BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Sommerfeld integrals"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Derivation of Closed-Form Green’s Functions for a General Microstrip Geometry
    (1992) Aksun, M.I.; Mittra, R.
    The derivation of the closed-form spatial domain Green’s functions for the vector and scalar potentials is presented for a microstrip geometry with a substrate and a super-state, whose thicknesses can be arbitrary. The spatial domain Green’s functions for printed circuits are typically expressed as Sommerfeld integrals, that are inverse Hankel transform of the corresponding spectral domain Green’s functions, and are quite time-consuming to evaluate. Closed-form representations of these Green’s functions in the spatial domains can only be obtained if the integrands are approximated by a linear combination of functions that are analytically integrable. In this paper, we show we can accomplish this by approximating the spectral domain Green’s functions in terms of complex exponentials by using the least square Prony’s method. © 1992 IEEE
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A novel approach for the efficient computation of 1-D and 2-D summations
    (Institute of Electrical and Electronics Engineers Inc., 2016) Karabulut, E. P.; Ertürk, V. B.; Alatan, L.; Karan, S.; Alisan, B.; Aksun, M. I.
    A novel computational method is proposed to evaluate 1-D and 2-D summations and integrals which are relatively difficult to compute numerically. The method is based on applying a subspace algorithm to the samples of partial sums and approximating them in terms of complex exponentials. For a convergent summation, the residue of the exponential term with zero complex pole of this approximation corresponds to the result of the summation. Since the procedure requires the evaluation of relatively small number of terms, the computation time for the evaluation of the summation is reduced significantly. In addition, by using the proposed method, very accurate and convergent results are obtained for the summations which are not even absolutely convergent. The efficiency and accuracy of the method are verified by evaluating some challenging 1-D and 2-D summations and integrals. © 2016 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback