Browsing by Subject "Transforming growth factor beta"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Enhancer cooperativity as a novel mechanism underlying the transcriptional regulation of E-cadherin during mesenchymal to epithelial transition(Elsevier, 2015) Alotaibi, H.; Basilicata, M. F.; Shehwana, H.; Kosowan, T.; Schreck, I.; Braeutigam, C.; Konu, O.; Brabletz, T.; Stemmler, M. P.Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) highlight crucial steps during embryogenesis and tumorigenesis. Induction of dramatic changes in gene expression and cell features is reflected by modulation of Cdh1 (E-cadherin) expression. We show that Cdh1 activity during MET is governed by two enhancers at +. 7.8. kb and at +. 11.5. kb within intron 2 that are activated by binding of Grhl3 and Hnf4α, respectively. Recruitment of Grhl3 and Hnf4α to the enhancers is crucial for activating Cdh1 and accomplishing MET in non-tumorigenic mouse mammary gland cells (NMuMG). Moreover, the two enhancers cooperate via Grhl3 and Hnf4α binding, induction of DNA-looping and clustering at the promoter to orchestrate E-cadherin re-expression. Our results provide novel insights into the cellular mechanisms whereby cells respond to MET signals and re-establish an epithelial phenotype by enhancer cooperativity. A general importance of our findings including MET-mediated colonization of metastasizing tumor cells is suggested.Item Open Access HER2 and proliferation of wound-induced breast carcinoma(The Lancet Publishing, 2003-11-01) Tez, M.; Göçmen, E.; Özçelik, T.Item Open Access miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance(Springer Verlag, 2016-06) Mutlu, M.; Raza, U.; Saatci, Ö.; Eyüpoğlu, E.; Yurdusev, E.; Şahin, Ö.MicroRNAs (miRNAs) are 20–22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.Item Open Access Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth(American Association for the Study of Liver Disease, 2010) Şentürk, Şerif; Mumcuoğlu, Mine; Gürsoy-Yüzügüllü, Özge; Cingöz, Burcu; Akçalı, Kamil Can; Öztürk, MehmetSenescence induction could be used as an effective treatment for hepatocellular carcinoma (HCC). However, major senescence inducers (p53 and p16Ink4a) are frequently inactivated in these cancers.We tested whether transforming growth factor-β (TGF-β) could serve as a potential senescence inducer in HCC. First, we screened for HCC cell lines with intact TGF-β signaling that leads to small mothers against decapentaplegic (Smad)-targeted gene activation. Five cell lines met this condition, and all of them displayed a strong senescence response to TGF-β1 (1-5 ng/mL) treatment. Upon treatment, c-myc was down-regulated, p21Cip1 and p15Ink4b were up-regulated, and cells were arrested at G1. The expression of p16Ink4a was not induced, and the senescence response was independent of p53 status. A short exposure of less than 1 minute was sufficient for a robust senescence response. Forced expression of p21 Cip1 and p15Ink4b recapitulated TGF-β1 effects. Senescence response was associated with reduced nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) induction and intracellular reactive oxygen species (ROS) accumulation. The treatment of cells with the ROS scavenger N-acetyl-L-cysteine, or silencing of the NOX4 gene, rescued p21Cip1 and p15Ink4b accumulation as well as the growth arrest in response to TGF-β. Human HCC tumors raised in immunodeficient mice also displayed TGF-β1-induced senescence. More importantly, peritumoral injection of TGF-β1 (2 ng) at 4-day intervals reduced tumor growth by more than 75%. In contrast, the deletion of TGF-β receptor 2 abolished in vitro senescence response and greatly accelerated in vivo tumor growth. Conclusion: TGF-β induces p53-independent and p16Ink4a-independent, but Nox4-dependent, p21Cip1-dependent, p15Ink4b-dependent, and ROS-dependent senescence arrest in well-differentiated HCC cells. Moreover, TGF-β-induced senescence in vivo is associated with a strong antitumor response against HCC.