Browsing by Subject "Segmentation algorithms"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Automatic detection of geospatial objects using multiple hierarchical segmentations(Institute of Electrical and Electronics Engineers, 2008-07) Akçay, H. G.; Aksoy, S.The object-based analysis of remotely sensed imagery provides valuable spatial and structural information that is complementary to pixel-based spectral information in classification. In this paper, we present novel methods for automatic object detection in high-resolution images by combining spectral information with structural information exploited by using image segmentation. The proposed segmentation algorithm uses morphological operations applied to individual spectral bands using structuring elements in increasing sizes. These operations produce a set of connected components forming a hierarchy of segments for each band. A generic algorithm is designed to select meaningful segments that maximize a measure consisting of spectral homogeneity and neighborhood connectivity. Given the observation that different structures appear more clearly at different scales in different spectral bands, we describe a new algorithm for unsupervised grouping of candidate segments belonging to multiple hierarchical segmentations to find coherent sets of segments that correspond to actual objects. The segments are modeled by using their spectral and textural content, and the grouping problem is solved by using the probabilistic latent semantic analysis algorithm that builds object models by learning the object-conditional probability distributions. The automatic labeling of a segment is done by computing the similarity of its feature distribution to the distribution of the learned object models using the Kullback-Leibler divergence. The performances of the unsupervised segmentation and object detection algorithms are evaluated qualitatively and quantitatively using three different data sets with comparative experiments, and the results show that the proposed methods are able to automatically detect, group, and label segments belonging to the same object classes. © 2008 IEEE.Item Open Access Canlı hücre bölütlemesi için gözeticili öğrenme modeli(IEEE Computer Society, 2014-04) Koyuncu, Can Fahrettin; Durmaz, İrem; Çetin-Atalay, Rengül; Gündüz-Demir, ÇiğdemAutomated cell imaging systems have been proposed for faster and more reliable analysis of biological events at the cellular level. The first step of these systems is usually cell segmentation whose success affects the other system steps. Thus, it is critical to implement robust and efficient segmentation algorithms for the design of successful systems. In the literature, the most commonly used methods for cell segmentation are marker controlled watersheds. These watershed algorithms assume that markers one-to-one correspond to cells and identify their boundaries by growing these markers. Thus, it is very important to correctly define the markers for these algorithms. The markers are usually defined by finding local minima/maxima on intensity or gradient values or by applying morphological operations on the corresponding binary image. In this work, we propose a new marker controlled watershed algorithm for live cell segmentation. The main contributions of this algorithm are twofold. First, different than the approaches in the literature, it implements a new supervised learning model for marker detection. In this model, it has been proposed to extract features for each pixel considering its neighbors' intensities and gradients and to decide whether this pixel is a marker pixel or not by a classifier using these extracted features. Second, it has been proposed to group the neighboring pixels based on the direction information and to extract features according to these groups. The experiments on 1954 cells show that the proposed algorithm leads to higher segmentation results compared to other watersheds. © 2014 IEEE.Item Open Access Multi-resolution segmentation and shape analysis for remote sensing image classification(IEEE, 2005-06) Aksoy, Selim; Akçay H. GökhanWe present an approach for classification of remotely sensed imagery using spatial information extracted from multi-resolution approximations. The wavelet transform is used to obtain multiple representations of an image at different resolutions to capture different details inherently found in different structures. Then, pixels at each resolution are grouped into contiguous regions using clustering and mathematical morphology-based segmentation algorithms. The resulting regions are modeled using the statistical summaries of their spectral, textural and shape properties. These models are used to cluster the regions, and the cluster memberships assigned to each region in multiple resolution levels are used to classify the corresponding pixels into land cover/land use categories. Final classification is done using decision tree classifiers. Experiments with two ground truth data sets show the effectiveness of the proposed approach over traditional techniques that do not make strong use of region-based spatial information. © 2005 IEEE.Item Open Access Tissue object patterns for segmentation in histopathological images(ACM, 2011) Gündüz-Demir, ÇiğdemIn the current practice of medicine, histopathological examination is the gold standard for routine clinical diagnosis and grading of cancer. However, as this examination involves the visual analysis of biopsies, it is subject to a considerable amount of observer variability. In order to decrease the variability, it has been proposed to develop systems that mathematically model the histopathological tissue images and automate the analysis. Segmentation constitutes the first step for most of these automated systems. Nevertheless, the segmentation in histopathological images remains a challenging task since these images typically show variances due to their complex nature and may include a large amount of noise and artifacts due to the tissue preparation procedures. In our research group, we recently developed different segmentation algorithms that rely on representing a tissue image with a set of tissue objects and using the structural pattern of these objects in segmentation. In this paper, we review these segmentation algorithms, discussing their clinical demonstrations on colon tissues. © 2011 ACM.Item Open Access Unsupervised tissue image segmentation through object-oriented texture(IEEE, 2010) Tosun, Akif Burak; Sokmensuer, C.; Gündüz-Demir, ÇiğdemThis paper presents a new algorithm for the unsupervised segmentation of tissue images. It relies on using the spatial information of cytological tissue components. As opposed to the previous study, it does not only use this information in defining its homogeneity measures, but it also uses it in its region growing process. This algorithm has been implemented and tested. Its visual and quantitative results are compared with the previous study. The results show that the proposed segmentation algorithm is more robust in giving better accuracies with less number of segmented regions. © 2010 IEEE.