Browsing by Subject "nanopore"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Detection of single gold nanoparticle in liquid with nanopore-integrated microwave resonators(Institute of Electrical and Electronics Engineers, 2021-04-01) Pisheh, Hadi Sedaghat; Seçme, Arda; Uslu, H. Dilara; Küçükoğlu, Berk; Hanay, Mehmet SelimHere, we propose a nanopore integrated microwave resonator to detect single nanoparticles in real time. In contrast to existing nanopore-sensors relying on detection techniques like resistive pulse sensing, and current-voltage measurements, the presented coplanar-waveguide sensor detects the passage of gold nanoparticles through a nanopore on a thin film membrane. Resonance frequency of the sensor, which is around 7 GHz, is tracked by a custom-built close loop circuitry. Gold nanoparticles are electro kinetically driven through the pore: as each nanoparticle passed the pore, it induces a shift in the resonance frequency of the resonator. The presented method is not limited by the specific design of the pore, alleviating the stringing condition on pore size and shape with respect to the target analyte.Item Open Access Ionic current inversion in pressure-driven polymer translocation through nanopores(American Physical Society, 2015) Buyukdagli, S.; Blossey, R.; Ala-Nissila, T.We predict streaming current inversion with multivalent counterions in hydrodynamically driven polymer translocation events from a correlation-corrected charge transport theory including charge fluctuations around mean-field electrostatics. In the presence of multivalent counterions, electrostatic many-body effects result in the reversal of the DNA charge. The attraction of anions to the charge-inverted DNA molecule reverses the sign of the ionic current through the pore. Our theory allows for a comprehensive understanding of the complex features of the resulting streaming currents. The underlying mechanism is an efficient way to detect DNA charge reversal in pressure-driven translocation experiments with multivalent cations. © 2015 American Physical Society.