Browsing by Subject "Titanium Dioxide"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Dual-Resonance nanostructures for color downconversion of colloidal quantum emitters(American Chemical Society, 2023-12-12) Ha, Son Tung; Lassalle, Emmanuel; Liang, Xiao; Do, Thi Thu Ha; Foo, Ian; Shendre, Sushant; Durmusoglu, Emek G.; Valuckas, Vytautas; Adhikary, Sourav; Paniagua-Dominguez, Ramon; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at ∼530 nm when excited with a blue light at ∼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of ∼140 times at a specific angular direction and a total enhancement of ∼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of ∼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications. © 2023 American Chemical Society.Item Open Access Spectral response modification of TiO2 MSM photodetector with an LSPR filter(Optical Society of America, 2014) Caliskan, D.; Butun, B.; Ozcan, S.; Özbay, EkmelWe fabricated UVB filtered TiO2 MSM photodetectors by the localized surface plasmon resonance effect. A plasmonic filter structure was designed using FDTD simulations. Final filter structure was fabricated with Al nano-cylinders with a 70 nm radius 180 nm period on 360 nm SiO2 film. The spectral response of the TiO2 MSM photodetector was modified and the UVB response was reduced by approx. 60% with an LSPR structure, resulting in a peak responsivity shift of more than 40 nm. To our knowledge, this is the first published result for the spectral response modification of TiO2 photodetectors with LSPR technique. © 2014 Optical Society of America.Item Open Access Surface engineered angstrom thick ZnO-sheathed TiO2 nanowires as photoanodes for performance enhanced dye-sensitized solar cells(Royal Society of Chemistry, 2014) Ulusoy, T. G.; Ghobadi, A.; Okyay, Ali KemalThis paper presents a systematic study on the effects of angstrom-thick atomic layer deposited (ALD) ZnO sheaths on hydrothermally-grown TiO2 nanowires (NWs) used as photoanodes in dye-sensitized solar cells (DSSCs). We designed, synthesized and characterized the samples prepared using different numbers of ZnO cycles and compared their photovoltaic (PV) performances. The device consisting of TiO2 NWs coated with the optimum thickness (two cycles) of ZnO shell exhibits a three-fold increase in efficiency compared to a control reference device. This paper reports results and features that demonstrate the passivation of surface state traps upon deposition of ZnO shells. While this passivation of surface traps provides a reduction in the back-reactions of the surface state mediated electrons (KET trap), it is speculated that ZnO-induced surface band bending (SBB) substantially reduces the recombination rate of the device by reducing the recombination rate of the conduction band (CB) electrons (KET CB). Moreover, an enhancement in the amount of dye uptake for ZnO-coated TiO2 samples is observed and explained with the isoelectric point (IEP) concept. In spite of the excellent PV power conversion efficiencies achieved by the first ZnO cycles, thicker layers impede the electron injection rate, reducing the efficiency of the device by capturing the photogenerated dye electrons in ZnO quantum wells. Here, we investigate the mechanisms contributing to this unprecedented change and correlate them with the enhancement in device efficiency.Item Open Access TiO2 thin film transistor by atomic layer deposition(SPIE, 2013) Okyay, Ali Kemal; Oruç, Feyza B.; Çimen, Furkan; Aygün, Levent E.In this study, TiO2 films were deposited using thermal Atomic Layer Deposition (ALD) system. It is observed that asdeposited ALD TiO 2 films are amorphous and not suitable as TFT channel material. In order to use the film as channel material, a post-annealing process is needed. Annealed films transform into a polycrystalline form containing mixed anatase and rutile phases. For this purpose, devices are annealed at 475°C and observed that their threshold voltage value is 6.5V, subthreshold slope is 0.35 V/dec, Ion/Ioff ratios 2.5×106 and mobility value is 0.672 cm2/V.s. Optical response measurements showed that devices exhibits decent performance at ultraviolet region where TiO 2 has band to band absorption mechanism. © 2013 SPIE.