Browsing by Subject "Transmission control protocol"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Analysis of an Adaptive Modulation and Coding scheme with HARQ for TCP traffic(IEEE, 2015-04) Öztürk, Onur; Akar, NailIn this paper, we analyze the aggregate TCP throughput performance of a wireless link utilizing Active Queue Management (AQM) and an Adaptive Modulation and Coding (AMC) scheme with Hybrid ARQ (HARQ) based on the probability of failure in the first transmission attempt. We assume packets arriving out-of-order at the wireless receiver due to random retransmissions are resequenced before being released to the network. For this reason, an approximate model for the delay experienced at the resequencing buffer is also presented. In the light of the results obtained from the presented analysis, we propose a threshold for the aforementioned probability of failure making the investigated AMC scheme work at an overall performance close to that of the optimum policy. © 2015 IEEE.Item Open Access Effect of number of burst assemblers on TCP performance in optical burst switching networks(IEEE, 2006-10) Gürel, Güray; Karasan, EzhanBurst assembly mechanism is one of the fundamental factors that determine the performance of an optical burst switching (OBS) network. In this paper, we investigate the influence of number of burstifiers on TCP performance for an OBS network. An ns2-based OBS network simulator is developed for simulating the optical network. The goodput of TCP flows between an ingress and an egress nodes traveling through an optical network is studied for different values of the number of assembly buffers per destination. First, the losses resulting from the congestion in the core OBS network are modeled using a burst independent Bernoulli loss model. Then, a background burst traffic is generated to create contention at a core node in order to realize a burst dependent loss model. Simulation results show that for an OBS network employing timer-based assembly algorithm, TCP goodput increases as the number of burst assemblers is increased for both types of loss models. The improvement from one burstifier to moderate number of burst assemblers is significant (15-50% depending on the burst loss probability, processing delay and the TCP version), but the goodput difference between moderate number of buffers andperflow aggregation is relatively small, implying that a cost-effective OBS edge switch implementation should use moderate number of assembly buffers per destination for enhanced TCP performance. © 2006 IEEE.Item Open Access Effects of physical channel separation on application flows in a multi-radio multi-hop wireless mesh network: an experimental study on BilMesh testbed(Academic Press, 2014) Ulucinar, A. R.; Korpeoglu, I.; Karasan, E.In this paper, we introduce BilMesh, an indoor 802.11 b/g mesh networking testbed we established, and we report about our performance experiments conducted on multi-hop topologies with single-radio and multi-radio relay nodes. We investigate and report the effects of using multi-radio, multi-channel relay nodes in the mesh networking infrastructure in terms of network and application layer performance metrics. We also study the effects of physical channel separation on achievable end-to-end goodput perceived by the applications in the multi-radio case by varying the channel separation between the radio interfaces of a multi-radio relay node. We have observed that the difference between TCP and UDP goodput performances together with the delay and jitter performance depends on the hop count. We also observed that assigning overlapping channels with a central frequency separation of 5-15 MHz may render the CSMA mechanism used in 802.11 MAC ineffective and hence reduce the overall network performance. Finally, we provide some suggestions that can be considered while designing related protocols and algorithms to deal with the observed facts.Item Open Access A novel queue-aware wireless link adaptation mechanism and its fixed-point analytical model(SpringerOpen, 2015) Ozturk, O.; Akar, N.A point-to-point (PTP) wireless link is studied that carries long-lived TCP flows and is controlled with active queue management (AQM). A cross-layer queue-aware adaptive modulation and coding (AMC)-based link adaptation (LA) mechanism is proposed for this wireless link to improve the TCP-level throughput relative to the case where AMC decisions are made based solely on the physical layer (PHY) parameters. The proposed simple-to-implement LA mechanism involves the use of an aggressive modulation and coding scheme (MCS) with high spectral efficiency and high block error rates when the queue occupancy exceeds a certain threshold, but otherwise a relatively conservative MCS with lower spectral efficiency and lower block error rates. A fixed-point analytical model is proposed to obtain the aggregate TCP throughput attained at this wireless link and the model is validated by ns-3 simulations. Numerical experimentation with the proposed analytical model applied to an IEEE 802.16-based wireless link demonstrates the effectiveness of the proposed queue-aware LA (QAWLA) mechanism in a wide variety of scenarios including cases where the channel information is imperfect. The impact of the choice of the queue occupancy threshold of QAWLA is extensively studied with respect to the choice of AQM parameters in order to provide engineering guidelines for the provisioning of the wireless link.Item Open Access On the design of AQM supporting TCP flows using robust control theory(IEEE, 2004) Quet, P-F.; Özbay, HitayRecently it has been shown that the active queue management schemes implemented in the routers of communication networks supporting transmission control protocol (TCP) flows can be modeled as a feedback control system. Based on a delay differential equations model of TCPs congestion-avoidance mode different control schemes have been proposed. Here a robust controller is designed based on the known techniques for H∞ control of systems with time delays.Item Open Access A reordering-free multipath traffic engineering architecture for DiffServ-MPLS networks(IEEE, 2003-10) Akar, Nail; Hokelek, İbrahim; Atik, Muammer; Karasan, EzhanWe propose a novel traffic engineering architecture for IP networks with multiprotocol label switching (MPLS) backbones. In this architecture, two (primary and secondary) label switched paths (LSPs) are established among every pair of IP routers located at the edge of an MPLS cloud. Traffic between a source-destination pair is then split between the primary and secondary LSPs using an ABR-like explicit-rate feedback gathered from the network. Taking into consideration the packet reordering effect of packet-based load balancing schemes, we propose a novel traffic splitting mechanism that operates on a per-flow basis. We show, using a variety of scenarios, that deploying flow-based multipath traffic engineering not only provides significantly and consistently better throughput than that of a single path, but is also void of any packet reordering. © 2003 IEEE.Item Open Access Robust controller design for AQM and H∞-performance analysis(Springer, 2005) Yan, P.; Özbay, HitayActive Queue Management (AQM) has recently been proposed in [1] to support the end-to-end congestion control for TCP traffic regulation on the Internet. For the purpose of alleviating congestion for IP networks and providing some notion of quality of service (QoS), the AQM schemes are designed to improve the Internet applications. Earliest efforts on AQM (e.g. RED in [2]) are essentially heuristic without systematic analysis. The dynamic models of TCP ([9, 12]) make it possible to design AQM using feedback control theory. We refer to [11] for a general review of Internet congestion control.Item Open Access Variable structure control in active queue management for TCP with ECN(IEEE, 2003) Yan, P.; Gao, Y.; Özbay, HitayIt has been shown that the TCP connections through the congested routers can be modeled as a feedback dynamic system. In this paper, we design a variable structure (VS) based control scheme in active queue management (AQM) supporting explicit congestion notification (ECN). By analyzing the robustness and performance of the control scheme for nonlinear TCP/AQM model, we show that the proposed design has good performance and robustness with respect to the uncertainties of the round-trip time (RTT) and the number of active TCP sessions, which are central to the notion of AQM. Implementation issues are discussed and ns simulations are provided to validate the design and compare its performance to other peer schemes' in different scenarios. The results show that the proposed design significantly outperforms the peer AQM schemes in terms of packet loss ratio, throughput and buffer fluctuation.