-homogeneous Beatty sequence is defined by

$$
\mathcal{B}_{\alpha, \beta} = \{ n \in \mathbb{N} : n = [\alpha m + \beta] \text{ for some } m \in \mathbb{N}\setminus\{0\} \}.\]
Vinogradov showed that $B_{\alpha,0}$ contains infinitely many primes (see [22, §XI]) when $\alpha > 1$ is irrational. The next corollary improves on Vinogradov’s result.

Corollary 1.8. Let $r \geq 2$. For any irrational number $\alpha > 1$, any real number β, and any non-zero integer k, $\mathcal{P}_{r,k} \cap B_{\alpha,\beta}$ is an infinite set.

For $c > 1$, consider the set
$$N_c = \{\lfloor mc \rfloor : m \in \mathbb{N}\}.$$ Piatetski–Shapiro was the first to prove that there are infinitely many primes in N_c whenever $1 < c < 12/11$ (cf. [16]). The interested reader is invited to investigate the largest range of $c > 1$ such that $\mathcal{P}_{r,k} \cap N_c$ is an infinite set.

1.1. Preliminaries and notation

1.1.1. Notation

Given a real number x, we write $e(x) = e^{2\pi ix}$, $\{x\}$ for the fractional part of x, $[x]$ for the greatest integer not exceeding x and $\lfloor x \rfloor$ for the smallest integer not less than x.

We recall that for functions F and real non-negative G, the notations $F \ll G$ and $F = O(G)$ are equivalent to the statement that the inequality $|F| \leq \alpha G$ holds for some constant $\alpha > 0$. Further, we use $F \asymp G$ to indicate that both $F \gg G$ and $F \ll G$ hold. The notations $F \ll_c G$ is use to denote the implied constant depends at most on c. In a slight departure from convention, we shall frequently use C to mean a positive number possibly different at each occurrence.

For positive integers a_1 and a_2, $[a_1, a_2]$ denotes their least common multiple and (a_1, a_2) denotes their greatest common divisor. $\tau(n)$ denotes the number of positive divisors of n, $\mu(n)$ denotes the usual Möbius function, for any positive integer k $\mu_k(n)$ is defined to be $\mu(n)$ if $(k, n) = 1$, and 0 otherwise, $\omega(n)$ denotes the number of positive divisors of n, and $\phi(n)$ denotes Euler’s totient function.

We put
$$\mathcal{P}_{r,a_1,\ldots,a_k} = \{p \text{ prime} : p + a_i \text{ is positive and } r\text{-free for each } i = 1, \ldots, k\}.$$ For any set S and any real number x, $S(x)$ denotes the set of elements of S not exceeding x.

1.1.2. Preliminaries

We first start by defining Ramanujan sums frequently used in the proof of Theorem [17]. For the proof of the following result, see [17, Hilfssatz 2].

Lemma 1.9. Let a and q be positive integers such that $(a, q) = 1$ and let d be a positive divisor of q. Let k be an integer with $(k, d) = 1$. The Ramanujan sums
defined by
\[
c_q(a, d) = \sum_{\substack{r \mod q \\ (r, q) = 1}} d \left\lfloor \frac{ar}{q} \right\rfloor
\]
satisfy
\[
c_d(a, q) = \begin{cases}
\mu \left(\frac{q}{d} \right) e \left(\frac{au}{d} \right) \frac{\phi(q)}{\phi(q/(q,a))} & \text{if } (d, q) = 1, \\
0 & \text{else},
\end{cases}
\tag{1.5}
\]
where \(u \) is the solution of the congruence \(qu \equiv 1 \mod d \).

When \(d = 1 \), we get the classical Ramanujan sums. For the proof of the following identity, see [5, §24].

Lemma 1.10. Let \(a \) be a non-zero integer and let \(q \) be a positive integer. Then
\[
c_q(a) = \sum_{\substack{r \mod q \\ (r, q) = 1}} e \left(\frac{ar}{q} \right) = \mu \left(\frac{q}{d} \right) e \left(\frac{au}{d} \right) \frac{\phi(q)}{\phi(q/(q,a))}.
\]

Lemma 1.11. For any multiplicative functions \(f_1, f_2, \ldots, f_k \), the arithmetical function \(L_k \) defined by
\[
L_k(n) = \sum_{\substack{d_1|n, \ldots, d_k|n \\ [d_1, d_2, \ldots, d_k] = n}} f_1(d_1)f_2(d_2) \cdots f_k(d_k)
\]
is multiplicative.

Proof. Assume that \((m, n) = 1 \). For any divisor \(d_i \) of \(nm \), we write \(d_i = e_i r_i \), where \(e_i \mid n \) and \(r_i \mid m \). Note that such \(e_i \) and \(d_i \) are unique. Therefore,
\[
L_k(nm) = \sum_{\substack{e_1 r_1|mn \\ \ldots, e_k r_k|mn}} f_1(e_1 r_1)f_2(e_2 r_2) \cdots f_k(e_k r_k).
\]
At this point one can prove by induction on \(k \geq 2 \) that for such \((e, r_i) \)
\[
[e_1 r_1, \ldots, e_k r_k] = [e_1, \ldots, e_k] [r_1, \ldots, r_k].
\]
Using multiplicativity of \(f_i \) one has
\[
L_k(mn) = \sum_{\substack{e_i|n, r_i|m \\ \ldots, e_k=r_k|n}} f_1(e_1)f_1(r_1)f_2(e_2)f_2(r_2) \cdots f_k(e_k)f_k(r_k) = L_k(m)L_k(n),
\]
and hence the claim follows.
Lemma 1.12. For any integer $\ell > 1$ and any positive integer n, define

$$g_{\ell}(n) = \sum_{d_1, \ldots, d_{\ell} \geq 1 \atop \prod d_i = n} |\mu(d_1)\mu(d_2)\cdots\mu(d_{\ell})|.$$

Then for any real number $z \geq 1$ and any integer $r \geq 2$, one has the following upper bounds:

$$\sum_{n > z} \frac{g_{\ell}(n)}{n^r} < \frac{e \cdot (1 + \log 3z)^{2\ell - 1}}{z^{r-1}},$$

$$\sum_{n > z} \frac{g_{\ell}(n)}{\phi(n^r)} < \frac{e n^2 (15\pi^{-2}(1 + \log 3z))^{2\ell - 1}}{3z^{r-1}}.$$

(1.6)

Proof. Let l be a real number in $(0, r - 1)$ to be determined. By Rankin’s trick

$$\sum_{n > z} \frac{g_{\ell}(n)}{n^r} \leq \frac{1}{z^l} \sum_{n=1}^{\infty} \frac{g_{\ell}(n)}{n^{r-l}}.$$

Since $g_{\ell}(n) \leq \tau^\ell(n) \ll n^\ell$ for fixed ℓ, the latter sum converges. By Lemma 1.11, g_{ℓ} is multiplicative and is supported only on square-free numbers. Furthermore, $g_{\ell}(p) = 2^\ell - 1$. Using the inequality $1 + nx \leq (1 + x)^n$, which holds for every positive integer n and every real number $x > -1$, one has

$$\prod_{p} \left(1 + \frac{2^\ell - 1}{p^{r-l}}\right) \leq \prod_{p} \left(1 + \frac{1}{p^{r-l}}\right)^{2^\ell - 1} = \left(\zeta(r-l)\right)^{2^\ell - 1}.$$

Since $\zeta(\sigma) < \frac{\sigma}{\sigma-1}$ for $\sigma > 1$ (cf. [15 Corollary 1.14]), it follows that

$$\sum_{n > z} \frac{g_{\ell}(n)}{n^r} < \left(1 + (r - l - 1)^{-1}\right)^{2^\ell - 1}.$$

Choosing $l = r - 1 - (\log 3z)^{-1} > 0$, the first upper bound follows.

As for the second upper bound, we record the inequality

$$\frac{1}{\phi(n^r)} = \frac{1}{n^r} \prod_{p \mid n} \left(1 + \frac{1}{p} \right)^{-1} < \frac{\pi^2}{6n^r} \sum_{d \mid n} \frac{|\mu(d)|}{d},$$

which yields

$$\sum_{n > z} \frac{g_{\ell}(n)}{\phi(n^r)} < \frac{\pi^2}{6} \sum_{nm > z} \frac{g_{\ell}(nm)|\mu(n)|}{n^r m^{r+1}} \leq \frac{\pi^2}{6} \sum_{m=1}^{\infty} \frac{g_{\ell}(m)}{m^{r+1}} \sum_{n > z/m} \frac{g_{\ell}(n)}{n^r}.$$

Here, we have used the inequality $g_{\ell}(nm) \leq g_{\ell}(n)g_{\ell}(m)$ and that $|\mu(m)|$ can be ignored since g_{ℓ} is supported on square-free integers. By the first inequality in
Lemma 1.14 (Erdős-Turán inequality [11, Chap. 2. Eq. 2.42]).

By (1.6), it follows that

$$\sum_{m \leq z} \frac{g_e(m)}{m^{r+1}} \sum_{n > z/m} \frac{g_e(n)}{n^r} < \frac{e (1 + \log 3z)^{2\ell - 1}}{z^{r-1}} \sum_{m \leq z} \frac{g_e(m)}{m^r}$$

$$\leq \frac{e (1 + \log 3z)^{2\ell - 1}}{z^{r-1}} \prod_p \left(1 + \frac{2^\ell - 1}{p^r}\right)$$

$$\leq \frac{\left(\zeta(2)\zeta(4)^{-1}(1 + \log 3z)\right)^{2\ell - 1}}{z^{r-1}}.$$

Finally,

$$\sum_{m > z} \frac{g_e(m)}{m^{r+1}} \sum_{n > z/m} \frac{g_e(n)}{n^r} = \prod_p \left(1 + \frac{2^\ell - 1}{p^r}\right) \sum_{m > z} \frac{g_e(m)}{m^{r+1}}$$

$$\leq \frac{\left(\zeta(2)\zeta(4)^{-1}(1 + \log 3z)\right)^{2\ell - 1}}{z^r}.$$

Combining the last two inequalities and using \(\zeta(4) = \pi^4/90\), we get the desired result.

\[\square\]

Lemma 1.13. Let \(N \geq 2\) be a real number. Assume that \(|\alpha - \frac{d}{q}| \leq \frac{1}{4}\) with \((a, q) = 1\), then

$$\sum_{\substack{p \leq N \quad \text{mod} \; d \quad \text{or} \; b \mod \; d \quad \text{or} \; d \mod \; N \leq 3}} (\log p)e(\alpha p) \ll \left(\frac{(q, d)N}{dq^{1/2}} + \frac{q^{1/2}N^{1/2}}{(q, d)^{1/2}} + \frac{N^{1/5}}{d^{2/5}}\right) \log^3 N.$$

Proof. This result follows from [2] noting that the contribution of prime powers \(p^r \leq N\) with \(r \geq 2\) is absorbed by the third term above.

\[\square\]

Lemma 1.14 (Erdős-Turán inequality [11, Chap. 2. Eq. 2.42]). Let \(\{t_1, t_2, \ldots, t_K\}\) be a set of real numbers. Suppose that \(\mathcal{I} \subset [0, 1)\). Then,

$$\#\{1 \leq i \leq K : \{t_i\} \in \mathcal{I}\} \ll \frac{K}{H} + \sum_{1 \leq b \leq H} \frac{1}{b} \left|\sum_{i \leq K} e(bt_i)\right|$$

for any \(H \geq 1\). The constant in the \(O\)-term is absolute.

Lemma 1.15. Let \(x > 2\) be a real number, \(k\) a non-zero integer with \(1 \leq |k| < x - 1\), \(f\) an arithmetic function such that \(|f(n)| \leq 1\). Then, for any positive integer \(Q\), any integer a coprime to \(Q\), and any real number \(1 < z \leq (x + k)^{1/r}\), one has

$$\sum_{\substack{p \leq x \quad \text{mod} \; D \quad \text{or} \; p \equiv 0 \mod \; Q \quad \text{or} \; p \equiv -k \mod \; d^r}} f(p) - \sum_{\substack{1 \leq d \leq z \quad (d, k) = 1}} \mu(d) \sum_{\substack{p \leq x \quad \text{mod} \; D \quad \text{or} \; p \equiv 0 \mod \; Q \quad \text{or} \; p \equiv -k \mod \; d^r}} f(p) \ll E_k(x, z, Q) + (x + k)^{1/r} + |k|,$$
Variations on a theme of Mirsky

where the implied constant is absolute, the term $|k|$ can be dropped if $k > 0$ and

$$E_k(x, z, Q) := x \sum_{z < d \leq (x+k)^{1/r}} \frac{|\mu(d)|}{[Q,d^r]}.$$

Proof. We start by noting that

$$\sum_{d' | n} \mu(d) = \begin{cases} 1 & \text{if } n \text{ is } r\text{-free,} \\ 0 & \text{otherwise.} \end{cases}$$

Hence,

$$\sum_{p \in P_{r, k}(x)} f(p) = \sum_{1 \leq d \leq (x+k)^{1/r}} \mu(d) \sum_{p \equiv a \mod Q, p \equiv -k \mod d'} f(p).$$

For each fixed d, the contribution of primes $p \leq -k$, in case $k < -1$ and only in that case, is trivially estimated by $1 - k/d'$, which summing over d gives the bound $(x+k)^{1/r} - k$. Then, we remove the terms with $(d,k) > 1$ using the estimate

$$\sum_{1 \leq d \leq (x+k)^{1/r}} \sum_{p \leq x, p \equiv a \mod Q, p \equiv -k \mod d'} 1 \leq (x+k)^{1/r}.$$

We therefore have

$$\sum_{p \in P_{r, k}(x)} f(p) = \sum_{1 \leq d \leq (x+k)^{1/r}} \mu(d) \sum_{p \equiv a \mod Q, p \equiv -k \mod d'} f(p) + O((x+k)^{1/r} + |k|).$$

By the Chinese Remainder Theorem, the contribution of the terms with $d > z$ is at most

$$\sum_{z < d \leq (x+k)^{1/r}} \mu(d) \sum_{p \leq x, p \equiv -k \mod d'} f(p) \leq \sum_{z < d \leq (x+k)^{1/r}} \mu(d) \sum_{n \equiv \alpha(a,k) \mod [Q,d^r]} 1$$

$$< \sum_{z < d \leq (x+k)^{1/r}} \mu(d) \left(1 + \frac{x}{[Q,d^r]} \right)$$

$$< (x+k)^{1/r} + E_k(x, z, Q).$$

This completes the proof.

Next, we give an analogue of the Siegel–Walfisz theorem for $P_{r,k}$ which will be needed in the proof of Theorems 1.6 and 1.7. Such a result was proved in [4] for
a fixed modulus. Hence, as it stands the next result is of particular interest on its own.

Lemma 1.16. For positive integers a and Q such that $(a, Q) = 1$, define

$$E(x; a, Q) = \sum_{\substack{p \leq x \mid a \mod Q \equiv a \mod Q \equiv -k \mod d}} \log p - x \sum_{\substack{d \geq 1 \mid (Q, d) = 1}} \frac{\mu(d)}{\phi([Q, d])}.$$

Then for any fixed positive numbers A, B, the upper bound

$$E(x; a, Q) \ll \frac{x}{\log B} X$$

(1.7)

holds uniformly for every $Q \leq (\log x)^A$, where the implied constant depends only on A, B. Furthermore, assuming GRH for all Dirichlet L-functions one has

$$E(x; a, Q) \ll (x^{1/2} + x^{(r+1)/(2r)}2^{\omega(Q)/r}Q^{-1/r^2}) \log^2 x$$

(1.8)

for every $Q \geq 1$, where the implied constant depends only on A, B, k and r. If there is no prime $p \mid k$ such that $p^r \mid Q$ and $p^r \mid a + k$, then

$$\sum_{\substack{d \geq 1 \mid (Q, d) = 1 \mid a + k \mid (d,k) = 1}} \frac{\mu(d)}{\phi([Q, d])} \gg \frac{1}{Q},$$

(1.9)

where the implied constant depends only on r.

Remark 1.17. Note that the estimate (1.8) is nontrivial in the range $Q \ll x^{1/2 - 1/(2(r+1)) - \epsilon}$.

Proof. Write

$$E(x; a, Q) = \sum_{\substack{p \leq x \mid a \mod Q \equiv a \mod Q \equiv -k \mod d'}} \log p - \sum_{\substack{d \geq 1 \mid (Q, d) = 1 \mid a + k \mid (d,k) = 1}} \frac{\mu(d)}{\phi([Q, d])}$$

$$- x \sum_{\substack{d > z \mid (Q, d') = 1 \mid a + k \mid (d,k) = 1}} \frac{\mu(d)}{\phi([Q, d'])} - \sum_{\substack{d \geq 1 \mid (Q, d) = 1 \mid a + k \mid (d,k) = 1}} \mu(d)$$

$$\times \left(\frac{x}{\phi([Q, d'])} - \sum_{\substack{p \leq x \mid a \mod Q \equiv a \mod Q \equiv -k \mod d'}} \log p \right).$$
On choosing \(f(p) = \frac{\log p}{\log x} \) in Lemma 1.15, one has
\[
\sum_{p \in \mathcal{P}_{x,k}(x)} \log p - \sum_{\substack{1 \leq d \leq z \\ (d,k) = 1}} \mu(d) \sum_{\substack{p \leq z \\ p \equiv \alpha \mod Q}} \log p
\]
\[
\ll x \log x \sum_{z < d \leq (x + k)^{1/r}} \frac{|\mu(d)|}{[Q,d^s]} + x^{1/r} \log x \quad (1.10)
\]
for every \(1 < z \leq (x + k)^{1/r} \), where the implied constant depends only on \(k \) and \(r \). To handle the first error term on the right-hand side of (1.10), we use Rankin’s trick to get
\[
\sum_{z < d \leq (x + k)^{1/r}} \frac{|\mu(d)|}{[Q,d^s]} \leq \frac{1}{Q} \sum_{d > z} (Q,d^r)|\mu(d)| \leq \frac{1}{Q} \sum_{d = 1}^{\infty} (Q,d^r)|\mu(d)| \quad (1.11)
\]
for any \(\tau \) satisfying \(r - \tau > 1 \). It is clear that the above sum can be expanded into the Euler product
\[
\prod_{d = 1}^{\infty} \frac{(Q,d^r)|\mu(d)|}{d^{r-\tau}} = \prod_{p | Q} \left(1 + \frac{(Q,p^r)}{p^{r-\tau}} \right) = \prod_{p | Q} \left(1 + \frac{(Q,p^r)}{p^{r-\tau}} \right) \prod_{p | Q} \left(1 + \frac{1}{p^{r-\tau}} \right).
\]
As we did in the proof of Lemma 1.12, we have with \(\tau = r - 1 - 1/\log(2z) \)
\[
\prod_{p | Q} \left(1 + \frac{1}{p^{r-\tau}} \right) < \zeta(r - \tau) < 1 + \frac{1}{r - \tau - 1} < 1 + \log(2z),
\]
where in the second inequality, we used \(\zeta(\sigma) < \sigma/(\sigma - 1) \). As for the product over primes \(p | Q \), we claim that
\[
\prod_{p | Q} \left(1 + \frac{(Q,p^r)}{p^{r-\tau}} \right) < 2^{\omega(Q)} Q^{1 - \epsilon}.
\]
This product is multiplicative in \(Q \). Hence, it suffices to confirm this inequality for prime powers. Take \(Q = p^l \) with \(l < r \). Then
\[
1 + \frac{(Q,p^r)}{p^{r-\tau}} < 1 + \frac{(p^l,p^r)}{p} \leq 2p^{l-1} < 2p^{l-1/r}.
\]
The case \(r \leq l \) is proved similarly. Thus, combining the inequalities above we arrive at
\[
\sum_{z < d \leq (x + k)^{1/r}} \frac{|\mu(d)|}{[Q,d^s]} < \frac{2^{\omega(Q)} Q^{-\epsilon}(1 + \log(2z))}{z^{r-1}}.
\]
The upper bound
\[
\sum_{d > z} \frac{|\mu(d)|}{\sigma([Q,d^s])} \ll \frac{Q^{1-1/r} 2^{\omega(Q)} (1 + \log 2z)}{\phi(Q) z^{r-1}}.
\]
can be proved similarly as in (1.11), thus we arrive at

\[
\mathcal{E}(x; a, Q) \ll \sum_{d \leq z} \sum_{\substack{p \leq x \atop p \equiv a \mod Q \atop p \equiv -k \mod d'}} \log p - \frac{x}{\phi([Q, d'])} + x^{1/r} \log x \\
+ 2^{-(Q)x} \frac{2^z x}{Q^{1/r}z^{r-1}} + \frac{Q^{1-1/r}2^{-(Q)x} \log x}{\phi(Q)z^{r-1}}
\]

for every \(1 < z \ll x^{1/r}\).

For the claim (1.7), we assume \(Q \leq \log^A x\) for some \(A > 0\). Put \(z = (\log x)^{r+2}\) for any positive number \(B\). Then \(Qd' \leq (\log x)^{A+r(B+2)/(r-1)}\), thus by the Siegel–Walfisz theorem (cf. [15, §11]) one has

\[
\sum_{\substack{p \leq x \atop p \equiv a \mod Q \atop p \equiv -k \mod d'}} \log p - \frac{x}{\phi([Q, d'])} \ll x \exp(-c\sqrt[2]{\log x})
\]

for some constant \(c > 0\), uniformly for all \(d \leq z\) and \(Q \leq \log^A x\) provided that \((Q, d')|a + k\). Thus, we deduce the estimate

\[
\mathcal{E}(x; a, Q) \ll x \exp(-c'\sqrt[2]{\log x}) + x^{1/r} \log x \\
+ 2^{-(Q)x} \frac{2^z x}{Q^{1/r}z^{r-1}} + \frac{Q^{1-1/r}2^{-(Q)x} \log x}{\phi(Q)z^{r-1}}
\]

for some \(c' > 0\), proving (1.7) on noting that \(2^{-(Q)} \leq \tau(Q) \ll Q^c\) and \(\phi(Q) \gg Q/(\log \log 5Q)\) for \(Q \geq 1\).

As for (1.8), we assume GRH for all Dirichlet \(L\)-functions so that the estimate

\[
\sum_{\substack{p \leq x \atop p \equiv a \mod Q \atop p \equiv -k \mod d'}} \log p - \frac{x}{\phi([Q, d'])} \ll x^{1/2} \log^2 x
\]

holds uniformly for all positive integers \(Q\) and \(d\) such that \((Q, d')|a + k\) (see [15, Corollary 13.8]). This yields

\[
\mathcal{E}(x; a, Q) \ll x^{1/2} \log^2 x + \frac{2^{-(Q)x} \log^2 x}{Q^{1/r}z^{r-1}} + \frac{Q^{1-1/r}2^{-(Q)x} \log x}{\phi(Q)z^{r-1}}
\]

for every \(1 < z \ll x^{1/r}\). For \(Q \leq x^{1/2}\), we use \(\phi(Q) \gg Q/(\log \log 5Q)\) to eliminate the third term and then use [7, Lemma 2.4.] with \(1 < z \ll x^{1/r}\) and this yields (1.8). For \(Q > x^{1/2}\), using (1.9) and trivially estimating \(\mathcal{E}(x; a, Q)\) yield (1.8).
Finally, using the identity \(\phi(a)\phi(b) = \phi((a,b))\phi([a,b]) \), we see that
\[
\sum_{d=1}^{\infty} \frac{\mu(d)}{\phi([Q, d^\ell])} = \frac{1}{\phi(Q)} \prod_{p|Q} \left(1 - \frac{\phi((p^r, Q))}{p^{r-1}(p-1)} \right)
\]
\[
\geq \frac{1}{\phi(Q)} \prod_{p|Q} \left(1 - \frac{1}{p} \right) \prod_{p|Q} \left(1 - \frac{1}{p^{r-1}(p-1)} \right) \gg \frac{1}{Q}
\]
provided that the sum, and hence the corresponding Euler product, is non-zero.

\[\square \]

2. Proof of Main Theorems

2.1. Proof of Theorem 1.1

Assume that we are given \((a_1, \ldots, a_\ell) \in (\mathbb{Z}\setminus\{0\})^{\ell} \) with \(|a| < x - 1\) where \(|a| = \max_i |a_i|\). For any set \(S\), we put \(\chi(S, x) = 1\) if \(x \in S\) and 0 otherwise.

For any \(1 \leq z \leq (x - |a|)^{1/r}\), we shall show that
\[
\pi_r(x, a) - \sum_{d_1, \ldots, d_\ell \leq z} \mu(d_1) \mu(d_2) \cdots \mu(d_\ell) \sum_{p \equiv a_i \mod d_i, r} 1
\ll \ell z^{\ell-1} \left(|a| + x^{1/r} \right) + \frac{x \ell (1 + \log 3z)^{2\ell-1}}{z^{r-1}}, \tag{2.1}
\]
where the implied constant depends only on \(r\). To do this, we use Lemma 11.15 iteratively and prove that for each \(1 \leq l \leq \ell\)
\[
\pi_r(x, a) - \sum_{d_1, \ldots, d_l \leq z} \mu(d_1) \mu(d_2) \cdots \mu(d_l) \sum_{p \equiv a_i \mod d_i, r} f_{l+1}(p)
\ll l z^{l-1} \left(|a| + x^{1/r} \right) + \frac{x l (1 + \log 3z)^{2l-1}}{z^{r-1}}, \tag{2.2}
\]
where the implied constant depends only on \(r\) and \(f_1(p) = \chi(P, a_1, \ldots, a_\ell, p)\) if \(l = \ell\) and \(f_1(p) = 1\) if \(l > \ell\). For \(l = 1\),
\[
\pi_r(x, a) = \sum_{p \leq x} \chi(P, a_1, \ldots, a_\ell, p) = \sum_{p \in P_{r, a_1}(x)} f_2(p).
\]
Applying Lemma 11.14 and assuming \(z \leq (x - |a|)^{1/r}\) yield
\[
\pi_r(x, a) = \sum_{1 \leq d_1 \leq z} \mu(d_1) \sum_{p \leq x, p \equiv -a_1 \mod d_1, r} f_2(p) + O \left(\frac{x}{z^{r-1}} + (x + a_1)^{1/r} + |a_1| \right).
\]
where \(f_2(p) = \chi(\mathcal{P}_{r,a_2,\ldots,a_\ell},p) \) if \(\ell \geq 2 \) and \(f_2(p) = 1 \) if \(\ell = 1 \). This establishes (2.2) with \(l = 1 \).

Assume (2.2) holds for some \(l \). If \(l = \ell \), we are done. Otherwise, assume that \(l < \ell \). Then, \(f_{l+1}(p) = \chi(\mathcal{P}_{r,a_{l+1},\ldots,a_\ell},p) \), and we have by the Chinese Remainder Theorem

\[
\sum_{\substack{p \leq x \\ p \equiv -a \mod d_i}} f_{l+1}(p) = \sum_{\substack{p \leq x \\ p \equiv a \mod Q}} f_{l+2}(p),
\]

where \(a \) depends on \(a_1,\ldots,a_l, k = -a_{l+1} \) and \(Q = [d_1,\ldots,d_l]^r \). By Lemma 1.15

\[
\pi_r(x,a) = \sum_{d_1,\ldots,d_l \leq z} \mu(d_1)\mu(d_2)\cdots\mu(d_{l+1}) \sum_{\substack{p \leq x \\ p \equiv -a \mod d_i}} f_{l+2}(p)
\]

\[
\ll (l+1)z^l \left(|a| + x^{1/r} \right) + x \left(1 + \log 3z \right)^{2r-1} + x \sum_{d_1,\ldots,d_{l+1} \leq z} \frac{|\mu(d_1)\cdots\mu(d_{l+1})|}{[d_1,\ldots,d_{l+1}]^r}.
\]

For the last term, we have

\[
\sum_{d_1,\ldots,d_{l+1} \leq z} \frac{|\mu(d_1)\cdots\mu(d_{l+1})|}{[d_1,\ldots,d_{l+1}]^r} \leq \sum_{d \leq z} \frac{g_{l+1}(d)}{d^r} < \frac{e \cdot (1 + \log 3z)^{2r-1}}{z^{r-1}}.
\]

Hence, (2.2) follows for each \(1 \leq l \leq \ell \), and taking \(l = \ell \) yields (2.1).

We now proceed to prove the first upper bound in Theorem 1.1. Let \(z = (\log x)^A \) for some \(A > 0 \) to be determined. Put \(q = [d_1,\ldots,d_\ell] \). Then, Brun–Titchmarsh inequality (cf. [14, Theorem 3.9])

\[
\pi(x;q,a) \leq \frac{2x}{\phi(q) \log(x/q)} \quad (1 \leq q < x)
\]
gives

\[
\sum_{d_1,\ldots,d_\ell \leq z} \mu(d_1)\cdots\mu(d_\ell) \sum_{p \equiv -a \mod d_i} \frac{1}{d_i} \leq 2x \sum_{d_1,\ldots,d_\ell \leq z} \frac{|\mu(d_1)\cdots\mu(d_\ell)|}{\phi(q^\ell) \log(x/q^\ell)} \leq 2x \sum_{z/n \leq z} \frac{g_{\ell}(n)}{\phi(n^\ell) \log(x/n^\ell)}.
\]
provided that \(q^r < x \), which holds since \(q^r \leq z^{rt} < x \) for sufficiently large \(x \). Then, by (1.6) we see that the last term is
\[
< \frac{x \left(15\pi^{-2} (1 + \log 3z) \right)^{2^r-1}}{z^{r-1} \log x}.
\] (2.3)

For \(q \leq z \), we can apply the Siegel–Walfisz theorem (cf. [15, Corollary 11.19]) to get
\[
\sum_{d_1, \ldots, d_t \leq z} \mu(d_1) \cdots \mu(d_t) \sum_{\substack{p \leq x \\
 p \equiv -a \mod d_i^r}} 1 \\
\sum_{d_i, d_j \neq 1} 1
\]
\[
= \sum_{d_1, \ldots, d_t \leq z} \mu(d_1) \cdots \mu(d_t) \left(\frac{\lim(x)}{\phi(q^r)} + O \left(x \exp(-C \sqrt{\log x}) \right) \right)
\]
\[
= \lim(x) \sum_{d_1, \ldots, d_t \leq z} \mu(d_1) \cdots \mu(d_t) \left(\frac{\lim(x)}{\phi(q^r)} \right) + O \left(z^t x \exp(-C \sqrt{\log x}) \right) \tag{2.4}
\]
for some constant \(C = C(A, r) \) that depends only on \(A \) and \(r \). The first term can be replaced by
\[
\sum_{d_1, \ldots, d_t \leq z} \mu(d_1) \mu(d_2) \cdots \mu(d_t) \left(\frac{\lim(x)}{\phi(q^r)} \right)
\]
with the same error in (2.4). Note that for every \(\ell \geq 1 \), the estimate
\[
\sum_{d_1 \leq z} \frac{\mu(d_1) \mu(d_2) \cdots \mu(d_t)}{\phi([d_1, d_2, \ldots, d_t]^t)} - \sum_{d_i \geq 1} \frac{\mu(d_1) \mu(d_2) \cdots \mu(d_t)}{\phi([d_1, d_2, \ldots, d_t]^t)}
\]
\[
\leq \ell \sum_{n > z} \frac{g_\ell(n)}{\phi(n^r)} \leq \ell \frac{\left(15\pi^{-2} (1 + \log 3z) \right)^{2^r-1}}{z^{r-1}}\tag{2.5}
\]

holds, where the last inequality follows from (1.6). Hence, combining the estimates in (2.1), (2.3)–(2.5), we conclude that
\[\pi_r(x, a) - \operatorname{li}(x) \sum_{d_i \geq 1} \mu(d_1) \mu(d_2) \cdots \mu(d_t) \frac{\phi([d_1, d_2, \ldots, d_t])}{\phi([d_1, d_2, \ldots, d_t])} \]
\[\ll \ell z^{r-1}(|a| + x^{1/r}) + \frac{x\ell (1 + \log 3z)^{2r-1}}{z^{r-1}} \]
\[+ \operatorname{li}(x)\ell (15\pi^2 (1 + \log 3z))^{2r-1} z^{r-1} + x^r \exp(-C \sqrt{\log x}). \]

Given \(B > 0 \), we now choose \(A = (B + 2)/(r - 1) \). Then, for sufficiently large \(x \),
\[\pi_r(x, a) - \operatorname{li}(x) \sum_{d_i \geq 1} \mu(d_1) \cdots \mu(d_t) \frac{\phi([d_1, d_2, \ldots, d_t])}{\phi([d_1, d_2, \ldots, d_t])} \ll \ell (\log x)^{2r-1} (|a| + \frac{\operatorname{li}(x)}{(\log x)^B}, \]
uniformly for \(\ell \leq (\log 2)^{-r} \) \log \log x \) and every sufficiently large \(x \) depending only on \(\varepsilon, A \) and \(r \).

Note that we assumed above that \(|a| \leq x - \varepsilon' \). However, this condition can be removed since for larger \(|a| \), the claim of the theorem becomes trivial.

Now, we assume GRH. For any given modulus \(f \geq 1 \), we have (cf. [15 Corollary 13.8])
\[\pi(x; f, a) = \frac{\operatorname{li}(x)}{\phi(f)} + O(x^{1/2} \log x). \]

Hence, by (2.1) we obtain
\[\pi_r(x, a) - \operatorname{li}(x) \sum_{d_i \geq 1} \mu(d_1) \cdots \mu(d_t) \frac{\phi([d_1, d_2, \ldots, d_t])}{\phi([d_1, d_2, \ldots, d_t])} (\frac{\operatorname{li}(x)}{\phi(f)} + O(x^{1/2} \log x)) \]
\[\ll \ell z^{r-1}(|a| + x^{1/r}) + \frac{x\ell (1 + \log 3z)^{2r-1}}{z^{r-1}}. \]

Using (2.5b) we end up with
\[\pi_r(x, a) - \operatorname{li}(x) \sum_{d_i \geq 1} \mu(d_1) \cdots \mu(d_t) \frac{\phi([d_1, d_2, \ldots, d_t])}{\phi([d_1, d_2, \ldots, d_t])} \]
\[\ll \ell z^{r-1}(|a| + x^{1/r}) + \frac{x\ell (\log x)^{2r-1}}{z^{r-1}} \left(1 + \left(\frac{15/\pi^2}{\log x}\right)^{2r-1}\right) + x^{r/2} \log x. \]
We choose
\[z = \left(x^{1/2} \ell (\log x)^{2\ell - 2} \left(1 + \frac{(15/\pi^2)2^{\ell - 1}}{\log x} \right) \right)^{\frac{\ell - 1}{\ell}} \]
so as to balance the last two error terms above. Then, we have
\[\pi_r(x, \mathbf{a}) - \text{li}(x) \sum_{d_i \geq 1 \atop (d_i, a_i) = 1 \atop 1 \leq i \leq \ell} \frac{\mu(d_1) \cdots \mu(d_\ell)}{\phi([d_1, d_2, \ldots, d_\ell])} \]
\[\ll \ell \left(x^{1/2} \ell (\log x)^{2\ell - 2} \left(1 + \frac{(15/\pi^2)2^{\ell - 1}}{\log x} \right) \right)^{\frac{\ell - 1}{\ell}} (|a| + x^{1/r}) \]
\[+ \left(\ell (\log x)^{2\ell - 2} \left(1 + \frac{(15/\pi^2)2^{\ell - 1}}{\log x} \right) \right)^{\frac{\ell - 1}{\ell}} x^{2\ell - 1} \log x. \quad (2.6) \]
The above error terms are easily seen to be \(< x/\log^2 x\) for sufficiently large \(x\) provided that
\[\ell < \frac{1}{\log 2} \log \left(\frac{1}{(\log(15\pi^{-2}) + \log \log x)} \left(\frac{\log 2}{2} \log x - \log \log x \right) \right), \]
\[|a| < \frac{x}{\ell x^{\ell - 1} \log^2 x} = \frac{x}{\ell \log^2 x} \left(x^{1/2} \ell (\log x)^{2\ell - 2} \left(1 + \frac{(15/\pi^2)2^{\ell - 1}}{\log x} \right) \right)^{\frac{\ell - 1}{\ell}}. \quad (2.7) \]
Note that with this bound on \(|a|\), we also have \(|a| \leq x - z^r\), as needed.

We now show that
\[\Sigma_r(\mathbf{a}) = \prod_p \left(1 - \frac{\nu_p(\mathbf{a})}{\phi(p^\ell)} \right) = \sum_{d_i \geq 1 \atop (d_i, a_i) = 1 \atop 1 \leq i \leq \ell} \frac{\mu(d_1) \cdots \mu(d_\ell)}{\phi([d_1, d_2, \ldots, d_\ell])}. \quad (2.8) \]
Since
\[\sum_{d_1 | n, \ldots, d_\ell | n \atop [d_1, \ldots, d_\ell] = n} 1 \leq \tau(n)^\ell, \quad \text{and} \quad \sum_{n=1}^\infty \frac{\tau(n)^\ell}{\phi(n^\ell)} < \infty, \]
we can write
\[\sum_{d_i \geq 1 \atop (d_i, a_i) = 1 \atop 1 \leq i \leq \ell} \frac{\mu(d_1) \cdots \mu(d_\ell)}{\phi([d_1, d_2, \ldots, d_\ell]^\ell)} = \sum_{n \geq 1} H_\ell(n) \frac{\phi(n^\ell)}{\phi(n^\ell)}. \]
where $H_1(n) = \mu_{a_1}(n)$ and for $\ell > 1$

$$H_{\ell}(n) = \sum_{d_1, \ldots, d_\ell \geq 1 \atop |d_1, \ldots, d_\ell| = n} \mu_{a_1}(d_1) \cdots \mu_{a_\ell}(d_\ell) \rho(d_1, d_2, \ldots, d_\ell).$$

Here,

$$\rho(d_1, \ldots, d_\ell) = \prod_{1 \leq i < j \leq \ell} \psi(d_i, d_j), \quad \psi(d_i, d_j) = \begin{cases} 1 & \text{if } (d_i, d_j)^* | a_i - a_j, \\ 0 & \text{otherwise.} \end{cases}$$

Note that $\mu_{a_i}(d)$ is multiplicative. Since ψ is multiplicative on each of its components, using a method similar to the one used in the proof of Lemma 1.11, one can show that $H_{\ell}(n)$ is multiplicative and is supported only on square-free numbers. This gives

$$\sum_{n \geq 1} \frac{H_{\ell}(n)}{\phi(n')} = \prod_p \left(1 + \frac{H_{\ell}(p)}{\phi(p')}\right).$$

It remains to determine $H_{\ell}(p)$ for each prime p. We prove below that $-H_{\ell}(p)$ gives the number of distinct a_i's modulo p^r each of which are coprime to p. We can assume that $\ell > 1$.

Since $[d_1, \ldots, d_\ell] = p$, each $d_i \in \{1, p\}$. If $d_i = p$ for some $1 \leq i \leq \ell$, then

$$\mu_{a_1}(d_1) \mu_{a_2}(d_2) \cdots \mu_{a_\ell}(d_\ell) \rho(d_1, d_2, \ldots, d_\ell) \neq 0$$

iff $p \nmid a_i \lor \forall j, d_j = p \Rightarrow a_i \equiv a_j \mod p^r$. Hence, if $p | a_i$ for some i, then we must have $d_i = 1$ and these terms have no effect on $H_{\ell}(p)$. This means we can ignore these indices by renaming a_i's if necessary and replacing ℓ with a smaller number ℓ' and then consider $H_{\ell'}$. Thus, we shall assume below that $p \nmid a_i$ for any i.

The sets

$$V_{\ell}(k) = \{i : 1 \leq i \leq \ell, a_i \equiv k \mod p^r\} \quad (0 \leq k < p^r)$$

provide a partition of the set of indices $\{1, \ldots, \ell\}$, and we can consider the terms of $H_{\ell}(p)$ coming from each non-empty set $V_{\ell}(k)$. Now, assume $V_{\ell}(k)$ is non-empty for some k (necessarily coprime to p), and put $v = \#V_{\ell}(k)$. For each $1 \leq s \leq v$, choosing s d_i's equal to p and the rest equal to 1 gives a contribution of $(-1)^s$. Since there are $\binom{v}{s}$ such choices for each s, each non-empty $V_{\ell}(k)$ contributes

$$\sum_{s=1}^{v} \binom{v}{s} (-1)^s = (1 - 1)^v - 1 = -1.$$

Hence, $-H_{\ell}(p)$ gives the number of non-empty sets $V_{\ell}(k)$ for $0 \leq k < p^r$, as claimed above and in Theorem 1.1.

We next construct a permissible ℓ-tuple and obtain the aforementioned lower bound in Remark 1.2.
Let $\ell \geq 2$ be given. If $\ell < \phi(2^r)$, then any ℓ-tuple \mathbf{a} works since $\nu_p(\mathbf{a}) \leq \ell < \phi(2^r) \leq \phi(p^r)$ for every prime $p \geq 2$. Otherwise, choose n as the largest integer satisfying

$$\phi(p_n^r) \leq \ell < \phi(p_{n+1}^r),$$

where p_n stands for the nth prime. Pick $\mathbf{a} = (k_1, k_2, \ldots, k_\ell)$, where $k_i = 1 + i(p_1p_2 \cdots p_n)^r$ for $i = 1, 2, \ldots, \ell$. It now follows that for such a tuple

$$1 = \nu_{p_j}(\mathbf{a}) < 2 < \phi(p_j) \quad j = 1, 2, \ldots, n$$

and $\nu_p(\mathbf{a}) \leq \ell < \phi(p^r)$ for $p \geq p_{n+1}$.

As for the lower bound, we consider a permissible ℓ-tuple \mathbf{a}, where ℓ is a large number. Let p_n be the largest prime such that

$$\phi(p_n^r) \leq \ell < \phi(p_{n+1}^r).$$

We now determine the size of n in terms of ℓ. As a consequence of Chebyshev’s inequalities (see [21]),

$$p_n \approx n \log 2n$$

for every $n \geq 1$. Actually cooperating with [13, Theorem 3] together with some numerical computation with PARI/GP, one has

$$0.3n \log(2n) \leq p_n \leq 3n \log(2n) \quad (2.9)$$

for every $n \geq 1$. Therefore,

$$\phi(p_n^r) = p_n^r - p_n^{r-1} \approx (n \log 2n)^r$$

for every $n \geq 1$, where the implied constants depend only on r. Hence,

$$(n \log 2n)^r \approx \phi(p_n^r) \leq \ell < \phi(p_{n+1}^r) \approx ((n + 1) \log 2(n + 1))^r.$$

This yields

$$\ell \approx p_n^r \approx (n \log 2n)^r, \quad (2.10)$$

where the implied constants depend only on r. Let $m > n + 1$ be an integer to be determined in terms of n. Then as $m \to \infty$

$$\prod_{p \leq p_m} \left(1 - \frac{\nu_p(\mathbf{a})}{\phi(p^r)}\right) \geq \frac{1}{\phi(2^r \cdots p_m^r)} \geq \frac{1}{2^r \cdots p_m^r} = e^{-r \sum_{p \leq p_m} \log p} = e^{-r p_m(1 + o(1))}, \quad (2.11)$$

where in the last step we used the prime number theorem in the form

$$\sum_{p \leq p_m} \log p = p_m(1 + o(1)), \quad (m \to \infty).$$

We next write

$$\prod_{p > p_m} \left(1 - \frac{\nu_p(\mathbf{a})}{\phi(p^r)}\right) \geq \prod_{p > p_m} \left(1 - \frac{\ell}{\phi(p^r)}\right).$$
Let $p > p_m$. Then, since $\ell < \phi(p_m^{r+1})$, it follows by (2.9) that
\[
\ell / \phi(p^r) < (p_{m+1}/p_m)^r \leq 10^r ((n+1) \log(2n+2)/(m \log 2m))^r
\]
for any $m > n + 1$. Choose $m = \lceil (3/2)^{1/20} \rceil n$ so that
\[
\left(\frac{10(n+1) \log(2n+2)}{m \log(2m)} \right)^r \leq \frac{2}{3}
\]
holds. This choice of m yields $p_m > p_n$ for every $n \geq 1$ as well.

This gives rise to the fact that for all $p > p_m$, the inequality $\ell / \phi(p^r) < 2/3$ holds. We next use the lower bound $\log(1 - x) > -\frac{\log 3}{2} x$ being valid for $0 < x < 2/3$. Therefore, we have
\[
\sum_{p > p_m} \log \left(1 - \frac{\ell}{\phi(p^r)} \right) \geq -\frac{3 \log 3}{2} \sum_{p > p_m} \frac{\ell}{\phi(p^r)} \\
\geq -\frac{3 \log 3}{2} \sum_{k > p_m} \frac{\ell}{k^{r-1}(k - 1)} > -\frac{\ell C}{(p_m)^{r-1}},
\]
for some positive constant C, where, in the last inequality, we used the fact that
\[
\sum_{k > K} \frac{1}{k^r} < \frac{1}{K^{r-1}},
\]
which is valid for each integer $K \geq 1$. Furthermore, we can write
\[
\frac{\ell}{(p_m)^{r-1}} = \frac{\ell p_m^{-1} - 1}{p_m^{r-1} p_m^{-1}} \geq \frac{\ell}{p_m^{r-1}} \geq \ell / r,
\]
where in the last two steps we used (2.10) together with the observation that $p_m > p_n$. Furthermore,
\[
\prod_{p > p_m} \left(1 - \frac{\ell}{\phi(p^r)} \right) = e^{\sum_{p > p_m} \log(1 - \frac{\ell}{\phi(p^r)})} \geq e^{-C \ell / r}
\]
for some $C > 0$. Also with this choice of m and (2.10), the left-hand side of (2.11) is easily seen to be $\geq e^{-Cr^1/r}$ for some positive constant C not necessarily the same as above. Therefore the lower bound in (1.2) now follows.

2.2. Proof of Theorem 1.3

Using (2.6) and (2.8), we have for every $z, H \geq 1$
\[
\sum_{|a| \leq H} \mathcal{S}_r(a) - \sum_{d_1, \ldots, d_r \leq z} \mu(d_1) \mu(d_2) \cdots \mu(d_r) \phi((d_1, d_2, \ldots, d_r)^r) \sum_{0 < |a| \leq H} \frac{1}{(d_1, a_1)^1 \cdots (d_r, a_r)^1} \bigg| a_i - a_j \bigg| 1 \leq i, j \leq r
\]
\[
< \frac{\ell (2H)^r (15 \pi^{-2} (1 + \log 3z))^2}{2^{r-1} x^{r-1}}.
\]
Recall that the first sum above runs over \(\ell \)-tuples \(a \) with non-zero entries. Writing

\[
\sum_{0 < |a_i| \leq H \atop (d_i, a_i) = 1 \atop 1 \leq i \leq \ell} 1 = \sum_{m_i \equiv a_i \mod d_i} 1 \sum_{0 < |a_i| \leq H \atop 1 \leq i \leq \ell} 1,
\tag{2.13}
\]

and using the estimate

\[
\left| \sum_{n \equiv a \mod d} 1 - \frac{H}{d} \right| \leq 1,
\]

being valid for all \(H \geq 1 \) and \(1 \leq a \leq d \), we get

\[
\sum_{0 < |a_i| \leq H \atop a_i \equiv m_i \mod d_i} 1 = \prod_{i=1}^{\ell} \left(\frac{2H}{d_i^r} + 2\theta_i \right) = \frac{(2H)^{\ell}}{(d_1d_2 \cdots d_{\ell})^r} + O(2^\ell E(d_1, d_2, \ldots, d_{\ell})),
\tag{2.14}
\]

where \(|\theta_i| \leq 1 \) and

\[
E(d_1, d_2, \ldots, d_{\ell}) = 1 + \sum_{i=1}^{\ell} \frac{H}{d_i} + \sum_{1 \leq i, j \leq \ell, i \neq j} \frac{H^2}{(d_i d_j)^r} + \cdots + \sum_{i=1}^{\ell} \frac{H^{\ell-1}}{(d_1 d_2 \cdots d_{i-1} d_{i+1} \cdots d_{\ell})^r}.
\]

Note here that the implied constant in the \(O \)-term in (2.14) is independent of \(m_i \)'s. Inserting (2.14) into (2.13) and using the fact that

\[
\sum_{m_i \equiv a_i \mod d_i \atop (m_i, d_i) = 1 \atop 1 \leq i \leq \ell} 1 \equiv \phi([d_1, \ldots, d_{\ell}]^r),
\]

which follows by the Chinese Remainder Theorem, we obtain

\[
\sum_{0 < |a_i| \leq H \atop (d_i, a_i) = 1 \atop 1 \leq i \leq \ell} 1 = \sum_{m_i \equiv a_i \mod d_i \atop (m_i, d_i) = 1 \atop 1 \leq i \leq \ell} \left(\frac{(2H)^{\ell}}{(d_1 d_2 \cdots d_{\ell})^r} + O(2^\ell E(d_1, d_2, \ldots, d_{\ell})) \right)
\]

\[
= \phi([d_1, \ldots, d_{\ell}]^r) \left(\frac{(2H)^{\ell}}{(d_1 d_2 \cdots d_{\ell})^r} + O(2^\ell E(d_1, d_2, \ldots, d_{\ell})) \right).
\tag{2.15}
\]
We have
\[\sum_{d_1, \ldots, d_\ell \leq z} E(d_1, \ldots, d_\ell) \leq \sum_{i=0}^{\ell} z^{\ell-i} \binom{\ell}{i} H^i \zeta(r)^i - H^\ell \zeta(r)^\ell \]
\[= (H \zeta(r) + z)^\ell - (H \zeta(r))^\ell \leq \ell \ell (H \zeta(r) + z)^{\ell-1}, \]
(2.16)

where the last inequality follows by the mean value theorem. Inserting (2.15) and (2.16) into (2.12), we conclude that
\[\sum |a| \leq H S(r(a)) - (2H) ^\ell \left(\sum_{d \leq z} \frac{\mu(d)}{d^r} \right)^\ell \ll \ell \ell z^{\ell} (H \zeta(r) + z)^{\ell-1} \]
\[+ \ell (2H) ^\ell \left(15 \pi^{-2} (1 + \log 3z) \right)^{2^{\ell-1}} z^{\ell-1}. \]

By the mean value theorem and the inequality
\[\left| \zeta(r)^{-1} - \sum_{d \leq z} \frac{\mu(d)}{d^r} \right| \leq \frac{1}{(r-1) [z]^{r-1}}, \]
we have
\[\left(\sum_{d \leq z} \frac{\mu(d)}{d^r} \right)^\ell - \zeta(r)^{-\ell} \ll \frac{\ell \zeta(r)^{\ell-1}}{(r-1) z^{r-1}}. \]

Hence, assuming \(1 \leq z < H/(3e) \) it follows that
\[\sum_{|a| \leq H} \mathcal{G}_r(a) - \left(\frac{2H}{\zeta(r)} \right)^\ell \ll z^{\ell} 2^{\ell} H^\ell (\zeta(r) + 1)^{\ell-1} + \frac{\ell (2H) ^\ell \zeta(r)^{\ell-1}}{(r-1) z^{r-1}} \]
\[+ \ell (2H) ^\ell \left(15 \pi^{-2} (\log H) \right)^{2^{\ell-1}} z^{\ell-1}. \]

We can omit the second term on the right when \(H \) is large as it is dominated by the third term. Thus, choosing
\[z = \left(\frac{H \left(15 \pi^{-2} (\log H) \right)^{2^{\ell-1}}}{(1 + \zeta(r))^{\ell-1}} \right)^{1/r} \]

to balance the two remaining terms, we arrive at the claimed result in (1.1) since for \(1 \leq \ell \leq (1/\log 2 - \varepsilon) \log \log H \) our assumption above that \(1 \leq z < H/(3e) \) is satisfied for \(H \) sufficiently large.
2.3. Proof of Theorem 1.4

Let \(A \) be a fixed real number with \(A > 1/(r-1) \). Assume that \(\log^A x \leq H < x \). By (2.1) we can write

\[
\sum_{|a| \leq H} \pi_r(x, a) - \sum_{p \leq x} \sum_{d_1, \ldots, d_\ell \leq z} \mu(d_1) \mu(d_2) \cdots \mu(d_\ell) \sum_{0 < |a| \leq H} 1
\]

\[
\sum_{a_1 \equiv -p \mod d_1, \ldots, a_\ell \equiv -p \mod d_\ell} \mu(d_1) \mu(d_2) \cdots \mu(d_\ell)
\]

\[
\sum_{|a| \leq H} \pi_r(x, a) - \sum_{p \leq x} \sum_{d_1, \ldots, d_\ell \leq z} \mu(d_1) \mu(d_2) \cdots \mu(d_\ell) \sum_{0 < |a| \leq H} 1
\]

\[
\sum_{a_1 \equiv -p \mod d_1, \ldots, a_\ell \equiv -p \mod d_\ell} \mu(d_1) \mu(d_2) \cdots \mu(d_\ell)
\]

\[
\ll \ell z^{\ell-1}(2H)^\ell ((2H) + x^{1/r}) + \frac{x\ell(2H)^\ell (1 + \log 3z)^{2\ell-1}}{z\ell^{\ell-1}} \quad (2.17)
\]

for every \(1 \leq z \leq (x - H)^{1/r} \). For \(p \leq x \), we obtain by (2.14) and (2.16) that

\[
\sum_{d_1, \ldots, d_\ell \leq z \atop p \nmid d_1} \mu(d_1) \mu(d_2) \cdots \mu(d_\ell) \sum_{0 < |a| \leq H} \frac{1}{a_1 \equiv -p \mod d_1, \ldots, a_\ell \equiv -p \mod d_\ell} \sum_{0 < |a| \leq H} 1
\]

\[
\sum_{d_1, \ldots, d_\ell \leq z \atop p \nmid d_1} \mu(d_1) \mu(d_2) \cdots \mu(d_\ell) \sum_{0 < |a| \leq H} \frac{1}{a_1 \equiv -p \mod d_1, \ldots, a_\ell \equiv -p \mod d_\ell}
\]

\[
\left(2H \sum_{d \leq z \atop p \nmid d} \frac{\mu(d)}{d^r} \right)^\ell + O(z\ell^2 \ell^\ell (H \zeta(r) + z)^{\ell-1}). \quad (2.18)
\]

By the mean value theorem and the inequality

\[
\left| \sum_{d \leq z \atop p \nmid d} \frac{\mu(d)}{d^r} - \zeta(r)^{-1} \left(1 - \frac{1}{p^r} \right)^{-1} \right| \leq \frac{1}{(r-1)|z|^{r-1}},
\]

we obtain

\[
\left(\sum_{d \leq z \atop p \nmid d} \frac{\mu(d)}{d^r} \right)^\ell = \left(1 - \frac{1}{p^r} \right)^{-\ell} \zeta(r)^{-\ell} + O \left(\frac{\ell(2\zeta(r))^{\ell-1}}{z^{r-1}} \right). \quad (2.19)
\]
Therefore, combining (2.18) and (2.19) and inserting the result into (2.17) gives
\[
\sum_{0 < |a| \leq H} \pi_r(x, a) - \left(\frac{2H}{\zeta(r)} \right) \sum_{p \leq x} \left(1 - \frac{1}{p^r} \right)^{-\ell} \ll \ell z^{\ell-1}(2H)^\ell((2H) + x^{1/r}) + \frac{x\ell(2H)^\ell(1 + \log 3z)^{2^\ell - 1}}{z^{r-1}} \\
+ \frac{x z \ell((2H)^\ell-1(\zeta(r) + 1)^{\ell-1})}{\log x} + \frac{x \ell(2H)^\ell(2\zeta(r))^{\ell-1}}{z^{r-1} \log x}
\]
for every \(2 \leq z \leq \min\{(x - H)^{1/r}, H/(3\varepsilon)\} \). Finally noting that
\[
\sum_{p \leq x} \left(1 - \frac{1}{p^r} \right)^{-\ell} = \pi(x) + O(\ell^2),
\]
where the implied constant depends only on \(r \geq 2\), we conclude that
\[
\sum_{0 < |a| \leq H} \pi_r(x, a) - \left(\frac{2H}{\zeta(r)} \right) \pi(x) \ll \ell z^{\ell-1}(2H)^\ell((2H) + x^{1/r}) \\
+ \frac{x \ell(2H)^\ell(\log H)^{2^\ell - 1}}{z^{r-1}} + \frac{x z \ell((2H)^\ell-1(\zeta(r) + 1)^{\ell-1})}{\log x}
\]
for every \(2 \leq z \leq \min\{(x - H)^{1/r}, H/(3\varepsilon)\} \). We choose
\[
z = \left(\frac{2H (\log H)^{2^\ell - 1} \log x}{(1 + \zeta(r))^{\ell-1}} \right)^{1/r}
\]
so that the last two terms are
\[
\ll \frac{x \ell(2H)^\ell-1+\frac{\ell}{2} (\log H)^{2^\ell - 1} (\zeta(r) + 1)^{(\ell-1)(r-1)}}{\log^{1-1/r} x}.
\]
The proof follows after a quick check that \(z \leq \min\{(x - H)^{1/r}, H/(3\varepsilon)\} \) holds whenever (1.2) is satisfied.

2.4. Proof of Theorem 1.6

We shall make use of the circle method. Throughout the proof, we fix \(k \in \mathbb{Z}\setminus\{0\}\) and \(r \geq 2\). For \(\alpha \in \mathbb{R}\), we define the following auxiliary function:
\[
f_{r,k}(\alpha, N) = \sum_{p \in \mathcal{P}_{r,k}(N)} (\log p)e(\alpha p).
\]
Set \(R_s(N) = \#\{(p_1, p_2, \ldots, p_s) \in (\mathcal{P}_{r,k})^s : N = p_1 + p_2 + \cdots + p_s\} \). Then
\[
R_s(N) = \int_0^1 (f_{r,k}(\alpha, N))^s e(-\alpha N)d\alpha.
\]
Let \(\mathcal{L} = \log^A N \), where \(A > 0 \) is to be determined. Then we set

\[
\mathfrak{M} = \bigcup_{1 \leq q \leq \mathcal{L}} \mathfrak{M}(a, q),
\]

where \(\mathfrak{M}(a, q) = \left[\frac{a}{q}, \frac{a}{q} + \frac{6}{qN} \right] \) and we define the minor arc as \(m = [0, 1) \mod \mathfrak{M} \).

As the integrand is of period 1, we can think of \(\mathfrak{M}(1, 1) \) as the interval \(\left[-\frac{6}{N}, \frac{6}{N} \right] \). We first do the minor arc analysis.

Lemma 2.1. Suppose that \(|a - a/q| < 2/N \) with \(q \geq 1 \) and \((a, q) = 1 \). Then,

\[
f_r, k(\alpha, N) \ll 2^{a(q)} q^{-1/2} N \log^3 N + N^{(r+1)/2} q^{(r-1)/2r} \log^{(3r-2)/r} N
\]

\[
+ \begin{cases}
N^{5/6} \log^{8/3} N & \text{if } r = 2, \\
N^{4/5} \log^3 N & \text{if } r > 2.
\end{cases}
\]

The implied constant depends at most on \(k \) and \(r \).

Proof. We prove only the case \(r > 2 \) since the case \(r = 2 \) follows similarly. We may assume that \(q \leq N/\log^4 N \), otherwise the above inequality is worse than the trivial estimate of \(f_r, k(\alpha, N) \).

By Lemma 1.15, with the choices \(Q = 1 \) and the arithmetic function \(\frac{\log p}{\log N} e(\alpha p) \), one has

\[
f_r, k(\alpha, N) = \sum_{d \leq z} \mu(d) \sum_{p \leq N, p \equiv -k (\text{mod } d')} (\log p) e(\alpha p) + O \left(\frac{N \log N}{z^{r-1}} \right)
\]

for any \(1 < z \ll_k N^{1/r} \), where the implied constant depends on \(k \) and \(r \). By Lemma 1.13, one has

\[
f_r, k(\alpha, N) \ll \sum_{d \leq z} \mu^2(d) \left(\frac{(q, d')}d \frac{q^{1/2} N^{1/2} + N^{4/5} d^{2r/5}}{(q, d')^{1/2}} \right) \log^3 N + \frac{N \log N}{z^{r-1}}.
\]

Here, the trivial upper bound

\[
\sum_{d \leq z} \frac{1}{(d', q)^{1/2}} \leq \sum_{d \leq z} 1 \leq z
\]

and the less trivial upper bound

\[
\sum_{d \leq z} \frac{\mu^2(d)(d', q)} d \leq \prod_{p \leq z} \left(1 + \frac{(p^r, q)} p \right) \ll \prod_{p \leq z} \left(1 + \frac{(p^r, q)} p \right) \ll 2^{a(q)}
\]
yield
\[f_{r,k}(\alpha, N) \ll \frac{2^{\omega(q)}N}{q^{1/2}} \log^3 N + \left(q^{1/2} N^{1/2} \log^3 N \right) z + N^{4/5} \log^3 N + \frac{N \log N}{z^{r-1}}. \]

Appropriate choice of \(1 \leq z \ll k N^{1/r}\) via \([7, \text{Lemma 2.4}]\) together with the initial assumption \(q \leq N/\log^4 N\) gives the desired result.

Take \(\alpha \in \mathbb{m}\). By Dirichlet’s approximation theorem, there are co-prime integers \(a\) and \(q\) with \(1 \leq a \leq q \leq N/\mathcal{L}\) such that
\[
|\alpha - \frac{a}{q}| < \frac{\mathcal{L}}{q N}.
\]
Since \(\alpha \in \mathbb{m}\), we have \(\mathcal{L} < q\), yielding by Lemma 2.1 and the divisor bounds \(2^{\omega(q)} \ll \tau(q) \ll q^\varepsilon\),
\[
\sup_{\alpha \in \mathbb{m}} |f_{r,k}(\alpha, N)| \ll \frac{N}{\log^{A_r} N},
\]
where for \(r \geq 2\),
\[
A_r = \frac{(r-1)}{2r} A - \frac{(3r-2)}{r}
\]
if \(A > 4\) and \(N\) is large. It follows now by a standard argument
\[
\int_{\mathbb{m}} (f_{r,k}(\alpha, N))^* e(-\alpha N) \ll \frac{N^{s-1}}{(\log N)^{(s-2)A_r}}.
\]
This estimate is nontrivial if \((s-2)A_r > 0\) and this forces
\[
A > 6 + 2/(r-1) > 8.
\]

Lemma 2.2. Let \(\alpha \in \mathbb{M}(a, q)\) and let \(\beta = \alpha - \frac{a}{q}\). Then,
\[
f_{r,k}(\alpha, N) = \sum_{l \mod q} e\left(\frac{al}{q}\right) \sum_{d \mid \mid k+l} \frac{\mu_k(d)}{\phi([q, d^r]k+l)} \sum_{n \leq N} e(\beta n) \ll \frac{N}{\log^B N}
\]
for any fixed \(B > 0\), where the implied constant depends only on \(A, B, k\) and \(r\). Furthermore,
\[
\sum_{l \mod q} e\left(\frac{al}{q}\right) \sum_{d \mid \mid k+l} \frac{\mu_k(d)}{\phi([q, d^r]k+l)} \ll \frac{2^{\omega(q)}}{\phi(q)}
\]
where the constant in \(2.24\) is independent of \(k\).

Proof of Lemma 2.2 To prove \(2.24\), we swap the summations and use \(1.3\) to get
\[
\sum_{1 \leq l \leq q} e\left(\frac{al}{q}\right) \ll 1,
\]
which then yields
\[
\sum_{l \equiv a \pmod{q}} e\left(\frac{al}{q}\right) \sum_{d=1}^{\infty} \frac{\mu_k(d)}{\phi([q, d^2])} \lesssim \frac{1}{\phi(q)} \prod_{p \nmid q} \left(1 + \frac{\phi\left((q, p^r)\right)}{\phi(p^r)}\right) \prod_{p | q} \left(1 + \frac{1}{\phi(p^r)}\right) \leq \frac{2^{\omega(q)}}{\phi(q)}
\]

Next, we write
\[
f_{r,k}(\alpha, N) = \sum_{p \in \mathcal{P}_{r,k}(N)} \sum_{p \equiv l \pmod{q}} e(\alpha p) \log p + O\left(\sum_{p \nmid q} \log p\right)
\]
\[
= \sum_{1 \leq \ell \leq q} \sum_{p \in \mathcal{P}_{r,k}(N)} e(\ell p) \log p + O(\omega(q) \log q).
\]

Given any $B' > A$, by Lemma 1.16 and partial integration we obtain
\[
\sum_{p \in \mathcal{P}_{r,k}(N)} e(\ell p) \log p = \sum_{d \geq 1} \frac{\mu_k(d)}{\phi([q, d^2])} \int_{\sqrt{N}}^{N} e(\beta x) dx
\]
\[
\quad + \int_{\sqrt{N}}^{N} e(\beta x) d\mathfrak{e}(x; l, q) + O(\sqrt{N})
\]
\[
= \sum_{d \geq 1} \frac{\mu_k(d)}{\phi([q, d^2])} \left(\sum_{n \leq N} e(\beta n) + O(\mathcal{L}/q + \sqrt{N})\right)
\]
\[
\quad + O \left(\frac{N \mathcal{L}}{q \log B'}\right)
\]
for sufficiently large N, since
\[
\sum_{1 \leq n \leq N} e(\beta n) = \int_{\sqrt{N}}^{N} e(\beta x) dx + 2\pi i \beta \int_{0}^{N} e(\beta x) [x] dx + O(\sqrt{N}).
\]
Hence, choosing $B' = B + A$ gives (2.23).

We next establish the asymptotic formula in (1.3) briefly. We write
\[
R_\alpha(N) = \int_{0}^{1} (f_{r,k}(\alpha, N))^* e(-\alpha N) da = \left(\int_{\mathfrak{m}} + \int_{\mathfrak{m}}\right) (f_{r,k}(\alpha, N))^* e(-\alpha N) da,
\]
where \mathfrak{m} and \mathfrak{m} are defined in (2.20). Since we have (2.22), we shall look at only the major arc analysis; that is, we shall determine the asymptotic behavior of
\[
\int_{\mathfrak{m}} (f_{r,k}(\alpha, N))^* da = \sum_{q \leq \mathcal{L}} \sum_{\alpha \equiv 1 \pmod{q}} \int_{\mathfrak{m}(\alpha, q)} (f_{r,k}(\alpha, N))^* e(-\alpha N) da.
\]
By Lemma 2.2 together with the upper bound in (2.24), it follows that for \(\alpha \in \mathcal{M}(a, q) \)

\[
(f_{r,k}(\alpha, N))^s = \left(\sum_{l \equiv q \mod q \atop (l,q)=1} e\left(\frac{al}{q}\right) \sum_{d=1}^{\infty} \frac{\mu_k(d)}{\phi([q, d^r])} \sum_{n \leq N} e(\beta n) + O\left(\frac{N}{\log B N}\right) \right)^s
\]

\[
= \left(\sum_{l \equiv q \mod q \atop (l,q)=1} e\left(\frac{al}{q}\right) \sum_{d=1}^{\infty} \frac{\mu_k(d)}{\phi([q, d^r])} \sum_{n \leq N} e(\beta n) \right)^s + O\left(\frac{N^s}{\log B N}\right).
\]

This, after an obvious change of variable, yields

\[
\sum_{q \leq L} \sum_{a \equiv q \mod q \atop (a,q)=1} \int_{\mathcal{M}(a,q)} (f_{r,k}(\alpha, N))^s e(-\alpha N) d\alpha
\]

\[
= \sum_{q \leq L} \sum_{a \equiv q \mod q \atop (a,q)=1} \left(\sum_{l \equiv q \mod q \atop (l,q)=1} e\left(\frac{al}{q}\right) \sum_{d=1}^{\infty} \frac{\mu_k(d)}{\phi([q, d^r])} \right)^s e\left(-\frac{\alpha N}{q}\right) J(N, \ell/qN)
\]

\[
+ O\left(\frac{N^{s-1}}{\log B^{2s-1} N}\right),
\]

where

\[
J(N, \ell) = \int_{-t}^{t} \left(\sum_{n \leq N} e(\beta n) \right)^s e(-\beta N) d\beta
\]

for any \(0 < t \leq 1/2 \). Recalling the simple upper bound

\[
\sum_{n \leq x} e(\beta n) \ll \min \left\{ x, \frac{1}{||\beta||} \right\},
\]

it follows that

\[
\int_{-1/2}^{t} \left(\sum_{n \leq N} e(\beta n) \right)^s e(-\beta N) d\beta + \int_{t}^{1/2} \left(\sum_{n \leq N} e(\beta n) \right)^s e(-\beta N) d\beta \ll \frac{1}{t^{s-1}}.
\]

Therefore,

\[
J(N, \ell/qN) - J(N, 1/2) \ll \frac{N^{s-1} N^{s-1}}{\ell^{s-1}}.
\]
Replacing $\mathcal{J}(N, \mathcal{L}/qN)$ by $\mathcal{J}(N, 1/2)$ in (2.25) using the upper bound (2.24) introduces an error

$$\ll \frac{N^{s-1}}{L^{s-1}} \sum_{q \leq L} \frac{2^{s}\omega(q)q^{s-1}}{\phi^{s-1}(q)} \ll \frac{N^{s-1}}{L^{s-1}} \sum_{q \leq L} 2^{s}\omega(q) \left(\prod_{p \mid q} p^{1-1}\right)^{s-1}$$

$$\ll \frac{N^{s-1}}{L^{s-1}} \sum_{q \leq L} \tau(q)2^{s-1} \ll \frac{N^{s-1}}{L^{s-1}} L(\log L)^{2^{s-1}-1},$$

where we used

$$\sum_{n \leq x} \tau(n)^k \ll x(\log x)^{2k-1}.$$

Therefore, combining (2.25) and this estimate we derive

$$\int_{\mathbb{R}} (f_{r,k}(\alpha, N))^s \, d\alpha - \mathcal{G}_{r,k}(N, \mathcal{L}) \mathcal{J}(N, 1/2)$$

$$\ll \frac{N^{s-1}}{\log^{2\gamma-2} \mathcal{L} N} + \frac{N^{s-1}}{L^{s-2}} (\log L)^{2^{s-1}-1},$$

where

$$\mathcal{G}_{r,k}(N, \mathcal{L}) = \sum_{q \leq L} \sum_{a \mod q} \left(\sum_{\chi \mod q} \frac{\mu_k(d)}{\phi(d)} \sum_{d=1}^{\infty} \frac{\phi([q, d^r])}{\phi(q)} \right)^s x \left(\frac{aN}{q} \right).$$

Now, using the upper bound in (2.24) and Rankin’s trick, one has

$$\mathcal{G}_{r,k}(N, \mathcal{L}) - \mathcal{G}_{r,k}(N) \ll \sum_{q > L} \frac{2^{s}\omega(q)q^{s'}}{\phi^{s-1}(q)} \ll \frac{1}{\log^{s'} \mathcal{L}} \sum_{q=1}^{\infty} \frac{2^{s}\omega(q)q^{s'}}{\phi^{s-1}(q)}$$

for any $s' < s-2$, where the singular series $\mathcal{G}_{r,k}(N)$ is given by (1.4).

Using $\phi(q) = q \prod_{p \mid q} (1 - 1/p)$, we see that

$$\sum_{q=1}^{\infty} \frac{2^{s}\omega(q)q^{s'}}{\phi^{s-1}(q)} \leq \sum_{q=1}^{\infty} \frac{2^{s}\omega(q)q^{s'}}{q^{s-1}} \ll \prod_{p} \left(1 + \frac{4^{s}}{p^{s-s'-1}} \right)$$

$$< \zeta(s-s')^{-1} 4^{s'} < \left(1 + \frac{1}{s-s'-2} \right)^{4^{s'}}.$$

Choosing $s' = s-2 - \frac{1}{\log L}$, it follows that

$$\mathcal{G}_{r,k}(N, \mathcal{L}) - \mathcal{G}_{r,k}(N) \ll \frac{(\log L)^{4^{s'}}}{L^{s-2}}.$$

Since $\mathcal{J}(N, 1/2)$ counts the number of ways to express N as the sum of s positive integers, we have

$$\mathcal{J}(N, 1/2) = \frac{(N-1)!}{(N-s)!(s-1)!} = \frac{N^{s-1}}{(s-1)!} + O(N^{s-2}),$$
where the constant in the error term certainly depends on s. Finally, noting
\[
\mathcal{S}_{r,k}(N) \ll \sum_{q=1}^{\infty} \frac{q^{s-1}(q)}{\phi^{s-1}(q)} \ll 1,
\]
and using \([2.22]\) we arrive at
\[
R_s(N) - \frac{\mathcal{S}_{r,k}(N)N^{s-1}}{(s-1)!} \ll N^{s-2} + \frac{N^{s-1}(\log L)^{2s-1}}{L^{s-2}} + \frac{N^{s-1}}{\log B^{-2A}N} + \frac{N^{s-1}}{(\log N)^{(s-2)A}},
\]
where A_r is defined in \([2.21]\). This proves \((1.3)\) in Theorem 1.6. We next prove the rest of Theorem 1.6.

Proposition 2.3. As a function of q, the following function is multiplicative in q:
\[
F(q,l) = \prod_p \left(1 + \frac{\mu_k(p)}{\phi(p^r)}\right)^{-1} \sum_{d=1}^{\infty} \frac{\mu_k(d)}{\phi(q,d^r)};
\]
that is, for every integer l and non-zero integer k, $F(q_1,q_2,l) = F(q_1,l)F(q_2,l)$ whenever $(q_1,q_2) = 1$.

Proof of Proposition 2.3 We have
\[
F(q,l) = \prod_p \left(1 + \frac{\mu_k(p)}{\phi(p^r)}\right)^{-1} \sum_{d=1}^{\infty} \frac{\mu_k(d)}{\phi(q,d^r)}
\]
\[
= \frac{1}{\phi(q)} \prod_p \left(1 + \frac{\mu_k(p)}{\phi(p^r)}\right)^{-1} \prod_p \left(1 + \frac{\mu_k(p)^\theta(q,p^r)\phi(q,p^r)}{\phi(p^r)}\right),
\]
where $\theta(q,d) = 1$ if $(q,d) | k + l$ and 0 otherwise. Hence,
\[
F(q,l) = \frac{1}{\phi(q)} \prod_{p|q} \left(1 + \frac{\mu_k(p)}{\phi(p^r)}\right)^{-1} \prod_{p|q} \left(1 + \frac{\mu_k(p)^\theta(q,p^r)\phi(q,p^r)}{\phi(p^r)}\right).
\]
Since θ is multiplicative in q and d, the result follows. \(\square\)

Lemma 2.4 (Non-vanishing of the Singular Series). For any non-zero integer k and any integer $s \geq 3$, the singular series $\mathcal{S}_{r,k}(N)$ given by \([2.4]\) satisfies $\mathcal{S}_{r,k}(N) > C$ for some $C > 0$ independent of N, provided that the parities of N...
and s are the same and in the case k is odd and $r = 2$, one also needs $4 \mid ks + N$ when N is odd, and $4 \nmid ks + N$ when N is even.

Proof. Define

$$b_{r,N}(q) = \prod_p \left(1 + \frac{\mu_k(p)}{\varphi(p^r)} \right)^{-s} \sum_{0 < a \leq q \atop (a, q) = 1} \left(\sum_{1 \leq l \leq q \atop (l, q) = 1} e \left(\frac{al}{q} \right) \left(\prod_{d \mid (q, d^r)} \frac{\mu_k(d)}{\varphi([q, d^r])} \right)^s \right) \times \left(-aN \over q \right).$$

We shall show that, for fixed r and N, b is a multiplicative function of q, and then investigate properties of b at prime powers. First, we write

$$b_{r,N}(q) = \sum_{0 < a \leq q \atop (a, q) = 1} \left(\sum_{0 < l \leq q \atop (l, q) = 1} e \left(\frac{al}{q} \right) F(q, l) \right) e \left(\frac{-aN}{q} \right),$$

where $F(q, l)$ is given by (2.26). Assume that $q = q_1q_2$, where $(q_1, q_2) = 1$. Then,

$$b_{r,N}(q_1q_2) = \sum_{0 < a \leq q_1q_2 \atop (a, q_1q_2) = 1} \left(\sum_{0 < l \leq q_1q_2 \atop (l, q_1q_2) = 1} e \left(\frac{al}{q_1q_2} \right) F(q_1q_2, l) \right) e \left(\frac{-aN}{q_1q_2} \right).$$

Given $l \equiv q_1q_2$ and $(l, q_1q_2) = 1$, there are unique $l_1 \mod q_1$ and $l_2 \mod q_2$ with $(l_1, q_1) = 1$ and $(l_2, q_2) = 1$ such that

$$l \equiv l_1q_2 + l_2q_1 \mod q_1q_2.$$

Therefore, by Proposition 2.3,

$$\sum_{0 < l \leq q_1q_2 \atop (l, q_1q_2) = 1} e \left(\frac{al}{q_1q_2} \right) F(q_1q_2, l) = \sum_{0 < l_1 \leq q_1 \atop (l_1, q_1) = 1} \sum_{0 < l_2 \leq q_2 \atop (l_2, q_2) = 1} e \left(\frac{al_1q_2}{q_1q_2} \right) F(q_1, l_1q_2) F(q_2, l_2q_1)$$

$$\times F(q_1, l_1q_2) F(q_2, l_2q_1)$$

$$= \sum_{0 < l_1 \leq q_1 \atop (l_1, q_1) = 1} e \left(\frac{al_1q_2}{q_1} \right) F(q_1, l_1q_2) \sum_{0 < l_2 \leq q_2 \atop (l_2, q_2) = 1} e \left(\frac{al_2q_1}{q_2} \right) F(q_2, l_2q_1).$$
Similarly, picking \(a_i \mod q_i\) with \((a_i, q_i) = 1\) such that \(a \equiv a_1q_2 + a_2q_1 \mod q_1q_2\), and replacing \(l_1q_2\) by \(l_1\) and \(l_2q_1\) by \(l_2\), it follows that

\[
b_{r,N}(q_1q_2) = \sum_{0 < a_1 \leq q_1} \left(\sum_{0 < l_1 \leq q_1} e\left(\frac{al_1}{q_1} \right) F(q_1, l_1) \right)^s e\left(\frac{-a_1N}{q_1} \right)
\]

\[
\cdot \sum_{0 < a_2 \leq q_2} \left(\sum_{0 < l_2 \leq q_2} e\left(\frac{al_2}{q_2} \right) F(q_2, l_2) \right)^s e\left(\frac{-a_2N}{q_2} \right)
\]

\[= b_{r,N}(q_1)b_{r,N}(q_2).\]

This proves the desired multiplicativity of \(b_{r,N}\). We shall now investigate \(b_{r,N}\) at prime powers. We write

\[
F(p^m, l) = \prod_{q \text{ prime}} \left(1 + \frac{\mu_k(q)}{\phi(q^r)} \right)^{-1} \sum_{d \mid p^m} \frac{\mu_k(d)}{\phi([p^m, d^r])}
\]

\[= \frac{1}{\phi(p^m)} \left(1 + \frac{\mu_k(p^m)}{\phi(p^r)} \right)^{-1} \left(1 + \frac{\mu_k(p)\phi(p^m, p^r)\rho((p^m, p^r), l)}{\phi(p^r)} \right),\]

(2.28)

where \(\rho(v, l) = 1\) if \(v \mid (l + k)\) and equals 0 otherwise. Note that for \(p \mid k\), we have \(F(p^m, l) = \frac{1}{\phi(p^m)}\), in which case Lemma 1.10 gives

\[
b_{r,N}(p^m) = \frac{1}{\phi^s(p^m)} \sum_{0 < a \leq p^m \atop (a, p) = 1} \left(\sum_{0 < l \leq p^m \atop \text{lcm}(l, p^m)} e\left(\frac{al}{p^m} \right) \right)^s e\left(\frac{-aN}{p^m} \right) = \frac{\mu^s(p^m)c_{p^m}(N)}{\phi^s(p^m)}.
\]

By absolute convergence we can therefore write

\[
\prod_p \left(1 + \frac{\mu_k(p)}{\phi(p^r)} \right)^{-s} \theta_{r,k}(N) = \sum_{q \geq 1} b_{r,N}(q)
\]

\[= \prod_{p \mid k} \left(1 + \frac{(-1)^s c_p(N)}{\phi^s(p)} \right) \prod_{p\notmid k} (1 + b_{r,N}(p) + b_{r,N}(p^2) + \cdots).\]
For any $m \geq 1$ and $p \nmid k$, we obtain using (2.27) and (2.28) that

$$b_{r,N}(p^m) = \frac{1}{\phi^s(p^r)} \left(1 - \frac{1}{\phi(p^r)} \right)^{-s} \times \sum_{0 < a \leq p^m \atop (a,p^r) = 1} \left(\sum_{0 < l \leq p^m \atop (l,p^r) = 1} e \left(\frac{al}{p^m} \right) \left(1 - \frac{p^{\min(m,r)\rho(p^{\min(m,r)})}}{p^r} \right) \right)^s \times \left(-\frac{aN}{p^m} \right).$$

For $m \geq 2$,

$$\sum_{0 < l \leq p^m \atop (l,p^r) = 1} e \left(\frac{al}{p^m} \right) = \mu(p^m) = 0.$$

Therefore, for $2 \leq m \leq r$ and $p \nmid k$,

$$b_{r,N}(p^m) = \frac{(-1)^s}{\phi^s(p^r)} \left(1 - \frac{1}{\phi(p^r)} \right)^{-s} \times \sum_{0 < a \leq p^m \atop (a,p^r) = 1} \left(\sum_{0 < l \leq p^m \atop (l,p^r) = 1} e \left(\frac{al}{p^m} \right) \right)^s e \left(\frac{-aN}{p^m} \right).$$

Note that since the sum over l reduces to one term only and $p^{s(r-m)} \phi^s(p^m) = \phi^s(p^r)$, we get

$$b_{r,N}(p^m) = \frac{(-1)^s}{\phi^s(p^r)} \left(1 - \frac{1}{\phi(p^r)} \right)^{-s} \sum_{0 < a \leq p^m \atop (a,p^r) = 1} e \left(\frac{-aks - aN}{p^m} \right) = \frac{(-1)^s}{\phi^s(p^r)} \left(1 - \frac{1}{\phi(p^r)} \right)^{-s} c_{p^m}(ks + N).$$

If $m > r$, then by (1.5)

$$\sum_{0 < l \leq p^m \atop (l,p^r) = 1} e \left(\frac{al}{p^m} \right) = 0.$$
since \((p^{m-r}, p') \neq 1\). Hence, we get \(b_{r,N}(p^m) = 0\) when \(m > r\) and \(p \nmid k\). It remains to treat the case \(m = 1\) and \(p \nmid k\). This time we have

\[
b_{r,N}(p) = \frac{1}{\phi^*(p)} \left(1 - \frac{1}{\phi(p^r)}\right)^{-s} \sum_{0 < a \leq p} \left(\sum_{0 < l \leq p} e\left(\frac{al}{p}\right) \left(1 - \frac{\rho(p, l)}{p^{r-1}}\right)\right)^s \left(-\frac{aN}{p}\right).
\]

Here,

\[
\sum_{0 < l \leq p} e\left(\frac{al}{p}\right) \left(1 - \frac{\rho(p, l)}{p^{r-1}}\right) = -1 - \frac{1}{p^{r-1}} \sum_{0 < l \leq p} e\left(\frac{al}{p}\right)
\]

\[= -1 - \frac{1}{p^{r-1}} e\left(-\frac{ak}{p}\right).
\]

It follows by the binomial theorem that

\[
b_{r,N}(p) = \frac{(-1)^s}{\phi^*(p)} \left(1 - \frac{1}{\phi(p^r)}\right)^{-s} \sum_{0 < a \leq p} \left(\sum_{i=0}^{s} \binom{s}{i} \frac{1}{p^{i(r-1)}} e\left(-\frac{a(ki + N)}{p}\right)\right)
\]

\[
\times \left(-\frac{aN}{p}\right).
\]

This yields

\[
b_{r,N}(p) = \frac{(-1)^s}{\phi^*(p)} \left(1 - \frac{1}{\phi(p^r)}\right)^{-s} \sum_{i=0}^{s} \binom{s}{i} \frac{1}{p^{i(r-1)}} \sum_{0 < a \leq p} \left(-\frac{a(ki + N)}{p}\right).
\]

To wrap up, one has

\[
\mathcal{G}_{r,k}(N) = \prod_p \left(1 + \frac{\mu_k(p)}{\phi(p^r)}\right) \prod_{p | k} \left(1 + \frac{(-1)^s c_p(N)}{\phi^*(p)}\right)
\]

\[
\times \prod_{p | k} \left(1 + \frac{(-1)^s}{\phi^*(p)} \left(1 - \frac{1}{\phi(p^r)}\right)^{-s} \left(\sum_{i=0}^{s} \binom{s}{i} \frac{1}{p^{i(r-1)}} c_p(ki + N)\right)+ \frac{1}{p^{r-1}} \left(c_p^r(ks + N) + \cdots + c_p(ks + N)\right)\right).
\]

One important observation here is

\[
\lim_{r \to \infty} \mathcal{G}_{r,k}(N) = \prod_p \left(1 + \frac{(-1)^s c_p(N)}{\phi^*(p)}\right).
\]
From [5, §26], we have the identity
\[\sum_{d|q} c_d(N) = \begin{cases} q & \text{if } q | N, \\ 0 & \text{if } q \nmid N. \end{cases} \]

Therefore, we have
\[c_{p^r}(ks + N) + \cdots + c_{p^r}(ks + N) = p^r \rho(p^r, k(s-1)+N) - c_p(ks+N) - 1. \]

For \(p > 2 \), we note that
\[\left| 1 + \frac{(-1)^s c_p(ks+N)}{\phi^s(p)} \right| \geq 1 - (p-1)^{1-s} \geq 3/4. \]

Therefore the factors in (2.29) corresponding to odd \(p | k \) do not vanish. On the other hand, for \(p = 2 \), this factor vanishes if and only if \(s \) and \(N \) have different parities.

Assume now that \(p \nmid k \). Since \(c_p(ik+N) \leq p - 1 \) for all \(i \), the expression
\[\left(\frac{1}{\phi^s(p^r)} \right)^s \left(p^{s(r-1)} \sum_{i=0}^{s} \frac{1}{p^{s(r-1)}} c_p(ks+N) \right) \]
\[+ (c_{p^r}(ks+N) + \cdots + c_{p^r}(ks+N)) \] (2.30)

has absolute value
\[\leq h(p,r,s) := \frac{(p-1)(1+p^{r-1})^s + p^r - p}{(p^r - p^r-1)^s}. \]

Since \(s \geq 3 \) and \(r \geq 2 \) are fixed, \(h(p,r,s) \ll p^{-s+1} \) for every large \(p \). Hence, the factors in \(\mathcal{G}_{r,k}(N) \) corresponding to large \(p \nmid k \) do not vanish. Therefore, it is enough to show that \(h(p,r,s) < 1 \) for every \(s \geq 3, r \geq 2 \) and small primes \(p \).

When \(p \geq 3 \) and \(r \geq 2 \) are fixed, then \(h \) is decreasing as a function of \(s \), since for \(p \geq 3 \) and \(r \geq 2 \)
\[\frac{p^{r-1} + 1}{p^r - p^{r-1} - 1} < 1. \]

Hence, \(h(p,r,s) \leq h(p,r,3) \). Define
\[f(r) = \frac{1 + p^{r-1}}{p^r - p^{r-1} - 1}, \quad \text{and} \quad g(r) = \frac{p^r - p}{(p^r - p^{r-1} - 1)^3}. \]

Since
\[f'(r) = -\frac{p^r \log p}{(p^r - p^{r-1} - 1)^2} < 0, \]
\[g'(r) = -\frac{p^r \log p (2p^r - 2p^{r-1} - 3p + 4)}{(p^r - p^{r-1} - 1)^4} < 0 \]

for \(r \geq 2 \) and each fixed \(p \geq 2 \), we conclude that \(h(p,r,3) \) is decreasing as a function of \(r \). For \(r = 2 \), we see that
\[h(p,2,3) = \frac{p^4 + 2p^3 + p^2 - 3p - 1}{p^6 - 3p^5 + 5p^4 - 3p - 1} < 1. \]
for all $p > 3$. This shows $h(p, r, s) < h(p, 2, 3) < 1$ for all $r \geq 2, s \geq 3$, and $p > 3$.

Furthermore, we note that $h(3, 3, 3) < 1$. Thus, $h(3, r, s) < 1$ for all $r, s \geq 3$.

It remains to investigate (2.30) in the following cases:

(1) $p, s = 3, r = 2$ and $3 \nmid k$,
(2) $p = 2, s \geq 3, r \geq 2$ and $2 \nmid k$.

In the first case, (2.30) becomes

$$\frac{1}{53} \left(\sum_{i=0}^{3} \binom{3}{i} 3^{3-i} c_3(ki + N) + c_9(3k + N) + c_3(3k + N) \right).$$

An easy computation reveals that the maximum value of this expression has absolute value 37/125 for $1 \leq k \leq 9$ with $(k, 9) = 1$ and $1 \leq N \leq 9$.

We can now work on the case $p = 2$. Assume now $2 \nmid k$ and N is odd. In this case, $c_2(ki + N) = (-1)^{s+1}$. Therefore,

$$\sum_{i=0}^{s} \binom{s}{i} \frac{1}{2^{s(r-1)}} c_2(ki + N) = - \left(1 - \frac{1}{2^{r-1}}\right)^s.$$

Inserting this in (2.30), we get

$$\frac{(-1)^s}{(2^{r-1} - 1)^s} \left(-2^{s(r-1)} \left(1 - \frac{1}{2^{r-1}}\right)^s + 2^r \rho(2^r, k(s-1) + N) + (-1)^s - 1 \right)$$

$$= (-1)^s \left(-1 + \frac{2^r \rho(2^r, k(s-1) + N) + (-1)^s - 1}{(2^{r-1} - 1)^s} \right).$$

This expression equals -1, and hence the corresponding local factor in (2.20) vanishes, only if s is even, or if s is odd, and $r = 2$ and $2 \nmid (ks + N)$.

If N is even, $c_2(ki + N) = (-1)^i$. This time (2.30) becomes

$$(-1)^s \left(1 + \frac{2^r \rho(2^r, k(s-1) + N) + (-1)^{s+1} - 1}{(2^{r-1} - 1)^s} \right).$$

Therefore, the corresponding factor in (2.20) vanishes only if s is odd or if s is even, and $r = 2$ and $2 \nmid (ks + N)$. This completes the proof.

2.5. Proof of Theorem 1.7

We borrow the notation $f_{r,k}(\alpha, N)$ from the proof of Theorem 1.6. Let $\alpha > 0$ be an irrational number. For the first claim, it will be sufficient to show that

$$f_{r,k}(\alpha, N) = o(N),$$

as this will imply by partial summation that

$$\sum_{p \in \mathcal{P}_{r,k}(N)} e(h(\alpha p + \beta)) = o(|\mathcal{P}_{r,k}(N)|)$$

(2.32)
for any fixed non-zero integer \(h \) and any real number \(\beta \). This shows by Weyl’s criterion (see [11, Chap. 1, Theorem 2.1]) that the fractional parts \(\{\alpha p + \beta\} \) with \(p \in \mathcal{P}_{r,k} \) are uniformly distributed modulo 1.

To prove (2.31), we assume, shifting by an appropriate integer if needed, that \(\alpha \in (0,1) \). Let \(A \) be a sufficiently large number. By Dirichlet’s approximation theorem, we find a reduced rational number \(a/q \) satisfying

\[
|\alpha - \frac{a}{q}| < \frac{\log^A N}{qN}
\]

with \(1 \leq q \leq N/\log^A N \). Note that \(q \to \infty \) as \(N \to \infty \) since \(\alpha \) is irrational. If \(q \geq \log^A N \), then the result follows by Lemma (2.1). Otherwise, by Lemma (2.2) it follows that

\[
f_{r,k}(\alpha, N) \ll \frac{N^{2\omega(q)}}{\phi(q)} + \frac{N}{\log N} \ll \frac{N^{2\omega(q)} \log \log q}{q} + \frac{N}{\log N},
\]

yielding \(\limsup_{N \to \infty} |f_{r,k}(\alpha, N)|/N = 0 \). This proves the first assertion in Theorem 1.

To prove the second assertion, we assume that \(\alpha > 0 \) is of finite type \(r \geq 1 \). Hence, for a given \(\varepsilon > 0 \), there exists a constant \(C = C(\varepsilon, r) > 0 \) such that \(\|\alpha n\| \geq C n^{-(r+\varepsilon)} \) for every positive integer \(n \).

Let \(h \in [1, 2(CN)^{-\overline{w}}] \) be an integer. By Dirichlet’s approximation theorem, there exist co-prime integers \(a, q \) with \(1 \leq q \leq N/Q \) such that \(|\alpha h - a/q| < Q/(qN) \), where \(Q \) is to be chosen in \([1, (CN)^{-1/2} (2/h)^{1/2}] \). Since

\[
C(hq)^{-(r+\varepsilon)} \leq \|\alpha h q\| \leq |\alpha h q - a| < Q/N,
\]

we find

\[
q > h^{-1}(CN/Q)^{1 r} \geq Q/2,
\]

last inequality by our choice of the upper limit of \(Q \). Hence, it follows that \(|\alpha h - a/q| < 2/N \) and we can use Lemma (2.1) to get

\[
f_{r,k}(\alpha, N) N^{-\varepsilon} \ll h^+ Q^{1\over 2} N^{1\over r} + N Q^{-1\over r} + \begin{cases} N^{1\over 2} & \text{if } r = 2, \\ N^{1\over 3} & \text{if } r > 2, \end{cases}
\]

where we used the elementary inequality \(2^{\omega(q)} \leq \tau(q) \ll (N/Q)^{1/2} \).

Using [7, Lemma 2.4] to choose \(Q \) optimally, we obtain

\[
f_{r,k}(\alpha h, N) N^{-\varepsilon} \ll h^+ N^{1\over r} + h^{(r-1)(1/2)} N^{1\over r} + \begin{cases} N^{1\over 2} & \text{if } r = 2, \\ N^{1\over 3} & \text{if } r > 2, \end{cases}
\]

\[
\ll N((h^{r+\varepsilon}/N)^{1\over r} + (h^{r+\varepsilon}/N)^{1\over 2(r+1\varepsilon)})
\]

\[
+ (h^{r+\varepsilon}/N)^{1\over 2(r+1\varepsilon)} + \begin{cases} N^{1\over 2} & \text{if } r = 2, \\ N^{1\over 3} & \text{if } r > 2. \end{cases}
\]
We can assume that
\[h \leq N^{1/(r+\varepsilon)/2} \]
by taking a smaller \(C \) if necessary. Hence, the second term dominates the first and the third terms, and we can write
\[f_{r,k}(\alpha h, N) N^{-\varepsilon} \ll \frac{h^{(r-1)/(r+1)}}{x^{(r-1)/(r+1)}} N^{1-(r-1)/(r+1)} + \begin{cases} \frac{N^\varepsilon}{x^{r}} & \text{if } r = 2, \\ \frac{N^\varepsilon}{x^{r}} & \text{if } r > 2. \end{cases} \]
Note that if \(h \gg N^{1/(r+\varepsilon)} \), then the above inequality is trivially satisfied. Therefore, the inequality holds for all non-zero integers \(h \).

Finally, by using Lemma 1.14 subsequent to an application of partial summation, it follows that
\[
\# \{ p \leq x : p \in \mathcal{P}_{r,k} \text{ and } a \leq \{ \alpha p + \beta \} \leq b \} - (b - a) \# \mathcal{P}_{r,k}(x) \ll \frac{x}{H \log x} + \frac{x^\varepsilon}{\log x} \left(H^{(r-1)/(r+1)} x^{-1} + \log H \left(\frac{x^\varepsilon}{x^{r}} \text{ if } r = 2, \frac{x^\varepsilon}{x^{r}} \text{ if } r > 2 \right) \right).
\]
Using [7, Lemma 2.4] with \(H \in [1,x] \) gives the error stated in Theorem 1.7.

Proof of Corollary 1.8 We shall show that
\[
\sum_{p \in (\mathcal{P}_{r,k} \cap \mathcal{B}_a, \beta)(x)} \frac{1}{\alpha} \approx 1.
\]
It is not hard to show that if \(\alpha > 1 \) irrational, then
\[p \in \mathcal{P}_{r,k} \cap \mathcal{B}_{a,\beta} \iff p \in \mathcal{P}_{r,k} \text{ and } 0 < \left(\frac{p + 1 - \beta}{\alpha} \right) \leq \frac{1}{\alpha}, \]
where equality can hold for at most one prime \(p \). Hence, the proof of the corollary is apparent from Theorem 1.7.

Acknowledgments

We thank the referees for carefully reading the paper and their helpful suggestions that we believe improved the organization of this paper. Both authors are supported by TÜBİTAK Research Grant No. 119F425.

References

