Browsing by Subject "Wavelength converter"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Analytical model of asynchronous shared-per-wavelength multi-fiber optical switch(IEEE, 2011) Akar, Nail; Raffaelli, C.; Savi, M.In this paper, a buffer-less shared-per-wavelength optical switch is equipped with multi-fiber interfaces and operated in asynchronous context. An analytical model to evaluate loss performance is proposed using an approximate Markov-chain based approach and the model is validated by simulations. The model is demonstrated to be quite accurate in spite of the difficulty in capturing correlation effects especially for small switch sizes. The model is also applied to calculate the number of optical components needed to design the optical switch according to packet loss requirements. The impact of the adoption of multiple fiber interfaces is outlined in terms of the remarkable saving in the number of wavelength converters employed, while increasing at the same time the number of optical gates needed by the space switching subsystem. The numerical results produced are a valuable basis to optimize overall switch cost. © 2011 IEEE.Item Open Access Comparative analysis of power consumption in asynchronous wavelength modular optical switching fabrics(Elsevier, 2011-04-02) Akar, N.; Eramo, V.; Raffaelli, C.Next-generation optical routers will be designed to support the flexibility required by Future Internet services and, at the same time, to overcome the power consumption bottleneck which appears to limit throughput scalability in today routers. A model to evaluate average power consumption in asynchronous optical switching fabrics is here presented to compare these architectures with other synchronous and asynchronous solutions. The combination of wavelength modular switching fabrics with low spatial complexity and asynchronous operation is demonstrated to be the most power-efficient solution among those considered which employ wavelength converters, through presentation and discussion of a thorough set of numerical results.Item Open Access State aggregation-based model of asynchronous multi-fiber optical switching with shared wavelength converters(Elsevier, 2013) Akar, N.; Raffaelli, C.; Savi, M.This paper proposes new analytical models to study optical packet switching architectures with multi-fiber interfaces and shared wavelength converters. The multi-fiber extension of the recently proposed Shared-Per-Input-Wavelength (SPIW) scheme is compared against the multi-fiber Shared-Per-Node (SPN) scheme in terms of cost and performance for asynchronous traffic. In addition to using Markov chains and fixed-point iterations for modeling the mono-fiber case, a novel state aggregation technique is proposed to evaluate the packet loss in asynchronous multi-fiber scenario. The accuracy of the performance models is validated by comparison with simulations in a wide variety of scenarios with both balanced and imbalanced input traffic. The proposed analytical models are shown to remarkably capture the actual system behavior in all scenarios we tested. The adoption of multi-fiber interfaces is shown to achieve remarkable savings in the number of wavelength converters employed and their range. In addition, the SPIW solution allows to save, in particular conditions, a significant number of optical gates compared to the SPN solution. Indeed, SPIW allows, if properly dimensioned, potential complexity and cost reduction compared to SPN, while providing similar performance.Item Open Access A tabu search algorithm for sparse placement of wavelength converters in optical networks(Springer, 2004) Sengezer, N.; Karasan, E.In this paper, we study the problem of placing limited number of wavelength converting nodes in a multi-fiber network with static traffic demands and propose a tabu search based heuristic algorithm. The objective of the algorithm is to achieve the performance of full wavelength conversion in terms of minimizing the total number of fibers used in the network by placing minimum number of wavelength converting nodes. We also present a greedy algorithm and compare its performance with the tabu search algorithm. Finally, we present numerical results that demonstrate the high correlation between placing a wavelength converting node and the amount of transit traffic passing through that node. © Springer-Verlag 2004.