Browsing by Subject "Repetition rate"
Now showing 1 - 17 of 17
- Results Per Page
- Sort Options
Item Open Access 50-W, 1.6-GHz pulse repetition rate from a burst-mode Yb-doped fiber laser(IEEE, 2017) Elahi, Parviz; Ertek, A. C.; Eken, K.; İlday, Fatih ÖmerWe report a 50-W average power Yb-doped fiber laser amplifier system. The laser system produces bursts at a minimum rate of 200 kHz, with 1.6 GHz intraburst repetition rate. The total energy delivers in a burst is 250 μJ and the individual pulse energy is about 0.4 μJ. The output pulses are compressed to 270 fs by using two compressor gratings.Item Open Access All-fiber high-energy yb-doped fiber amplifier(IEEE, 2009) Öktem, Bülent; Kalaycioǧlu, Hamit; İlday, F. ÖmerWe report a robust, all-fiber amplifier seeded by a fiber oscillator. Seed pulses at 1 MHz repetition rate are amplified up to 3 μJ, delivering 1 μJ-energy, 170 fs-long pulses. Duration reduces to 120 fs at 1 μJ amplifier output. These are the highest peak powers from an integrated fiber source. © 2009 IEEE.Item Open Access All-fiber laser systems that can operate in burst mode(OSA, 2016) Kesim, Denizhan Koray; Kalaycıoğlu, Hamit; Akçaalan, Önder; İlday, Fatih ÖmerFiber lasers which operate in burst-mode where densely spaced pulses occur inside bursts repeated at much lower repetition rates can be valuable tool for sensing and imaging. We introduce such lasers and propose possible applications.Item Open Access Femtosecond laser written waveguides deep inside silicon(Optical Society of America, 2017) Pavlov, I.; Tokel, O.; Pavlova, S.; Kadan, V.; Makey, G.; Turnalı, A.; Yavuz, Ö.; Ilday, F. Ö.Photonic devices that can guide, transfer, or modulate light are highly desired in electronics and integrated silicon (Si) photonics. Here, we demonstrate for the first time, to the best of our knowledge, the creation of optical waveguides deep inside Si using femtosecond pulses at a central wavelength of 1.5 μm. To this end, we use 350 fs long, 2 μJ pulses with a repetition rate of 250 kHz from an Er-doped fiber laser, which we focused inside Si to create permanent modifications of the crystal. The position of the beam is accurately controlled with pump-probe imaging during fabrication. Waveguides that were 5.5 mm in length and 20 μm in diameter were created by scanning the focal position along the beam propagation axis. The fabricated waveguides were characterized with a continuous-wave laser operating at 1.5 μm. The refractive index change inside the waveguide was measured with optical shadowgraphy, yielding a value of 6 × 10−4, and by direct light coupling and far-field imaging, yielding a value of 3.5 × 10−4. The formation mechanism of the modification is discussed.Item Open Access Fiber amplification of pulse bursts at low repetition rates via synchronous pulsed pumping(Optical Society of America, 2011) Kalaycıoğlu,Hamit; Yavaş, Seydi; İlday, F. Ömer; Eken, KorayWe report, for the first time, amplification of pulse-bursts in Yb-doped fiber at repetition rates as low as 200 Hz for applications to accelerators and material processing. Synchronous pulsed pumping allows suppression of ASE generation. © 2011 Optical Society of America.Item Open Access Fiber amplification of pulse bursts up to 20 μj pulse energy at 1 kHz repetition rate(Optical of Society of America, 2011-08-23) Kalaycıoğlu, Hamit; Eken, K.; İlday, F. ÖmerWe demonstrate burst-mode operation of a polarization-maintaining Yb-doped fiber amplifier. Groups of pulses with a temporal spacing of 10 ns and 1 kHz overall repetition rate are amplified to an average pulse energy of ∼20 μJ and total burst energy of 0:25 mJ. The pulses are externally compressed to ∼400 fs. The amplifier is synchronously pulsed-pumped to minimize amplified spontaneous emission between the bursts. We characterize the influence of pump pulse duration, pump-to-signal delay, and signal burst length.Item Open Access Fiber laser-microscope system for femtosecond photodisruption of biological samples(Optical Society of America, 2012-02-22) Yavaş, Seydi; Erdoğan, Mutlu; Gürel, Kutan; İlday, F. Ömer; Eldeniz, Y. B.; Tazebay, Uygar H.We report on the development of a ultrafast fiber lasermicroscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ~125 nJ at 1030 nm. Following dechirping in a grating compressor, ~240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed fieldprogrammable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.Item Open Access Generation of Sub-20-fs Pulses From a Graphene Mode-Locked Laser(OSA - The Optical Society, 2017) Canbaz, F.; Kakenov, N.; Kocabas, C.; Demirbas, U.; Sennaroglu, A.We demonstrate, what is to our knowledge, the shortest pulses directly generated to date from a solid-state laser, mode locked with a graphene saturable absorber (GSA). In the experiments, a low-threshold diode-pumped Cr3+:LiSAF laser was used near 850 nm. At a pump power of 275 mW provided by two pump diodes, the Cr3+:LiSAF laser produced nearly transform-limited, 19-fs pulses with an average output power of 8.5 mW. The repetition rate was around 107 MHz, corresponding to a pulse energy and peak power of 79 pJ and 4.2 kW, respectively. Once mode locking was initiated with the GSA, stable, uninterrupted femtosecond pulse generation could be obtained. In addition, the femtosecond output of the laser could be tuned from 836 nm to 897 nm with pulse durations in the range of 80-190 fs. We further performed detailed mode locking initiation tests across the full cavity stability range of the laser to verify that pulse generation was indeed started by the GSA and not by Kerr lens mode locking. � 2017 Optical Society of America.Item Open Access Graphene mode-locked Cr:LiSAF laser at 850 nm(OSA - The Optical Society, 2015) Canbaz F.; Kakenov, N.; Kocabas, C.; Demirbas, U.; Sennaroglu, A.We report, for the first time to our knowledge, a mode-locked femtosecond Cr:LiSAF laser initiated with a high-quality monolayer graphene saturable absorber (GSA), synthesized by chemical-vapor deposition. The tight-focusing resonator architecture made it possible to operate the Cr:LiSAF laser with only two 135 mW, 660 nm low-cost single-mode diode lasers. At a pump power of 270 mW, the laser produced nearly transform-limited 68 fs pulses with an average power of 11.5 mW at 850 nm. The repetition rate was around 132 MHz, corresponding to a pulse energy and peak power of 86 pJ and 1.26 kW, respectively. Once mode locking was initiated with the GSA, stable, uninterrupted femtosecond pulse generation could be sustained for hours. The saturation fluence and the modulation depth of the GSA were further determined to be 28 μJ/cm2 and 0.62%, respectively. 2015 Optical Society of America.Item Open Access High average and peak power femtosecond large-pitch photonic-crystal-fiber laser(2011) Baumgartl, M.; Jansen F.; Stutzki F.; Jauregui, C.; Ortaç, B.; Limpert J.; Tünnermann, A.We report on the generation of high-average-power and high-peak-power ultrashort pulses from a mode-locked fiber laser operating in the all-normal-dispersion regime. As gain medium, a large-mode-area ytterbium-doped large-pitch photonic-crystal fiber is used. The self-starting fiber laser delivers 27 W of average power at 50:57 MHz repetition rate, resulting in 534 nJ of pulse energy. The laser produces positively chirped 2 ps output pulses, which are compressed down to sub-100 fs, leading to pulse peak powers as high as 3:2 MW. © 2011 Optical Society of America.Item Open Access High-energy femtosecond photonic crystal fiber laser(2010) Lecaplain, C.; Ortaç, B.; MacHinet G.; Boullet J.; Baumgart, M.; Schreiber, T.; Cormier, E.; Hideur, A.We report the generation of high-energy high-peak power pulses in an all-normal dispersion fiber laser featuring large-mode-area photonic crystal fibers. The self-starting chirped-pulse fiber oscillator delivers 11 W of average power at 15:5 MHz repetition rate, resulting in 710 nJ of pulse energy. The output pulses are dechirped outside the cavity from 7 ps to nearly transform-limited duration of 300 fs, leading to pulse peak powers as high as 1:9 MW. Numerical simulations reveal that pulse shaping is dominated by the amplitude modulation and spectral filtering provided by a resonant semiconductor saturable absorber. © 2010 Optical Society of America.Item Open Access Microjoule pulse energies at 1 MHz repetition rate from an all-fiber nonlinear chirped-pulse amplifier(Optical Society of America, 2010) Kalaycioǧlu H.; Oktem, B.; Ömer Ilday F.We report a 1-MHz robust, all-fiber amplifier-oscillator system. Amplified pulses of 3 μJ are externally compressed to 140 fs. The highest peak power from an integrated fiber source, up to 50 kW, is obtained. © 2010 Optical Society of America.Item Open Access Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier(Optical Society of America, 2010-03-23) Kalaycioglu, H.; Oktem, B.; Şenel, Ç.; Paltani, P. P.; Ilday, F. Ö.We demonstrate generation of pulses with up to 4 μJ energy at 1 MHz repetition rate through nonlinear chirped-pulse amplification in an entirely fiber-integrated amplifier, seeded by a fiber oscillator. The peak power and the estimated nonlinear phase shift of the amplified pulses are as much as 57 kW and 22π, respectively. The shortest compressed pulse duration of 140 fs is obtained for 3.1 μJ of uncompressed amplifier output energy at 18 π of nonlinear phase shift. At 4 μJ of energy, the nonlinear phase shift is 22 π and compression leads to 170-fs-long pulses. Numerical simulations are utilized to model the experiments and identify the limitations. Amplification is ultimately limited by the onset of Raman amplification of the longer edge of the spectrum with an uncompressible phase profile.Item Open Access Non-thermal material and tissue processing with 100 MHz and 500 MHz repetition rate bursts(IEEE, 2013) Kerse, Can; Kalaycıoğlu, Hamit; Akaalan O.; Eldeniz, Y.B.; İlday, F. Ömer; Hoogland H.; Holzwarth, R.There are a number of applications that would avail a pulse pattern in the form of closely grouped and uniformly spaced pulses, i.e., bursts [1]. Closely grouped pulses with pulse to pulse separation in the order of a few nanoseconds have a potential for increasing material removal rates [2] and thereby reducing the thermal effects. Besides, keeping the burst repetition period in the order of thermal relaxation time has the advantage of keeping the overall average power at lower levels in order to prevent the cumulative heating of the material. © 2013 IEEE.Item Open Access Properties of a microjoule-class fiber oscillator mode-locked with a SESAM(IEEE, 2011) Lecaplain, C.; Ortac, Bülend; MacHinet G.; Boullet J.; Baumgartl, M.; Schreiber, T.; Cormier, E.; Hideur, A.Energy scaling of ultrafast Yb-doped fiber oscillators has experienced rapid progress largely driven by many applications that require high average power femtosecond pulses. The fundamental challenge for ultrafast fiber lasers relies on the control of excessive nonlinearity, which limits pulse energy. The development of all-normal dispersion laser cavities based on large-mode-area photonic crystal fibers (PCFs) has enabled significant energy scaling [1-3]. In particular, up to microjoule energy levels have been achieved from rod-type fiber-based oscillators [2-3]. In such lasers, pulse shaping is dominated by the strength of the mode-locking mechanism which determines the pulse properties. In this contribution, we report the generation of high-energy sub-picosecond pulses from a highly normal dispersion fiber laser featuring an Yb-doped rod-type PCF and a large-mode-area PCF [Fig.1(a)]. Passive mode-locking is achieved using saturable absorber mirrors (SAMs). We study the influence of the SAM parameters on performances obtained in this new class of fiber oscillators. The structures exhibit 20 % modulation depths and 500 fs relaxation time with resonant and antiresonant designs. The antiresonant SAM structures ensure absorption bandwidths 45 nm while the resonant structures exhibit 20 nm bandwidths. Stable mode locking with average powers as high as 15 μW at 15 MHz repetition rate, corresponding to microjoule energy level are obtained with all the structures. However, pulse properties and pulse shaping mechanism distinguish between resonant and antiresonant designs. Using a broadband antiresonant SAM leads to generation of highly-chirped pulses with 30 ps duration and 10 nm spectral width [Fig.1(b)]. The output pulses are extra-cavity dechirped down to 550 fs duration. By increasing the strength of the mode-locking mechanism through the combination of the SAM with the NPE process, we obtain shorter pulses with slightly boarder spectra. Indeed, the output pulse duration is decreased from 30 ps to 13 ps by adjusting the wave-plates settings. The dechirped pulse duration is then shortened to 450 fs. We note that the current laser performances are limited to 1 J by the available pump power. Using a resonant SAM structure, the output pulse duration is decreased to 7 ps [Fig.1(b)]. This pulse shortening results from the spectral filtering induced by the limited SAM bandwidth. All these results are in good agreement with numerical simulations which will be discussed in this communication. © 2011 IEEE.Item Open Access Pulse fidelity control in a 20-μJ sub-200-fs monolithic Yb-fiber amplifier(Pleiades Publishing, 2011-06-04) Fernández, A.; Zhu, L.; Verhoef, A. J.; Sidorov-Biryukov, D.; Pugzlys, A.; Galvanauskas, A.; Ilday, F. Ö.; Baltuška, A.We discuss nonlinearity management versus energy scalability and compressibility in a three-stage monolithic 100-kHz repetition rate Yb-fiber amplifier designed as a driver source for the generation and tunable parametric amplification of a carrier-envelope phase stable white-light supercontinuum.Item Open Access Repetition rate tuning of an ultrafast ytterbium doped fiber laser for terahertz time-domain spectroscopy(IEEE, 2013) Keskin H.; Altan H.; Yavaş, Seydi; İlday, F. Ömer; Yagci, M.E.; Aydin O.; Eken, K.; Sahin, B.Repetition rate tuning enables the fast acquisition of THz pulse profiles [1]. By using this method we demonstrate a compact and broadband terahertz time domain spectroscopy system (THz TDS) driven by ytterbium doped fiber laser source. The importance of this method is realized in that Yb:doped fiber lasers can be amplified to sub-millijoule pulse strengths more easily than other types of fiber lasers [2]. Hence, it has the potential to be used in excite-THz probe experiments. Furthermore, the repetition rate-tuning adds flexibility in the excite-probe techniques. These attributes as well as THz generation and detection are investigated with the laser that was developed. © 2013 IEEE.