Browsing by Subject "Pattern recognition and feature extraction"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Differentiation and localization of targets using infrared sensors(Elsevier, 2002) Aytaç, T.; Barshan, B.This study investigates the use of low-cost infrared emitters and detectors in the differentiation and localization of commonly encountered features or targets in indoor environments, such as planes, corners, edges, and cylinders. The intensity readings obtained with such systems are highly dependent on target location and properties in a way which cannot be represented in a simple manner, making the differentiation and localization process difficult. In this paper, we propose the use of angular intensity scans and present an algorithm to process them. This approach can determine the target type independent of its position. Once the target type is identified, its position can also be estimated. The method is verified experimentally. An average correct classification rate of 97% over all target types is achieved and targets are localized within absolute range and azimuth errors of 0.8 cm and 1.6°, respectively. The method demonstrated shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than that which they are commonly employed for.Item Open Access Differentiation and localization using infrared sensors(2002-08) Aytaç, TayfunIn this thesis different approaches for the differentiation and localization of targets using low cost infrared sensors are presented. The intensity readings obtained with such sensors are highly dependent on the location and properties of targets in a way which cannot be represented in a simple manner, making the differentiation and localization process difficult. We propose the use of angular intensity scans and present different approaches to process them. Using these approaches, targets of different geometrical shapes but identical surface properties targets of difffferent surface properties but identical geometry, and targets having both different geometrical shapes and surface properties are differentiated and localized in a position-invariant manner. Maximum correct differentiation rates of 97% 87% and 65% are respectively achieved in these cases, indicating that the geometrical properties of targets are more distinctive than their surface properties in the differentiation process. The different approaches are verified experimentally with target types of commonly encountered geometries in indoor environments and with surfaces of different reflection properties. The results indicate that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than they are commonly employed for.Item Open Access Position-invariant surface recognition and localization using infrared sensors(SPIE, 2003) Barshan, B.; Aytaç, T.Low-cost infrared emitters and detectors are used for the recognition of surfaces with different properties in a location-invariant manner. The intensity readings obtained with such devices are highly dependent on the location and properties of the surface in a way that cannot be represented in a simple manner, complicating the recognition and localization process. We propose the use of angular intensity scans and present an algorithm to process them. This approach can distinguish different surfaces independently of their positions. Once the surface is identified, its position can also be estimated. The method is verified experimentally with the surfaces aluminum, white painted wall, brown kraft paper, and polystyrene foam packaging material. A correct differentiation rate of 87% is achieved, and the surfaces are localized within absolute range and azimuth errors of 1.2 cm and 1.0 deg, respectively. The method demonstrated shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than they are commonly employed for. © 2003 Society of Photo-Optical Instrumentation Engineers.Item Open Access Rule-based target differentiation and position estimation based on infrared intensity measurements(SPIE, 2003) Aytaç, T.; Barshan, B.This study investigates the use of low-cost infrared sensors in the differentiation and localization of target primitives commonly encountered in indoor environments, such as planes, corners, edges, and cylinders. The intensity readings from such sensors are highly dependent on target location and properties in a way that cannot be represented in a simple manner, making the differentiation and localization difficult. We propose the use of angular intensity scans from two infrared sensors and present a rule-based algorithm to process them. The method can achieve position-invariant target differentiation without relying on the absolute return signal intensities of the infrared sensors. The method is verified experimentally. Planes, 90-deg corners, 90-deg edges, and cylinders are differentiated with correct rates of 90%, 100%, 82.5%, and 92.5%, respectively. Targets are localized with average absolute range and azimuth errors of 0.55 cm and 1.03 deg. The demonstration shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than they are commonly employed for.