Browsing by Subject "Quantum Hall effect"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Disorder and localization in the lowest Landau level in the presence of dilute point scatterers(Pergamon Press, 1999) Gedik, Z.; Bayındır, MehmetWe study the localization properties of a two-dimensional noninteracting electron gas in the presence of randomly distributed short-range scatterers in very high magnetic fields. We evaluate the participation number of the eigenstates obtained by exact diagonalization technique. At low impurity concentrations we obtain self-averaged values showing that all states, except those exactly at the Landau level, are localized with finite localization length. We conclude that in this dilute regime the localization length does not diverge. We also find that the maximum localization length increases exponentially with impurity concentration. Our calculations suggest that scaling behavior may be absent even for higher concentrations of scatterers.Item Open Access Hall conductance in graphene with point defects(2013) İslamoǧlu, S.; Oktel, M. Ö.; Gülseren, O.We investigate the Hall conductance of graphene with point defects within the Kubo formalism, which allows us to calculate the Hall conductance without constraining the Fermi energy to lie in a gap. For pure graphene, which we model using a tight-binding Hamiltonian, we recover both the usual and the anomalous integer quantum Hall effects depending on the proximity to the Dirac points. We investigate the effect of point defects on Hall conduction by considering a dilute but regular array of point defects incorporated into the graphene lattice. We extend our calculations to include next nearest neighbor hopping, which breaks the bipartite symmetry of the lattice. We find that impurity atoms which are weakly coupled to the rest of the lattice result in gradual disappearance of the high conductance value plateaus. For such impurities, especially for vacancies which are decoupled from the lattice, strong modification of the Hall conductance occurs near the E = 0 eV line, as impurity states are highly localized. In contrast, if the impurities are strongly coupled, they create additional Hall conductance plateaus at the extremum values of the spectrum, signifying separate impurity bands. Hall conductance values within the original spectrum are not strongly modified.Item Open Access Where are the edge-states near the quantum point contacts? A self-consistent approach(Elsevier B.V., 2007) Siddiki, A.; Cicek, E.; Eksi, D.; Mese, A. I.; Aktas, S.; Hakioğlu, T.Abstract In this work, we calculate the current distribution, in the close vicinity of the quantum point contacts (QPCs), taking into account the Coulomb interaction. In the first step, we calculate the bare confinement potential of a generic QPC and, in the presence of a perpendicular magnetic field, obtain the positions of the incompressible edge states (IES) taking into account electron–electron interaction within the Thomas–Fermi theory of screening. Using a local version of Ohm’s law, together with a relevant conductivity model, we also calculate the current distribution. We observe that, the imposed external current is confined locally into the incompressible strips. Our calculations demonstrate that, the inclusion of the electron–electron interaction, strongly changes the general picture of the transport through the QPCs.