Browsing by Subject "tissue engineering"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Chitosan scaffolds with BMP-6 loaded alginate microspheres for periodontal tissue engineering(2012) Soran, Z.; Aydin, R.S.T.; Gumusderelioglu, M.The aim of this study is to develop an effective growth factor releasing scaffold-microsphere system for promoting periodontal tissue engineering. Bone morphogenetic protein-6 (BMP-6)-loaded alginate microspheres in narrow size distribution were produced by optimising electrospraying conditions. The addition of these microspheres to chitosan gels produced a novel scaffold in which not only the pore sizes and interconnectivity were preserved, but also a controlled release vehicle was generated. Loading capacity was adjusted as 50ng or 100ng BMP-6 for each scaffold and the controlled release behaviour of BMP-6 from chitosan scaffolds was observed during seven days. Cell culture studies were carried out with rat mesenchymal stem cells derived from bone marrow in three groups; chitosan scaffolds, chitosan scaffolds containing BMP-6-loaded alginate microspheres and chitosan scaffolds with free BMP-6 in culture medium. Results showed that controlled delivery of BMP-6 from alginate microspheres has a significant effect on osteogenic differentiation. © 2012 Informa UK Ltd All rights reserved.Item Open Access Effect of double growth factor release on cartilage tissue engineering(2013) Ertan, A.B.; Yilgor P.; Bayyurt, B.; Çalikoǧlu, A.C.; Kaspar Ç.; Kök F.N.; Kose G.T.; Hasirci V.The effects of double release of insulin-like growth factor I (IGF-I) and growth factor β1 (TGF-β1) from nanoparticles on the growth of bone marrow mesenchymal stem cells and their differentiation into cartilage cells were studied on PLGA scaffolds. The release was achieved by using nanoparticles of poly(lactic acid-co-glycolic acid) (PLGA) and poly(N-isopropylacrylamide) (PNIPAM) carrying IGF-I and TGF-β1, respectively. On tissue culture polystyrene (TCPS), TGF-β1 released from PNIPAM nanoparticles was found to have a significant effect on proliferation, while IGF-I encouraged differentiation, as shown by collagen type II deposition. The study was then conducted on macroporous (pore size 200-400μm) PLGA scaffolds. It was observed that the combination of IGF-I and TGF-β1 yielded better results in terms of collagen type II and aggrecan expression than GF-free and single GF-containing applications. It thus appears that gradual release of a combination of growth factors from nanoparticles could make a significant contribution to the quality of the engineered cartilage tissue. © 2011 John Wiley & Sons, Ltd.Item Open Access Peptide nanofibers for engineering tissues and immune system(2014) Mammadov, RashadInterdisciplinary work at the interface of biology and materials science is important for finding cures to complex diseases. Achievements in materials science allow us to control materials at nanoscale and design them according to specific therapeutic purposes. This includes incorporating biophysical and biochemical signals into materials to make them biologically functional. These signals are sensed by cells in normal or pathological cases and influence their decision-making process, which eventually alters cellular behavior. However, cellular environment is so complex in terms of these signals that recapitulating it with synthetic materials is unattainable considering our limited resources. Therefore, we need to distinguish those signals that are structurally simple, but at the same time biologically critical, that would drive cellular behavior to desired outcome. In this thesis, I will describe peptide nanofiber systems for tissue engineering and vaccinology applications. First system is inspired from heparan sulfate (HS) – a natural polymer in extracellular matrix – that bind to growth factors and regulate their functioning, therefore central for induction of various physiological processes. Peptide nanofibers with right composition of bioactive chemical functional groups from HS showed specific interaction with growth factors and induced endothelial cells to form blood vessels similar to natural matrices carrying HS. Considering mentioned features, these peptide nanofibers could be useful for effective regeneration of tissues. Secondly, the peptide nanofiber system carrying pathogenic DNA motives, which is an infection signal, was developed. While non-immunogenic by itself, these nanofibers shifted immune response against pathogenic DNA towards a context that is useful for fighting intracellular pathogens and cancer. Overall, this thesis demonstrates that structurally simple but appropriate biophysical and biochemical signals could be synergistic for inducing desired biological processes at the nanoscale.