Browsing by Subject "Phonon polaritons"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Hybrid plasmon-phonon polariton bands in graphene-hexagonal boron nitride metamaterials [Invited](Optical Society of America, 2017) Hajian, H.; Ghobadi, A.; Dereshgi, S. A.; Butun, B.; Özbay, EkmelWe theoretically investigate mid-infrared electromagnetic wave propagation in multilayered graphene-hexagonal boron nitride (hBN) metamaterials. Hexagonal boron nitride is a natural hyperbolic material that supports highly dispersive phonon polariton modes in two Reststrahlen bands with different types of hyperbolicity. Due to the hybridization of surface plasmon polaritons of graphene and hyperbolic phonon polaritons of hBN, each isolated unit cell of the graphene-hBN metamaterial supports hybrid plasmon-phonon polaritons (HPPs). Through the investigation of band structure of the metamaterial we find that, due to the coupling between the HPPs supported by each unit cell, the graphene-hBN metamaterial can support HPP bands. The dispersion of these bands can be noticeably modified for different thicknesses of hBN layers, leading to the appearance of bands with considerably flat dispersions. Moreover, analysis of light transmission through the metamaterial reveals that this system is capable of supporting high-k propagating HPPs. This characteristic makes graphene-hBN metamaterials very promising candidates for the modification of the spontaneous emission of a quantum emitter, hyperlensing, negative refraction, and waveguiding. © 2017 Optical Society of America.Item Open Access Plasmon and phonon polaritons in planar van der Waals heterostructures(Elsevier, 2023) Hajian, Hodjat; Erçağlar, Veysel; Özbay, EkmelThe investigation of the characteristics of plasmon polaritons and phonon polaritons in planar systems is one of the key tools in understanding the optical response of plasmonic and phononic waveguides, metamaterials, and metasurfaces. Due to the considerable research interest in the polaritonics of van der Waals (vdW) materials in recent years, we conducted a detailed study on the infrared isotropic/anisotropic polaritons in plasmonic and phononic van der Waals heterostructures.