Browsing by Subject "Semisupervised learning"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access DeepND: Deep multitask learning of gene risk for comorbid neurodevelopmental disorders(Cell Press, 2022-07-08) Beyreli, İlayda; Karakahya, Oğuzhan; Çiçek, A. ErcümentAutism spectrum disorder and intellectual disability are comorbid neurodevelopmental disorders with complex genetic architectures. Despite large-scale sequencing studies, only a fraction of the risk genes was identified for both. We present a network-based gene risk prioritization algorithm, DeepND, that performs cross-disorder analysis to improve prediction by exploiting the comorbidity of autism spectrum disorder (ASD) and intellectual disability (ID) via multitask learning. Our model leverages information from human brain gene co-expression networks using graph convolutional networks, learning which spatiotemporal neurodevelopmental windows are important for disorder etiologies and improving the state-of-the-art prediction in single- and cross-disorder settings. DeepND identifies the prefrontal and motor-somatosensory cortex (PFC-MFC) brain region and periods from early- to mid-fetal and from early childhood to young adulthood as the highest neurodevelopmental risk windows for ASD and ID. We investigate ASD- and ID-associated copy-number variation (CNV) regions and report our findings for several susceptibility gene candidates. DeepND can be generalized to analyze any combinations of comorbid disorders. © 2022 The Author(s)Item Open Access Online anomaly detection with nested trees(Institute of Electrical and Electronics Engineers Inc., 2016) Delibalta, I.; Gokcesu, K.; Simsek, M.; Baruh, L.; Kozat, S. S.We introduce an online anomaly detection algorithm that processes data in a sequential manner. At each time, the algorithm makes a new observation, produces a decision, and then adaptively updates all its parameters to enhance its performance. The algorithm mainly works in an unsupervised manner since in most real-life applications labeling the data is costly. Even so, whenever there is a feedback, the algorithm uses it for better adaptation. The algorithm has two stages. In the first stage, it constructs a score function similar to a probability density function to model the underlying nominal distribution (if there is one) or to fit to the observed data. In the second state, this score function is used to evaluate the newly observed data to provide the final decision. The decision is given after the well-known thresholding. We construct the score using a highly versatile and completely adaptive nested decision tree. Nested soft decision trees are used to partition the observation space in a hierarchical manner. We adaptively optimize every component of the tree, i.e., decision regions and probabilistic models at each node as well as the overall structure, based on the sequential performance. This extensive in-time adaptation provides strong modeling capabilities; however, it may cause overfitting. To mitigate the overfitting issues, we first use the intermediate nodes of the tree to produce several subtrees, which constitute all the models from coarser to full extend, and then adaptively combine them. By using a real-life dataset, we show that our algorithm significantly outperforms the state of the art. © 1994-2012 IEEE.