Browsing by Subject "Web search"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Document replication strategies for geographically distributed web search engines(Elsevier Ltd., 2013) Kayaaslan, E.; Cambazoglu, B. B.; Aykanat, CevdetLarge-scale web search engines are composed of multiple data centers that are geographically distant to each other. Typically, a user query is processed in a data center that is geographically close to the origin of the query, over a replica of the entire web index. Compared to a centralized, single-center search engine, this architecture offers lower query response times as the network latencies between the users and data centers are reduced. However, it does not scale well with increasing index sizes and query traffic volumes because queries are evaluated on the entire web index, which has to be replicated and maintained in all data centers. As a remedy to this scalability problem, we propose a document replication framework in which documents are selectively replicated on data centers based on regional user interests. Within this framework, we propose three different document replication strategies, each optimizing a different objective: reducing the potential search quality loss, the average query response time, or the total query workload of the search system. For all three strategies, we consider two alternative types of capacity constraints on index sizes of data centers. Moreover, we investigate the performance impact of query forwarding and result caching. We evaluate our strategies via detailed simulations, using a large query log and a document collection obtained from the Yahoo! web search engine. (C) 2012 Elsevier Ltd. All rights reserved.Item Open Access Incorporating the surfing behavior of web users into PageRank(2013) Ashyralyyev, ShatlykOne of the most crucial factors that determines the effectiveness of a large-scale commercial web search engine is the ranking (i.e., order) in which web search results are presented to the end user. In modern web search engines, the skeleton for the ranking of web search results is constructed using a combination of the global (i.e., query independent) importance of web pages and their relevance to the given search query. In this thesis, we are concerned with the estimation of global importance of web pages. So far, to estimate the importance of web pages, two different types of data sources have been taken into account, independent of each other: hyperlink structure of the web (e.g., PageRank) or surfing behavior of web users (e.g., BrowseRank). Unfortunately, both types of data sources have certain limitations. The hyperlink structure of the web is not very reliable and is vulnerable to bad intent (e.g., web spam), because hyperlinks can be easily edited by the web content creators. On the other hand, the browsing behavior of web users has limitations such as, sparsity and low web coverage. In this thesis, we combine these two types of feedback under a hybrid page importance estimation model in order to alleviate the above-mentioned drawbacks. Our experimental results indicate that the proposed hybrid model leads to better estimation of page importance according to an evaluation metric that uses the user click information obtained from Yahoo! web search engine’s query logs as ground-truth ranking. We conduct all of our experiments in a realistic setting, using a very large scale web page collection (around 6.5 billion web pages) and web browsing data (around two billion web page visits) collected through the Yahoo! toolbar.Item Open Access Incorporating the surfing behavior of web users into PageRank(ACM, 2013-10-11) Ashyralyyev, Shatlyk; Cambazoğlu, B. B.; Aykanat, CevdetIn large-scale commercial web search engines, estimating the importance of a web page is a crucial ingredient in ranking web search results. So far, to assess the importance of web pages, two different types of feedback have been taken into account, independent of each other: the feedback obtained from the hyperlink structure among the web pages (e.g., PageRank) or the web browsing patterns of users (e.g., BrowseRank). Unfortunately, both types of feedback have certain drawbacks. While the former lacks the user preferences and is vulnerable to malicious intent, the latter suffers from sparsity and hence low web coverage. In this work, we combine these two types of feedback under a hybrid page ranking model in order to alleviate the above-mentioned drawbacks. Our empirical results indicate that the proposed model leads to better estimation of page importance according to an evaluation metric that relies on user click feedback obtained from web search query logs. We conduct all of our experiments in a realistic setting, using a very large scale web page collection (around 6.5 billion web pages) and web browsing data (around two billion web page visits). Copyright is held by the owner/author(s).Item Open Access Optimization of an educational search engine using learning to rank algorithms(2015-09) Usta, ArifWeb search is one of the most popular internet activities among users. Due to high usage of search engines, there are huge data available about history of user search issues. Using query logs as a source of implicit feedback, researchers can learn useful patterns about general search behaviors. We employ a detailed query log analysis provided by a commercial educational vertical search engine. We compare the results of our query log analysis with the general web search characteristics. Due to di erence in terms of search behavior between web users and students, we propose an educational ranking model using learning to rank algorithms to better re ect the search habits of the students in the educational domain to further enhance the search engine performance. We introduce novel features best suited to the educational domain. We show that our model including educational features outperforms two baseline models which are the original ranking of the commercial educational vertical search engine and the model constructed using the state of the art ranking functions, up to 14% and 11%, respectively. We also employ di erent learning to rank models for di erent clusters of queries and the results indicate that having models for each cluster of queries further enhances the performance of our proposed model. Speci cally, the course of the query and the grade of the user issuing the query are good sources of feedback to have a better model in the educational domain. We propose a novel Propagation Algorithm to be used for queries having lower frequencies where information derived from query logs is not enough to exploit. We report that our model constructed using the features generated by our proposed algorithm performs better for singleton queries compared to both the educational learning to rank model we introduce and models learned with common features introduced in the literature.Item Open Access A result cache invalidation scheme for web search engines(2011) Alıcı, ŞadiyeThe result cache is a vital component for the efficiency of large-scale web search engines, and maintaining the freshness of cached query results is a current research challenge. As a remedy to this problem, our work proposes a new mechanism to identify queries whose cached results are stale. The basic idea behind our mechanism is to maintain and compare the generation time of query results with the update times of posting lists and documents to decide on staleness of query results. The proposed technique is evaluated using a Wikipedia document collection with real update information and a real-life query log. Throughout the experiments, we compare our approach with two baseline strategies from literature together with a detailed evaluation. We show that our technique has good prediction accuracy, relative to the baseline based on the time-to-live (TTL) mechanism. Moreover, it is easy to implement and it incurs less processing overhead on the system relative to a recently proposed, more sophisticated invalidation mechanism.Item Open Access Site-based partitioning and repartitioning techniques for parallel pagerank computation(Institute of Electrical and Electronics Engineers, 2011-05) Cevahir, A.; Aykanat, Cevdet; Turk, A.; Cambazoglu, B. B.The PageRank algorithm is an important component in effective web search. At the core of this algorithm are repeated sparse matrix-vector multiplications where the involved web matrices grow in parallel with the growth of the web and are stored in a distributed manner due to space limitations. Hence, the PageRank computation, which is frequently repeated, must be performed in parallel with high-efficiency and low-preprocessing overhead while considering the initial distributed nature of the web matrices. Our contributions in this work are twofold. We first investigate the application of state-of-the-art sparse matrix partitioning models in order to attain high efficiency in parallel PageRank computations with a particular focus on reducing the preprocessing overhead they introduce. For this purpose, we evaluate two different compression schemes on the web matrix using the site information inherently available in links. Second, we consider the more realistic scenario of starting with an initially distributed data and extend our algorithms to cover the repartitioning of such data for efficient PageRank computation. We report performance results using our parallelization of a state-of-the-art PageRank algorithm on two different PC clusters with 40 and 64 processors. Experiments show that the proposed techniques achieve considerably high speedups while incurring a preprocessing overhead of several iterations (for some instances even less than a single iteration) of the underlying sequential PageRank algorithm. © 2011 IEEE.Item Open Access Timestamp-based result cache invalidation for web search engines(ACM, 2011) Alıcı, Sadiye; Altingovde I.S.; Özcan, Rıfat; Cambazoglu, B.B.; Ulusoy, ÖzgürThe result cache is a vital component for efficiency of large-scale web search engines, and maintaining the freshness of cached query results is the current research challenge. As a remedy to this problem, our work proposes a new mechanism to identify queries whose cached results are stale. The basic idea behind our mechanism is to maintain and compare generation time of query results with update times of posting lists and documents to decide on staleness of query results. The proposed technique is evaluated using a Wikipedia document collection with real update information and a real-life query log. We show that our technique has good prediction accuracy, relative to a baseline based on the time-to-live mechanism. Moreover, it is easy to implement and incurs less processing overhead on the system relative to a recently proposed, more sophisticated invalidation mechanism.