Browsing by Subject "X ray powder diffraction"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying(Elsevier Ltd, 2014) Alijani F.; Amini, R.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalIn the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti-41Ni-9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0-12. h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19') and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time.Item Open Access Microstructural characterization of medical-grade stainless steel powders prepared by mechanical alloying and subsequent annealing(Elsevier, 2013) Salahinejad, E.; Hadianfard, M. J.; Ghaffari, M.; Amini, R.; Mashhadi, S. B.; Okyay, Ali KemalThe harmful effect of nickel ions released from conventional stainless steel implants has provided a high level of motivation for the further development of nickel-free stainless steels. In this paper, the microstructure of medical-grade nickel-free stainless steel powders, with the chemical composition of ASTM F2581, is studied during mechanical alloying and subsequent annealing. Rietveld X-ray diffraction and transmission electron microscopy evaluations reflect nanocrystallization, austenitization and amorphization of the powders due to mechanical activation. It is also realized that annealing of the as-milled powder can develop a single austenitic structure with nanometric crystallite sizes, implying a considerable inherent resistance to grain growth. This study demonstrates the merit of mechanical alloying and subsequent annealing in the development of nanostructured medical-grade stainless steels.Item Open Access Organization of bridging organics in periodic mesoporous organosilicas (PMOs)-polarization micro-raman spectroscopy(Wiley, 2001) Dag, Ö.; Ozin, G. A.The organization of bridging organics in oriented periodic mesoporous organosilica film (OPMOF) was demonstrated using the polarization micro-Raman spectroscopy (PMRS) in conjunction with powder x-ray diffraction (PXRD) and polarization optical microscopy (POM). The synthesis and the structural characterization of hexagonal symmetry OPMOF containing bridge-bonded ethane, ethene inside the silica channel walls were described. The mesoscale channels were found to run parallel to the surface of the underlying glass substrates as demonstrated by the PXRD measurements. A hexagonal array of channels with glassy silica organosilica walls was the best description of the structure shown by the PMRS measurements of OPMOF.Item Open Access Phase transformation during mechano-synthesis of nanocrystalline/amorphous Fe–32Mn–6Si alloys(Elsevier, 2013) Amini, R.; Shamsipoor, A.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalMechano-synthesis of Fe-32Mn-6Si alloy by mechanical alloying of the elemental powder mixtures was evaluated by running the ball milling process under an inert argon gas atmosphere. In order to characterize the as-milled powders, powder sampling was performed at predetermined intervals from 0.5 to 192 h. X-ray florescence analyzer, X-ray diffraction, scanning electron microscope, and high resolution transmission electron microscope were utilized to investigate the chemical composition, structural evolution, morphological changes, and microstructure of the as-milled powders, respectively. According to the results, the nanocrystalline Fe-Mn-Si alloys were completely synthesized after 48 h of milling. Moreover, the formation of a considerable amount of amorphous phase during the milling process was indicated by quantitative X-ray diffraction analysis as well as high resolution transmission electron microscopy image and its selected area diffraction pattern. It was found that the α-to-γ and subsequently the amorphous-to-crystalline (especially martensite) phase transformation occurred by milling development.Item Open Access Quantitative phase evolution during mechano-synthesis of Ti-Ni-Cu shape memory alloys(Elsevier, 2012-05-29) Amini, R.; Alijani, F.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali KemalTi-41Ni-9Cu shape memory alloy was synthesized by mechanical alloying of pure elemental Ti, Ni, and Cu powders using high-energy ball milling. The qualitative and quantitative phase analyses of the as-milled powders were done by X-ray diffraction (XRD) using Rietveld refinement and the alloys microstructure was studied by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Concerning the results, by milling evolution, the dissolution of the primary materials occurred at different rates and a considerable amount of the amorphous phase as well as B19′-martensite and B2-austenite was created. The formation of Ni solid solution was also evidenced prior to its dissolution. It was found that at sufficient milling time, the mechano-crystallization of the amorphous phase occurred and at the end of milling, the B19′-martensite is the dominant phase of the structure.Item Open Access Structural and phase evolution in mechanically alloyed calcium copper titanate dielectrics(2013) Alizadeh, M.; Ardakani H.A.; Amini, R.; Ghazanfari, M.R.; Ghaffari, M.Nanocrystalline calcium-copper-titanate (CCTO) dielectric powders were prepared by mechanical alloying. Phase transformations and structural evolution of the mechanically activated powders were investigated through the Rietveld refinement of the X-ray diffraction results. The crystallite size, lattice strain, and weight fraction of individual phases were estimated based on crystal structure refinement. Furthermore, the microstructural properties and thermal behavior of the milled powders were investigated by Transmission Electron Microscopy (TEM) and Differential Thermal Analysis (DTA), respectively. It was found that CCTO nanocrystals can be successfully synthesized after the amorphization of the initial crystalline materials. Semi-spherical nano-size particles were developed after sufficient milling time. Formation of an amorphous phase during the milling cycle was confirmed by the presence of the glass transition and crystallization peaks in the thermal analysis profiles. © 2012 Elsevier Ltd and Techna Group S.r.l.Item Open Access The synthesis of mesostructured silica films and monoliths functionalised by noble metal nanoparticles(Royal Society of Chemistry, 2003) Dag, Ö.; Samarskaya, O.; Coombs, N.; Ozin, G. A.A lyotropic AgNO3, HAuCl4 and H2PtCl6-silica liquid crystalline (LC) phase is used as a supramolecular template for a one-pot synthesis of novel noble metal or complex ion containing nanocomposite materials in the form of a film and monolith. In these structures, Ag+, AuCl4- and PtCl62- ions interact with the head group of an oligo(ethylene oxide) type non-ionic surfactant (C12H25(CH2CH2O)10OH, denoted as C12EO10) assembly that are embedded within the channels of hexagonal mesostructured silica materials. A chemical and/or thermal reduction of the metal or complex ions produces nanoparticles of these metals in the mesoporous channels and the void spaces of the silica. The LC mesophase of H2O:X:HNO3:C12EO10, (where X is AgNO3, HAuCl4 and H2PtCl6), and nanocomposite silica materials of meso-SiO2-C12EO10-X and meso-SiO2-C12EO10-M (M is the Ag, Au and Pt nanoparticles) have been investigated using polarised optical microscopy (POM), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), Fourier transform (FT) Raman and UV-Vis absorption spectroscopy. Collectively the results indicate that the LC phase of a 50 w/w% H2O:C12EO10 is stable upon mixing with AgNO3, HAuCl4 and H2PtCl6 salts and/or acids. The metal ions or complex ions are distributed inside the channels of the mesoporous silica materials at low concentrations and may be converted into metal nanoparticles within the channels by a chemical and/or thermal reduction process. The metal nanoparticles have a broad size distribution where the platinum and silver particles are very small (typically 2-6 nm) and the gold particles are much larger (typically 5-30 nm).Item Open Access Uptake of Ba2+ ions by natural bentonite and CaCO3: a radiotracer, EDXRF and PXRD study(Akademiai Kiado Rt., 2002) Shahwan, T.; Atesin, A. C.; Erten, H. N.; Zararsiz, A.Ba2+ uptake by natural bentonite, CaCO3 in addition to a number of bentonite-CaCO3 mixtures with variable compositions as a function of pH and Ba2+ concentration was studied. Radiotracer method, EDXRF, and PXRD were used. The results of radiotracer experiments showed that the uptake of Ba2+ by CaCO3 was larger than its uptake by natural bentonite samples, particularly at low initial concentrations of Ba2+ and higher pH values. This finding was supported by the EDXRF results, According to the sorption data, the apparent ΔG° values of sorption were in the range -9±1 to -13±3 kJ/mol. The PXRD studies revealed the formation of BaCO3 upon sorption of Ba2+ on pure CaCO3 and on some of the bentonite-CaCO3 mixtures.