Browsing by Subject "Tissue components"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Altçizge modellemesi kullanarak kolon bez tespiti(IEEE, 2011-04) Özgül, Etkin Barış; Sökmensüer, C.; Gündüz-Demir, ÇiğdemKolon adenokarsinomu, kolon bez yapılarında değişimlere yol açar. Patologlar bezlerdeki bu değişimleri değerlendirerek kolon adenokarsinom tanı ve derecelendirmesi yaparlar. Ancak değişimlerin değerlendirme süreci kaydadeğer öznellik taşıyabilir. Bezlerin matematiksel özniteliklerle karakterize edilmesiyle bu öznelliği azaltabilmek olasıdır. Bunun içinse ilk aşama, bezlerin yerlerinin otomatik olarak tespit edilmesidir. Literatürdeki bez tespit etme yöntemleri çoğunlukla piksel tabanlıdır. Ancak doku görüntüleri, doğaları gereği ve biyopsi hazırlama ve görüntü alma işlemlerindeki değişkenlik nedeni ile piksel bazında değişkenlik gösterebilir. Öte yandan, bu değişkenliğe rağmen, bezleri oluşturan doku bileşenlerinin uzaysal dağılımı benzer özellik gösterir. Bu dağılımı gözönüne alarak tasarlanan yöntemler, bölütleme başarısını artırma potansiyeline sahiptir. Bu çalışmada önerdiğimiz yöntem, ilk olarak, doku bileşenlerinin dağılımını, bu bileşenler üzerinde oluşturduğu bir çizge ile modeller. Daha sonra, oluşturduğu bu çizgeyi altçizgelere ayırır ve bu altçizgelerin öznitelikleri yardımıyla bezleri tespit eder. Kolon doku görüntüleri üzerinde yaptığımız çalışmalar, önerilen bu yöntemin bezlerin yüksek doğrulukta tespit edilmesinde umut verici sonuçlar verdiğini göstermiştir. The colon adenocarcinoma causes changes in glandular structures of colon tissues. Pathologists assess these changes to diagnose and grade the colon adenocarcinoma. However, this assessment may consist of a considerable amount of subjectivity. It is possible to reduce this subjectivity by characterizing the glands with mathematical features. For that, the first step is to detect gland locations. In literature, most of the gland detection methods are pixel-based. However, tissue images may show pixel-level variances due to their nature and differences in biopsy preparation and image acquisition procedures. On the other hand, in spite of these variances, the distribution of tissue components forming glands show similar properties. The methods that consider this distribution has the potential of improving the performance. The method proposed in this study first models the distribution of the components by constructing a graph on them. Then, it breaks the constructed graph down into subgraphs and detects the glands using the features of these subgraphs. The experiments conducted on colon tissue images show that the proposed method leads to promising results for detecting the glands. © 2011 IEEE.Item Open Access Object-oriented texture analysis for the unsupervised segmentation of biopsy images for cancer detection(Elsevier BV, 2009-06) Tosun, A. B.; Kandemir, M.; Sokmensuer, C.; Gunduz Demir, C.Staining methods routinely used in pathology lead to similar color distributions in the biologically different regions of histopathological images. This causes problems in image segmentation for the quantitative analysis and detection of cancer. To overcome this problem, unlike previous methods that use pixel distributions, we propose a new homogeneity measure based on the distribution of the objects that we define to represent tissue components. Using this measure, we demonstrate a new object-oriented segmentation algorithm. Working with colon biopsy images, we show that this algorithm segments the cancerous and normal regions with 94.89 percent accuracy on the average and significantly improves the segmentation accuracy compared to its pixel-based counterpart. © 2008 Elsevier Ltd. All rights reserved.Item Open Access Unsupervised tissue image segmentation through object-oriented texture(IEEE, 2010) Tosun, Akif Burak; Sokmensuer, C.; Gündüz-Demir, ÇiğdemThis paper presents a new algorithm for the unsupervised segmentation of tissue images. It relies on using the spatial information of cytological tissue components. As opposed to the previous study, it does not only use this information in defining its homogeneity measures, but it also uses it in its region growing process. This algorithm has been implemented and tested. Its visual and quantitative results are compared with the previous study. The results show that the proposed segmentation algorithm is more robust in giving better accuracies with less number of segmented regions. © 2010 IEEE.