Browsing by Subject "XPS"
Now showing 1 - 20 of 55
- Results Per Page
- Sort Options
Item Open Access Analysis of Fe nanoparticles using XPS measurements under d.c. or pulsed-voltage bias(2010) Süzer, Şefik; Baer, D. R.; Engelhard, M. H.The impact of solution exposure on the charging properties of oxide coatings on Fe metal-core oxide-shell nanoparticles has been examined by sample biasing during XPS measurements. The Fe nanoparticles were suspended in relatively unreactive acetone and analyzed after particles containing solutions were deposited on SiO2/Si or Au substrates. The particle and substrate combinations were subjected to ±10V d.c. or ±5V a.c., biasing in the form of square wave (SQW) pulses. The samples experienced variable degrees of charging for which low-energy electrons at ∼1eV, 20 μA and low-energy Ar+ ions were used to minimize it. Application of d.c. bias and/or SQW pulses significantly influences the extent of charging, which is utilized to gather additional analytical information about the sample under investigation. This approach allows separation of otherwise overlapping peaks. Accordingly, the O1s peaks of the silicon oxide substrate, the iron oxide nanoparticles, and that of the casting solvent can be separated from each other. Similarly, the C1s peak belonging to the solvent can be separated from that of the adventitious carbon. The charging shifts of the iron nanoparticles are strongly influenced by the solvent to which the particles were exposed. Hence, acetone exhibited the largest shift, water the smallest, and methanol in between. Dynamical measurements performed by application of the voltage stress in the form of SQW pulses provides information about the time constants of the processes involved, which leads us to postulate that these charging properties we probe in these systems stem mainly from ionic movement(s).Item Open Access Analysis of surface structures using XPS with external stimuli(Springer, Dordrecht, 2006) Ertaş, Gülay; Süzer, Şefik; Blitz, J. P.; Gun'ko, V. M.X-ray Photoelectron Spectroscopy, XPS, due to the perfect match of its probe length (1-10 nm) to nanoparticle size, chemical specificity, and susceptibility to electrical charges, is ideally suited for harvesting chemical, physical and electrical information from nanosized surface structures. In addition, by recording XPS spectra while applying external d.c. and/or pulsed voltage stimuli, it is also possible to control the extent of charging and extract various analytical information. In the simplest form, application of a static (d.c.) voltage stimuli enhances separation of otherwise overlapping peaks of gold nanoparticles from that of metallic gold. When the voltage stimuli is applied in the form of rectangular pulses, dynamic information is obtained from the frequency dependence of the charging shifts. This enables us to better probe the composition of nanoparticles produced (i.e. silicide formation, or whether or the extent of reduction, etc.) when platinum salt is deposited on silicon substrates. Finally, by recording the data in different time windows, XPS spectra can be recorded in time-resolved fashion. Time-resolved spectra can be used to detect, locate and quantify the charges developed in various surface structures like gold(core)/ silica(shell) nanoparticles on a copper substrate.Item Open Access Band-Bending at buried SiO2/Si interface as probed by XPS(American Chemical Society, 2013) Çopuroğlu, M.; Sezen, H.; Opila, R. L.; Süzer, ŞefikX-ray photoelectron spectroscopy is used to probe the photoinduced shifts in the binding energies of Si2p, O1s, and C1s of the SiO2/Si interfaces of a number of samples having oxide and/or thin organic layers on top of p- and n-Si wafers. Whereas the photoinduced shifts, in each and every peak related, vary from 0.2 to 0.5 eV for the p-type samples, the corresponding shifts are substantially smaller (<0.1 eV) for the n-type, regardless of (i) oxidation route (thermal or anodic), (ii) thickness of oxide layer, (iii) nature of organic layer, or (iv) color of three illuminating sources we have used. This leads us to conclude that these particular photoshifts reflect the charge state of the SiO2/Si interface, even in the case of a 20 nm thick oxide, where the interface is buried and cannot be probed directly by XPS.Item Open Access BaOx(2011) Emmez, EmreIn this work, formation anddecomposition pathways of of Ba(NO3)2 on BaOBaO2 /Pt(111) surfaces were investigated at the molecular levelfordifferent BaOBaO2coverages starting from small 2D islands of 0.5 MLE (MLE: monolayer equivalent) to thick multilayers of 10 MLE via temperature-programmed desorption (TPD), and X-ray Photoelectron Spectroscopy (XPS) and Low Energy Electron Diffraction (LEED). BaOxoverlayerswith a surface coverage of ~ 1 MLEreveallong range ordering with (2×2) and/or (1×2) structures while BaOx films with a surface coverage of1.5 MLEyields aBaO(110) termination and thicker films ( ≥ 5 MLE) were observed to be amorphous. Saturation of thick (10 MLE) BaOxoverlayers with NO2 leads to the formation of nitrates. Nitrate thermal decomposition was demonstrated to proceed through nitrite intermediates. In TPD experimentstwo major pathwaysfornitrate decomposition were observed: 1) nitrate decomposition yielding only NO evolutionat ~650 K, and 2) nitrate decomposition withNO + O2evolutionat ~700 K. This multi-step decomposition behavior was explained by BaO2 formation during the first stage. The influence of the BaOxdeposition method on the morphology of the BaOxoverlayers were established: when a thick BaOx layer is prepared using NO2 for Ba oxidation, BaOx overlayer efficiently wets the Pt(111) substrate forming a well-dispersed film. On the other hand, ifa thick BaOx layer is heated in O2 (to 873 K), BaOx overlayer agglomerates into 3D clusters, resulting in the formation of exposed (uncovered) Pt sites. BaOxoverlayers with uncoveredPt sitescan be “cured” by nitration – thermal decomposition procedures. When the BaOx layer coverage is below 2.5 MLE, nitrate decomposition temperature is observed at significantly lower temperatures, demonstrating the catalytic influence of the Pt sites facilitating the nitrate decomposition. It is proposed that initially, Ba(NO3)2 decomposesatthe boundary/peripheralsites of the Pt/BaOx interface, followed by the nitrate decomposition originating from 2D BaOx islands, and eventually from the 3D BaOx agglomerates. Catalytic deactivation of TiO2-promoted NOx-storage reduction (NSR) catalysts due to thermal aging effects was investigated using a BaO/TiO2/Pt(111) model catalyst system. At room temperature, metallic Ba overlayers on TiO2/Pt(111) was found to be very reactive towards oxide ions on TiO2/Pt(111) resulting in the formation of BaOx and partial reduction of TiO2. Ba films adsorbed on TiO2/Pt(111) that are further oxidized in O2 at 523 K lead to BaO and BaO2 surface domains which can efficiently adsorb both NO2 and CO2. Thermal treatment of BaOBaO2/TiO2/Pt(111) surface at T ≥ 300 K leads to a monotonic decrease in the surface Ba/Ti atomic ratio indicating the diffusion of BaO-BaO2 domains into the underlying TiO2 framework. Solid state reactions between BaOx and TiO2 particularly within 473-873K facilitate the formation of BaTiO3/Ba2TiO4/BaxTiyOz overlayers. After oxidation at higher temperatures (T > 873 K), surface becomes Badeficient and the enrichment of the surface with the Ti4+ sites results in a TiO2- terminated surface. Diffusion of BaOx into the TiO2 matrix and the enrichment of the surface with Ti sites drastically suppress the NO2 and CO2 adsorption/storage capacity of the model NOx storage system. These results reveal a direct evidence for the structural changes associated with the thermal deactivation of TiO2-promoted NSR catalysts.Item Open Access BaOx/ Pt(111) AND BaOx/ TiO2/ Pt(111) MODEL CATALYSTS FOR UNDERSTANDING NOx STORAGE-REDUCTION (NSR) CATALYSIS AT THE MOLECULAR LEVEL(2011) Emmez, EmreIn this work, formation anddecomposition pathways of of Ba(NO3)2 on BaOBaO2 /Pt(111) surfaces were investigated at the molecular levelfordifferent BaOBaO2coverages starting from small 2D islands of 0.5 MLE (MLE: monolayer equivalent) to thick multilayers of 10 MLE via temperature-programmed desorption (TPD), and X-ray Photoelectron Spectroscopy (XPS) and Low Energy Electron Diffraction (LEED). BaOxoverlayerswith a surface coverage of ~ 1 MLEreveallong range ordering with (2×2) and/or (1×2) structures while BaOx films with a surface coverage of1.5 MLEyields aBaO(110) termination and thicker films ( ≥ 5 MLE) were observed to be amorphous. Saturation of thick (10 MLE) BaOxoverlayers with NO2 leads to the formation of nitrates. Nitrate thermal decomposition was demonstrated to proceed through nitrite intermediates. In TPD experimentstwo major pathwaysfornitrate decomposition were observed: 1) nitrate decomposition yielding only NO evolutionat ~650 K, and 2) nitrate decomposition withNO + O2evolutionat ~700 K. This multi-step decomposition behavior was explained by BaO2 formation during the first stage. The influence of the BaOxdeposition method on the morphology of the BaOxoverlayers were established: when a thick BaOx layer is prepared using NO2 for Ba oxidation, BaOx overlayer efficiently wets the Pt(111) substrate forming a well-dispersed film. On the other hand, ifa thick BaOx layer is heated in O2 (to 873 K), BaOx overlayer agglomerates into 3D clusters, resulting in the formation of exposed (uncovered) Pt sites. BaOxoverlayers with uncoveredPt sitescan be “cured” by nitration – thermal decomposition procedures. When the BaOx layer coverage is below 2.5 MLE, nitrate decomposition temperature is observed at significantly lower temperatures, demonstrating the catalytic influence of the Pt sites facilitating the nitrate decomposition. It is proposed that initially, Ba(NO3)2 decomposesatthe boundary/peripheralsites of the Pt/BaOx interface, followed by the nitrate decomposition originating from 2D BaOx islands, and eventually from the 3D BaOx agglomerates. Catalytic deactivation of TiO2-promoted NOx-storage reduction (NSR) catalysts due to thermal aging effects was investigated using a BaO/TiO2/Pt(111) model catalyst system. At room temperature, metallic Ba overlayers on TiO2/Pt(111) was found to be very reactive towards oxide ions on TiO2/Pt(111) resulting in the formation of BaOx and partial reduction of TiO2. Ba films adsorbed on TiO2/Pt(111) that are further oxidized in O2 at 523 K lead to BaO and BaO2 surface domains which can efficiently adsorb both NO2 and CO2. Thermal treatment of BaOBaO2/TiO2/Pt(111) surface at T ≥ 300 K leads to a monotonic decrease in the surface Ba/Ti atomic ratio indicating the diffusion of BaO-BaO2 domains into the underlying TiO2 framework. Solid state reactions between BaOx and TiO2 particularly within 473-873K facilitate the formation of BaTiO3/Ba2TiO4/BaxTiyOz overlayers. After oxidation at higher temperatures (T > 873 K), surface becomes Badeficient and the enrichment of the surface with the Ti4+ sites results in a TiO2- terminated surface. Diffusion of BaOx into the TiO2 matrix and the enrichment of the surface with Ti sites drastically suppress the NO2 and CO2 adsorption/storage capacity of the model NOx storage system. These results reveal a direct evidence for the structural changes associated with the thermal deactivation of TiO2-promoted NSR catalysts.Item Open Access Carbon supported nano-sized Pt-Pd and Pt-Co electrocatalysts for proton exchange membrane fuel cells(2009) Kadirgan, F.; Kannan, A. M.; Atilan, T.; Beyhan, S.; Ozenler, S. S.; Süzer, Şefik; Yörür, A.Nano-sized Pt-Pd/C and Pt-Co/C electrocatalysts have been synthesized and characterized by an alcohol-reduction process using ethylene glycol as the solvent and Vulcan XC-72R as the supporting material. While the Pt-Pd/C electrodes were compared with Pt/C (20 wt.% E-TEK) in terms of electrocatalytic activity towards oxidation of H2, CO and H2-CO mixtures, the Pt-Co/C electrodes were evaluated towards oxygen reduction reaction (ORR) and compared with Pt/C (20 wt.% E-TEK) and Pt-Co/C (20 wt.% E-TEK) and Pt/C (46 wt.% TKK) in a single cell. In addition, the Pt-Pd/C and Pt-Co/C electrocatalyst samples were characterized by XRD, XPS, TEM and electroanalytical methods. The TEM images of the carbon supported platinum alloy electrocatalysts show homogenous catalyst distribution with a particle size of about 3-4 nm. It was found that while the Pt-Pd/C electrocatalyst has superior CO tolerance compared to commercial catalyst, Pt-Co/C synthesized by polyol method has shown better activity and stability up to 60 °C compared to commercial catalysts. Single cell tests using the alloy catalysts coated on Nafion-212 membranes with H2 and O2 gases showed that the fuel cell performance in the activation and the ohmic regions are almost similar comparing conventional electrodes to Pt-Pd anode electrodes. However, conventional electrodes give a better performance in the ohmic region comparing to Pt-Co cathode. It is worth mentioning that these catalysts are less expensive compared to the commercial catalysts if only the platinum contents were considered.Item Open Access Ceria promoted NOx storage and reduction materials(2011) Say, ZaferIn the current work, the effect of CeO2 promotion on the NOx storage materials and NOx storage-reduction (NSR) catalysts is studied. Synthesized materials were prepared using different baria and ceria loadings in order to investigate the influence of the surface composition on the NOx storage process. Synthesized materials were also thermally treated in the temperature range within 300 - 1273 K to mimic the thermal aging effects on the material structure. Structural properties of the synthesized materials were investigated via spectroscopic and diffraction techniques such as Raman spectroscopy, X-ray diffraction (XRD), and BET (Brunauer, Emmett, ve Teller) surface area analysis. These ex-situ characterization studies revealed that materials containing Pt showed indications of sintering after thermal treatment at elevated temperatures where Pt sites grew in size and were partially covered by BaO domains. Pt addition to the BaO/Al2O3 system facilitated the formation of the undesired BaAl2O4 phase, particularly at high baria loadings. Decomposition of the Ba(NO3)2 species took place at lower temperatures for Pt containing materials. An indication for a strong-metal-support interaction (SMSI) between Pt and CeO2 sites was observed in Raman spectroscopic data, resulting in the formation of a new mixed oxide phase on the surface. BET results indicated that the specific surface area (SSA) of the synthesized materials monotonically decreased with increasing temperature and increasing BaO and CeO2 loadings. The behavior of the synthesized materials in NOx and SOx adsorption experiments were also investigated via temperature programmed desorption (TPD) and in-situ Fourier transform infrared (FTIR) spectroscopy. Ceria promotion had no significant influence on the nature of the adsorbed nitrate species and the NOx uptake ability of the alumina support material. On the other hand, addition of Pt to CeO2/Al2O3 binary and BaO/CeO2/Al2O3 ternary systems was observed to enhance the NOx storage. For the ternary mixed oxide NOx storage systems (BaO/CeO2/Al2O3), increasing BaO or CeO2 loadings results in a decrease in the specific surface area values, which in turn leads to decreasing NOx uptake. SO2 (g) + O2 (g) interaction with a selected set of samples were also investigated via in-situ FTIR spectroscopy. These experiments reveal that ceria promotion and platinum addition assisted the formation of surface sulfate species. Furthermore, the presence of ceria also resulted in a decrease in the thermal stability of sulfates and enabled easier regeneration.Item Open Access Characterization of denture acrylic resin surfaces modified by glow discharges(Sage Publications, Inc., 1997) Süzer, Ş.; Özden, N.; Akaltan, F.; Akovali, G.Resin samples prepared by compression molding using a poly (methyl methacrylate) (PMMA) denture base material were exposed to radio-frequency (rf) glow discharges to improve the wettability of the material. Fourier transform infrared (FT-IR) reflectance, X-ray photoelectron spectroscopy (XPS), and contact-angle measurements have been employed to characterize the changes introduced by the glow discharge plasma. FT-IR measurements cannot detect any modification. XPS reveals an increase in the O/C atomic ratio. Contact angles of the plasma-treated samples are always lower when compared with untreated ones. The increased O atomic concentration is attributed to formation of -COH groups on the surface during plasma treatment. The O/C atomic ratio decreases upon heating the samples in vacuum to 100 °C for 1-2 min and exposing the samples to liquid CH2Cl2 for 1-2 min. Exposure to distilled water for prolonged periods causes a slight decrease during the initial 1-20 days but levels off to a constant value up to a period of 60 days. Plasma treatment seems to offer a durable increase in the wettability for these materials left in air or distilled water.Item Open Access Charging/discharging dynamics of CdS and CdSe films under photoillumination using dynamic x-ray photoelectron spectroscopy(A I P Publishing LLC, 2010) Sezen, H.; Süzer, ŞefikThin films of CdS and CdSe are deposited on HF-cleaned Si O2 /Si substrates containing ∼5 nm thermally grown silicon oxide. x-ray photoelectron spectroscopy (XPS) data of these films are collected in a dynamic mode, which is based on recording the spectrum under modulation with an electrical signal in the form of ±10 V square-wave pulses. Accordingly, all peaks are twined and shifted with respect to the grounded spectrum. The binding energy difference between the twinned peaks of a dielectric system has a strong dependence on the frequency of the electrical stimuli. Therefore, dynamic XPS provides a means to extract additional properties of dielectric materials, such as effective resistance and capacitance. In this work, the authors report a new advancement to the previous method, where they now probe a photodynamic process. For this reason, photoillumination is introduced as an additional form of stimulus and used to investigate the combined optical and electrical response of the photoconductive thin films of CdS and CdSe using dynamic XPS.Item Open Access Chemistry and structure of sputter deposited boron-carbon-nitrogen thin films(2012) Genişel, Mustafa FatihThere is a growing interest in synthesizing new materials with unique mechanical properties like hardness or electrical and optical properties. For this purpose, Boron-Carbon-Nitrogen (BCN) ternary phase diagram promises new materials with potentially unique properties, such as variable band gap semiconductors or phases with extreme hardness. On the other hand, the physical or mechanical properties of these new BCN materials strongly depend on the chemical environment of the atoms and their atomic structure. In this thesis, atomic structure and chemical environment of the atoms in BCN thin films were investigated. BCN films were synthesized by Reactive Magnetron Sputtering (RMS) technique from a B4C target. Various process parameters of synthesis were changed during deposition, such as the substrate bias, substrateto-target distance and N2 flow. The effect of process parameters are investigated with respect to their fundamental effects on the growing BCN films. Several sets of experiments were planned and conducted in order to gain insight as per their effect on the final chemistry and atomic structure. The characterization of the chemical composition of the films was done using data from Infrared Spectroscopy, Raman Spectroscopy, X-ray Photoelectron Spectroscopy, X-Ray Diffraction, and Electron Energy Loss Spectroscopy. Also, electron transparent thin crosssections from the BCN films were prepared using focused-ion beam technique for conducting High Resolution Transmission Electron Microscopy analysis for the verification of atomic structure. In the first series, named B series, the energy is supplied to growing film by applying a radio frequency generated d.c. bias on the substrate. Magnitude of the applied bias was changed throughout the series. In the second and third series, namely P and D series, the effect of substrate-to-target distance was investigated. In these series, BCN and BN films were deposited on substrates that were located at different distances from the target surface. In sub-series, effect of, i) the magnitude of applied bias, ii) type of applied substrate bias on the chemistry of the BCN films were scrutinized. In addition, the effect of atomic composition on the bonding preferences was studied. For this purpose, a series of BCN films were r.f. sputter deposited from B4C target with different N2 flow rate at the process gas. After the careful analysis of the data from mainly the spectroscopic techniques, several important results were obtained. First, a prevailing bonding preference, i.e. phase segregation, was observed in the films deposited regardless of the process parameters used, such that a dominant presence of B-N and C-C or C-N bonding were observed in the films. Furthermore, increasing the substrate bias or decreasing the substrate-to-target distance resulted in the atomic ordering and layered (turbostratic) BCN films. Examination of the spectroscopic data in detail also indicated that the individual layers were made out of separate domains of h-BN like and graphitic like carbon regions, which supports the phase-segregation assertion. Two main regimes are identified for the growth of BCN films; thermodynamically or kinetically controlled regimes. BCN films synthesized with large substrate bias or close to target surface were overall more ordered as the adatoms arriving on the substrate surface had enough energy to diffuse and find energetically most favorable sites. Such a case could be termed as thermodynamically controlled regime. In the opposite case, where adatoms were in a diffusion-limited environment, the final chemistry and structure was dictated by the kinetics. However, the prevalence of B-N bonding in both cases, and failure to observe hybridized chemistry suggests that bonding energy consideration is the major deciding factor for the chemistry of BCN films. As a conclusion, the work presented herein suggests that phase segregation in BCN films reveal as an innate character, while hybridization is not observed in the process parameter space explored. The main reason for this is the relative energies of the B-N and C-C bonding.Item Open Access Collagen-chitosan scaffold modified with Au and Ag nanoparticles: synthesis and structure(Elsevier B.V., 2016) Rubina, M. S.; Kamitov, E. E.; Zubavichus, Y. V.; Peters, G. S.; Naumkin, A. V.; Süzer, Şefik; Vasil'kov, A. Y.Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.Item Open Access Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends(Elsevier, 2011-09-01) Ucar, I. O.; Doganci, M. D.; Cansoy, C. E.; Erbil, H. Y.; Avramova, I.; Süzer, ŞefikIn this study, we prepared thin films by blending ethylene vinyl acetate copolymers (EVA) containing 12-33 (wt.%) vinyl acetate (VA) with polyvinyl acetate (PVAc) and high density polyethylene homopolymers. Large area micropatterns having controlled protrusion sizes were obtained by phase-separation especially for the PVAc/EVA-33 blends using dip coating. These surfaces were characterized by XPS and contact angle measurements. A reasonably linear relation was found between the VA content on the surface (wt.%) obtained from XPS analysis and the VA content in bulk especially for PVAc/EVA-33 blend surfaces. PE segments were more enriched on the surface than that of the bulk for pure EVA copolymer surfaces similar to previous reports and VA enrichment was found on the EVA/HDPE blend surfaces due to high molecular weight of HDPE. Water theta(e) decreased with the increase in the VA content on the blend surface due to the polarity of VA. A good agreement was obtained between gamma(-)(s) and atomic oxygen surface concentration with the increase of VA content. The applicability of Cassie-Baxter equation was tested and found that it gave consistent results with the experimental water contact angles for the case where VA content was lower than 55 wt.% in the bulk composition. (C) 2011 Elsevier B. V. All rights reserved.Item Open Access Deposition and stability of metal ions on oxidized silicon surfaces: electrochemical correlation(Elsevier Science Publishers, 2001) Süzer, S.XPS is used to determine the chemical state of Au, Hg, Tl, Pb and Bi deposited from their corresponding aqueous solutions on oxidized silicon or gold surfaces. It is determined that Au and Hg, having positive electrochemical reduction potentials, deposit in their 0-valent state, but Tl, Pb and Bi, having small positive or negative electrochemical reduction potentials, deposit in their corresponding ionic states, confirming our previous hypothesis about the electrochemical correlation. Electrochemical deposition of Au from aqueous solutions on to silicon electrodes yields 0-valent Au on both (+) and (-) polarized electrodes, with the only difference that more gold is deposited on the negatively biased one.Item Open Access Dynamical XPS measurements for probing photoinduced voltage changes(2010) Sezen, H.; Süzer, ŞefikPhotoillumination with 405 nm laser causes shifts in XPS peaks of n-Si(100), and CdS. To distinguish between surface photovoltage (SPV), and charging, dynamical measurements are performed, while sample is subjected to square wave pulses of ± 10.00 V amplitude, and 10-3-10 5 Hz frequency. For n-Si, Si2p peaks are twinned at + 10.00 and -10.00, yielding always 20.00 eV difference. Photoillumination shifts the twinned peaks to higher energies, but the difference is always 20.00 eV. However, for CdS, the measured binding difference of Cd3d peaks exhibits strong frequency dependence due to charging, which indicates that both fast SPV and slow charging effects are operative.Item Open Access Effect of reactor pressure on optical and electrical properties of InN films grown by high-pressure chemical vapor deposition(Wiley - V C H Verlag GmbH & Co. KGaA, 2015) Alevli, M.; Gungor, N.; Alkis, S.; Ozgit Akgun, C.; Donmez, I.; Okyay, Ali Kemal; Gamage, S.; Senevirathna, I.; Dietz, N.; Bıyıklı, NecmiThe influences of reactor pressure on the stoichiometry, free carrier concentration, IR and Hall determined mobility, effective optical band edge, and optical phonon modes of HPCVD grown InN films have been analysed and are reported. The In 3d, and N 1s XPS spectra results revealed In-N and N-In bonding states as well as small concentrations of In-O and N-O bonds, respectively in all samples. InN layers grown at 1 bar were found to contain metallic indium, suggesting that the incorporation of nitrogen into the InN crystal structure was not efficient. The free carrier concentrations, as determined by Hall measurements, were found to decrease with increasing reactor pressure from 1.61×1021 to 8.87×1019 cm-3 and the room-temperature Hall mobility increased with reactor pressure from 21.01 to 155.18 cm2/Vs at 1 and 15 bar reactor pressures, respectively. IR reflectance spectra of all three (1, 8, and 15 bar) InN samples were modelled assuming two distinct layers of InN, having different free carrier concentration, IR mobility, and effective dielectric function values, related to a nucleation/interfacial region at the InN/sapphire, followed by a bulk InN layer. The effective optical band gap has been found to decrease from 1.19 to 0.95 eV with increasing reactor pressure. Improvement of the local structural quality with increasing reactor pressure has been further confirmed by Raman spectroscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Electrochemical and XPS studies of corrosion behaviour of a low carbon steel in the presence of FT2000 inhibitor(Elsevier Science Publishers B.V., 2001) Kadirgan, F.; Süzer, ŞefikCorrosion behaviour of a new inhibitor (FT2000) is investigated in saline solution on a low carbon steel in the neutral aqueous media at 60 °C. Effect of sulphate ion is also studied. Corrosion rate, polarization resistance, and efficiency of the inhibitor are calculated. The nature of the protecting layer formed in the presence of the inhibitor is investigated by X-ray photoelectron spectroscopy, XPS.Item Open Access Electrooxidation of methanol on doped polypyrrole films in acidic media(Elsevier, 2001-04-06) Becerık, İ.; Süzer, S.; Kadirgan, F.Electrooxidation of methanol was realised on platinum and perchlorate anion doped polypyrrole film electrodes in acidic media. A systematic kinetic investigation was performed and optimum experimental conditions for the preparation of the electrocatalytic system were determined. The presence of ClO4- anions was confirmed by XPS analysis of the doped polymer matrix. (C) 2001 Elsevier Science B.V. All rights reserved.Item Open Access Evaluation of silver content and antibacterial activities of silver loaded fiber/cotton blended textile fabrics(2010) Üreyen, M. E.; Gök Ö.; Ates, M.; Günkaya G.; Süzer, ŞefikThe aims of this work were to analyze the antibacterial activity and laundering durability of the silver loaded cellulosic fiber/cotton blended antibacterial textile fabrics, to quantify the silver content present in fabrics, and to examine the relationship between the antibacterial activity and silver content. For this aims knitting fabrics consisting of SeaCell® Active, which is the cellulosic fiber incorporated with seaweed and silver ions, and cotton fibers blended with five different ratios were produced. All fabric samples bleached and washed 60 times. The antibacterial efficiency was evaluated according to AATCC 100-1999 method after each ten laundry cycles. Silver content of the fabrics were determined by atomic absorption spectroscopy (AAS). Fiber and fabric surfaces were investigated using Scanning Electron Microscopy (SEM) and by X-Ray Photoelectron Spectroscopy (XPS) views. Antibacterial tests showed that good antibacterial activity can be achieved after several washings even with 3% of SeaCell ® Active fibers in blended fabrics. Significant correlation was found between silver content and bacterial reductionItem Open Access Fe promoted NOx storage materials: structural properties and NOx uptake(American Chemical Society, 2010) Kayhan, E.; Andonova, S. M.; Şentürk, G. S.; Chusuei, C. C.; Ozensoy, E.Fe promoted NOx storage materials were synthesized in the form of FeOx/BaO/Al2O3 ternary oxides with varying BaO (8 and 20 wt %) and Fe (5 and 10 wt %) contents. Synthesized NOx storage materials were investigated via TEM, EELS, BET, FTIR, TPD, XRD, XPS, and Raman spectroscopy, and the results were compared with the conventional BaO/Al2O3 NOx storage system. Our results suggest that the introduction of Fe in the BaO/Al2O3 system leads to the formation of additional NOx storage sites which store NOx mostly in the form of bidentate nitrates. NO2 adsorption experiments at 323 K via FTIR indicate that, particularly in the early stages of the NOx uptake, the NOx storage mechanism is significantly altered in the presence of Fe sites where a set of new surface nitrosyl and nitrite groups were detected on the Fe sites and the surface oxidation of nitrites to nitrates is significantly hindered with respect to the BaO/Al2O3 system. Evidence for the existence of both Fe3+ as well as reduced Fe2+/(3-x)+ sites on the freshly pretreated materials was detected via EELS, FTIR, Raman, and XRD experiments. The influence of the Fe sites on the structural properties of the synthesized materials was also studied by performing ex situ annealing protocols within 323-1273 K followed by XRD and Raman experiments where the temperature dependent changes in the morphology and the composition of the surface domains were analyzed in detail. On the basis of the TPD data, it was found that the relative stability of the stored NOx species is influenced by the morphology of the Ba and Fe containing NOx-storage domains. The relative stabilities of the investigated NOx species were found to increase in the following order: N2O3/NO+ < nitrates on γ-Al2O3 < surface nitrates on BaO < bidentate nitrates on FeOx sites < bulk nitrates on BaO.Item Open Access Fine-tuning the dispersion and the mobility of BaO domains on NO x storage materials via TiO2 anchoring sites(American Chemical Society, 2010) Andonova, S. M.; Şentürk, G. S.; Ozensoy, E.In an attempt to control the surface dispersion and the mobility of BaO domains on NOx storage materials, TiO2/TiOx anchoring sites were introduced on/inside the conventional γ-Al 2O3 support matrix. BaO/TiO2/Al 2O3 ternary oxide materials were synthesized via two different sol-gel preparation techniques, with varying surface compositions and morphologies. The synthesized NOx storage materials were studied via XRD, Raman spectroscopy, BET surface area analysis, TPD, XPS, SEM, EDX-mapping, and in situ FTIR spectroscopy of adsorbed NO2. NOx uptake properties of the BaO/TiO2/Al2O3 materials were found to be strongly influenced by the morphology and the surface structure of the TiO2/TiOx domains. An improved Ba surface dispersion was observed for the BaO/TiO2/Al2O3 materials synthesized via the coprecipitation of alkoxide precursors, which was found to originate mostly from the increased fraction of accessible TiO 2/TiOx sites on the surface. These TiO2/ TiOx sites function as strong anchoring sites for surface BaO domains and can be tailored to enhance surface dispersion of BaO. TPD experiments suggested the presence of at least two different types of NOx species adsorbed on the TiO2/TiOx sites, with distinctively different thermal stabilities. The relative stability of the NOx species adsorbed on the BaO/TiO2/Al2O3 system was found to increase in the following order: NO+/N2O 3 on alumina ≪ nitrates on alumina < surface nitrates on BaO < bridged/bidentate nitrates on large/isolated TiO2 clusters < bulk nitrates on BaO on alumina surface and bridged/bidentate nitrates on TiO2 crystallites homogenously distributed on the surface < bulk nitrates on the BaO sites located on the TiO2 domains. © 2010 American Chemical Society.
- «
- 1 (current)
- 2
- 3
- »