Browsing by Subject "X chromosome"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Analysis of skewed X-chromosome inactivation in females with rheumatoid arthritis and autoimmune thyroid diseases(BioMed Central, 2009) Chabchoub, G.; Uz, E.; Maalej, A.; Mustafa, C. A.; Rebai, A.; Mnif, M.; Bahloul, Z.; Farid, N. R.; Ozcelik, T.; Ayadi, H.Introduction The majority of autoimmune diseases such as rheumatoid arthritis (RA) and autoimmune thyroid diseases (AITDs) are characterized by a striking female predominance superimposed on a predisposing genetic background. The role of extremely skewed X-chromosome inactivation (XCI) has been questioned in the pathogenesis of several autoimmune diseases.Item Open Access De novo balanced (X;14) translocation in a patient with recurrent miscarriages: Case report(2011) Alpaslan Pinarli F.; Ökten G.; ÖzçelIk, T.; Kara, N.; Güneş, S.; Koçak I.We report a 23-year-old phenotypically normal female patient who had previously suffered from recurrent spontaneous abortion (RSA) who found to have an X;14 trans location and a Methylene- Tetrahdrofolate-Reductase (MTHFR) C677T heterozygote mutation. G-banding cytogenetic analysis was cultured from the peripheral blood lymphocy tes. MTHFR, factor V Leiden and prothrombin gene mutations were studied from DNA obtained from peripheral blood lym- phocytes with stripassay. DNA for X inactivation pattern study was also obtained with the method described above. G-banding cytogentic analysis from cultured peripheral blood lymphocytes of the patient revealed 46,XderX,t(X;14)(q13;q32) and found to be heterozygous for C677T MTHFR mutation. An X inactivation pattern study revealed a complete inactivated nor mal X chromosome, asexpected. The possible causes of recurrent miscarriages in our patient were unbalanced gametes, skewed X inactivation and MTHFR C677T heterozygote mutation. © 2011 by Türkiye Klinikleri.Item Open Access Skewed X inactivation in an X linked nystagmus family resulted from a novel, p.R229G, missense mutation in the FRMD7 gene(BMJ Group, 2008) Kaplan, Y.; Vargel, I.; Kansu, T.; Akin, B.; Rohmann, E.; Kamaci, S.; Uz, E.; Ozcelik, T.; Wollnik, B.; Akarsu, N. A.Aims: This study aimed to identify the underlying genetic defect of a large Turkish X linked nystagmus (NYS) family. Methods: Both Xp11 and Xq26 loci were tested by linkage analysis. The 12 exons and intron-exon junctions of the FRMD7 gene were screened by direct sequencing. X chromosome inactivation analysis was performed by enzymatic predigestion of DNA with a methylation-sensitive enzyme, followed by PCR of the polymorphic CAG repeat of the androgen receptor gene. Results: The family contained 162 individuals, among whom 28 had NYS. Linkage analysis confirmed the Xq26 locus. A novel missense c.686C>G mutation, which causes the substitution of a conserved arginine at amino acid position 229 by glycine (p.R229G) in exon 8 of the FRMD7 gene, was observed. This change was not documented in 120 control individuals. The clinical findings in a female who was homozygous for the mutation were not different from those of affected heterozygous females. Skewed X inactivation was remarkable in the affected females of the family. Conclusions: A novel p.R229G mutation in the FRMD7 gene causes the NYS phenotype, and skewed X inactivation influences the manifestation of the disease in X linked NYS females.