Browsing by Subject "Statistical process control"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Economic design of EWMA control charts based on loss function(Elsevier, 2009) Serel, D. A.For monitoring the stability of a process, various control charts based on exponentially weighted moving average (EWMA) statistics have been proposed in the literature. We study the economic design of EWMA-based mean and dispersion charts when a linear, quadratic, or exponential loss function is used for computing the costs arising from poor quality. The chart parameters (sample size, sampling interval, control limits and smoothing constant) minimizing the overall cost of the control scheme are determined via computational methods. Using numerical examples, we compare the performances of the EWMA charts with Shewhart over(X, -) and S charts, and investigate the sensitivity of the chart parameters to changes in process parameters and loss functions. Numerical results imply that rather than sample size or control limits, the users need to adjust the sampling interval in response to changes in the cost of poor quality.Item Open Access Quality control chart design under jidoka(John Wiley & Sons, Inc., 2009) Berk, E.; Toy, A. Ö.We consider design of control charts in the presence of machine stoppages that are exogenously imposed (as under jidoka practices). Each stoppage creates an opportunity for inspection/repair at reduced cost. We first model a single machine facing opportunities arriving according to a Poisson process, develop the expressions for its operating characteristics and construct the optimization problem for economic design of a control chart. We, then, consider the multiple machine setting where individual machine stoppages may create inspection/repair opportunities for other machines. We develop exact expressions for the cases when all machines are either opportunity-takers or not. On the basis of an approximation for the all-taker case, we then propose an approximate model for the mixed case. In a numerical study, we examine the opportunity taking behavior of machines in both single and multiple machine settings and the impact of such practices on the design of an X̄ - Q C chart. Our findings indicate that incorporating inspection/repair opportunities into QC chart design may provide considerable cost savings.Item Open Access A scratch-pad memory aware dynamic loop scheduling algorithm(IEEE, 2008-03) Öztürk, Özcan; Kandemir, M.; Narayanan, S. H. K.Executing array based applications on a chip multiprocessor requires effective loop parallelization techniques. One of the critical issues that need to be tackled by an optimizing compiler in this context is loop scheduling, which distributes the iterations of a loop to be executed in parallel across the available processors. Most of the existing work in this area targets cache based execution platforms. In comparison, this paper proposes the first dynamic loop scheduler, to our knowledge, that targets scratch-pad memory (SPM) based chip multiprocessors, and presents an experimental evaluation of it. The main idea behind our approach is to identify the set of loop iterations that access the SPM and those that do not. This information is exploited at runtime to balance the loads of the processors involved in executing the loop nest at hand. Therefore, the proposed dynamic scheduler takes advantage of the SPM in performing the loop iteration-to-processor mapping. Our experimental evaluation with eight array/loop intensive applications reveals that the proposed scheduler is very effective in practice and brings between 13.7% and 41.7% performance savings over a static loop scheduling scheme, which is also tested in our experiments. © 2008 IEEE.Item Open Access SPM management using markov chain based data access prediction(IEEE, 2008-11) Yemliha, T.; Srikantaiah, S.; Kandemir, M.; Öztürk, ÖzcanLeveraging the power of scratchpad memories (SPMs) available in most embedded systems today is crucial to extract maximum performance from application programs. While regular accesses like scalar values and array expressions with affine subscript functions have been tractable for compiler analysis (to be prefetched into SPM), irregular accesses like pointer accesses and indexed array accesses have not been easily amenable for compiler analysis. This paper presents an SPM management technique using Markov chain based data access prediction for such irregular accesses. Our approach takes advantage of inherent, but hidden reuse in data accesses made by irregular references. We have implemented our proposed approach using an optimizing compiler. In this paper, we also present a thorough comparison of our different dynamic prediction schemes with other SPM management schemes. SPM management using our approaches produces 12.7% to 28.5% improvements in performance across a range of applications with both regular and irregular access patterns, with an average improvement of 20.8%.Item Open Access Univariate X̄ control charts for individual characteristics in a multinormal model(Taylor & Francis, 2000) Serel, D. A.; Moskowitz, H.; Tang, J.The early work on multivariate statistical process control was built upon Hotelling's T2 control chart which was developed to simultaneously monitor the means of correlated quality variables. This chart, however, has a drawback, namely, the problem of identifying the responsible variable(s) when an out-of-control signal occurs. One alternative is to use a separate X̄ control chart for each individual characteristic with equal risks, based on Bonferroni inequality. In this study, we show that, from an economic perspective, it may be desirable to have unequal type I risks for the individual charts, because of different inspection and restoration costs associated with each variable. We obtain their risk ratios, which are measures of relative importance of the variables monitored. Then, based on these risk ratios, we develop computer algorithms for finding the exact control limits for individual variables from a multinormal distribution, in the sense that the overall type I risk of the charts is equal to the desired value. Numerical studies show that the proposed methods give optimal or near-optimal results from an economic as well as statistical point of view.