Browsing by Subject "Pattern recognition"
Now showing 1 - 20 of 64
- Results Per Page
- Sort Options
Item Open Access Activity recognition invariant to sensor orientation with wearable motion sensors(MDPI AG, 2017) Yurtman, A.; Barshan, B.Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.Item Open Access Architectural sketch recognition(1990) Durgun, Fatoş Bengi; Özgüç, BülentSketch recognition is applied to freehand architectural drawings. The purpose is to recognize the architect’s intentions from a quick sketch and generate a detailed drawing. The system can also calibrate itself to interpret the peculiar styles of each individual architect using it. © 1990 Taylor and Francis Group, LLC.Item Open Access Automated detection and enhancement of microcalcifications in mammograms using nonlinear subband decomposition(IEEE, 1997) Ansari, R.; Gürcan, M. Nafi; Yardımcı, Yasemin; Çetin, A. EnisIn this paper, computer-aided detection and enhancement of microcalcifications in mammogram images are considered. The mammogram image is first decomposed into subimages using a `subband' decomposition filter bank which uses nonlinear filters. A suitably identified subimage is divided into overlapping square regions in which skewness and kurtosis as measures of the asymmetry and impulsiveness of the distribution are estimated. All regions with high positive skewness and kurtosis are marked as a regions of interest. Next, an outlier labeling method is used to find the locations of microcalcifications in these regions. An enhanced mammogram image is also obtained by emphasizing the microcalcification locations. Linear and nonlinear subband decomposition structures are compared in terms of their effectiveness in finding microcalcificated regions and their computational complexity. Simulation studies based on real mammogram images are presented.Item Open Access Automated evaluation of physical therapy exercises using multi-template dynamic time warping on wearable sensor signals(Elsevier Ireland Ltd., 2014) Yurtman, A.; Barshan, B.We develop an autonomous system to detect and evaluate physical therapy exercises using wearable motion sensors. We propose the multi-template multi-match dynamic time warping (MTMM-DTW) algorithm as a natural extension of DTW to detect multiple occurrences of more than one exercise type in the recording of a physical therapy session. While allowing some distortion (warping) in time, the algorithm provides a quantitative measure of similarity between an exercise execution and previously recorded templates, based on DTW distance. It can detect and classify the exercise types, and count and evaluate the exercises as correctly/incorrectly performed, identifying the error type, if any. To evaluate the algorithm's performance, we record a data set consisting of one reference template and 10 test executions of three execution types of eight exercises performed by five subjects. We thus record a total of 120 and 1200 exercise executions in the reference and test sets, respectively. The test sequences also contain idle time intervals. The accuracy of the proposed algorithm is 93.46% for exercise classification only and 88.65% for simultaneous exercise and execution type classification. The algorithm misses 8.58% of the exercise executions and demonstrates a false alarm rate of 4.91%, caused by some idle time intervals being incorrectly recognized as exercise executions. To test the robustness of the system to unknown exercises, we employ leave-one-exercise-out cross validation. This results in a false alarm rate lower than 1%, demonstrating the robustness of the system to unknown movements. The proposed system can be used for assessing the effectiveness of a physical therapy session and for providing feedback to the patient. © 2014 Elsevier Ireland Ltd.Item Open Access BilKristal 2.0: a tool for pattern information extraction from crystal structures(Elsevier BV, 2014-01) Okuyan, E.; Güdükbay, UğurWe present a revised version of the BilKristal tool of Okuyan et al. (2007). We converted the development environment into Microsoft Visual Studio 2005 in order to resolve compatibility issues. We added multi-core CPU support and improvements are made to graphics functions in order to improve performance. Discovered bugs are fixed and exporting functionality to a material visualization tool is added.Item Open Access BilKristal 4.0: A tool for crystal parameters extraction and defect quantification(Elsevier, 2015) Okuyan, E.; Okuyan, C.In this paper, we present a revised version of BilKristal 3.0 tool. Raycast screenshot functionality is added to provide improved visual analysis. We added atomic distance analysis functionality to assess crystalline defects. We improved visualization capabilities by adding high level cut function definitions. Discovered bugs are fixed and small performance optimizations are made. © 2015 Elsevier B.V. All rights reserved.Item Open Access Classification of leg motions by processing gyroscope signals(IEEE, 2009) Tunçel, Orkun; Altun, Kerem; Barshan, BillurIn this study, eight different leg motions are classified using two single-axis gyroscopes mounted on the right leg of a subject with the help of several pattern recognition techniques. The methods of least squares, Bayesian decision, k-nearest neighbor, dynamic time warping, artificial neural networks and support vector machines are used for classification and their performances are compared. This study comprises the preliminary work for our future studies on motion recognition with a much wider scope.Item Open Access Classifying human leg motions with uniaxial piezoelectric gyroscopes(2009) Tunçel O.; Altun, K.; Barshan, B.This paper provides a comparative study on the different techniques of classifying human leg motions that are performed using two low-cost uniaxial piezoelectric gyroscopes worn on the leg. A number of feature sets, extracted from the raw inertial sensor data in different ways, are used in the classification process. The classification techniques implemented and compared in this study are: Bayesian decision making (BDM), a rule-based algorithm (RBA) or decision tree, least-squares method (LSM), k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW), support vector machines (SVM), and artificial neural networks (ANN). A performance comparison of these classification techniques is provided in terms of their correct differentiation rates, confusion matrices, computational cost, and training and storage requirements. Three different cross-validation techniques are employed to validate the classifiers. The results indicate that BDM, in general, results in the highest correct classification rate with relatively small computational cost. © 2009 by the authors.Item Open Access Comparative analysis of different approaches to target classification and localization with sonar(IEEE, 2001-08) Ayrulu, Birsel; Barshan, BillurThe comparison of different classification and fusion techniques was done for target classification and localization with sonar. Target localization performance of artificial neural networks (ANN) was found to be better than the target differentiation algorithm (TDA) and fusion techniques. The target classification performance of non-parametric approaches was better than that of parameterized density estimator (PDE) using homoscedastic and heteroscedastic NM for statistical pattern recognition techniques.Item Open Access Comparative analysis of different approaches to target differentiation and localization with sonar(Elsevier, 2003) Barshan, B.; Ayrulu, B.This study compares the performances of different methods for the differentiation and localization of commonly encountered features in indoor environments. Differentiation of such features is of interest for intelligent systems in a variety of applications such as system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target tracking. Different representations of amplitude and time-of-2ight measurement patterns experimentally acquired from a real sonar system are processed. The approaches compared in this study include the target differentiation algorithm, Dempster-Shafer evidential reasoning, different kinds of voting schemes, statistical pattern recognition techniques (k-nearest neighbor classifier, kernel estimator, parameterized density estimator, linear discriminant analysis, and fuzzy c-means clustering algorithm), and artificial neural networks. The neural networks are trained with different input signal representations obtained usingpre-processing techniques such as discrete ordinary and fractional Fourier, Hartley and wavelet transforms, and Kohonen's self-organizing feature map. The use of neural networks trained with the back-propagation algorithm, usually with fractional Fourier transform or wavelet pre-processing results in near perfect differentiation, around 85% correct range estimation and around 95% correct azimuth estimation, which would be satisfactory in a wide range of applications. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.Item Open Access Detection and evaluation of physical therapy exercises by dynamic time warping using wearable motion sensor units(Springer, 2014) Yurtman, Aras; Barshan, BillurWe develop an autonomous system that detects and evaluates physical therapy exercises using wearable motion sensors. We propose an algorithm that detects all the occurrences of one or more template signals (representing exercise movements) in a long signal acquired during a physical therapy session. In matching the signals, the algorithm allows some distortion in time, based on dynamic time warping (DTW). The algorithm classifies the executions in one of the exercises and evaluates them as correct/incorrect, giving the error type if there is any. It also provides a quantitative measure of similarity between each matched execution and its template. To evaluate the performance of the algorithm in physical therapy, a dataset consisting of one template execution and ten test executions of each of the three execution types of eight exercises performed by five subjects is recorded, having a total of 120 and 1,200 exercise executions in the training and test sets, respectively, as well as many idle time intervals in the test signals. The proposed algorithm detects 1,125 executions in the whole test set. 8.58 % of the 1,200 executions are missed and 4.91 % of the idle time intervals are incorrectly detected as executions. The accuracy is 93.46 % only for exercise classification and 88.65 % for simultaneous exercise and execution type classification. The proposed system may be used for both estimating the intensity of the physical therapy session and evaluating the executions to provide feedback to the patient and the specialist.Item Open Access Detection of tree trunks as visual landmarks in outdoor environments(2010) Yıldız, TuğbaOne of the basic problems to be addressed for a robot navigating in an outdoor environment is the tracking of its position and state. A fundamental first step in using algorithms for solving this problem, such as various visual Simultaneous Localization and Mapping (SLAM) strategies, is the extraction and identification of suitable stationary “landmarks” in the environment. This is particularly challenging in the outdoors geometrically consistent features such as lines are not frequent. In this thesis, we focus on using trees as persistent visual landmark features in outdoor settings. Existing work to this end only uses intensity information in images and does not work well in low-contrast settings. In contrast, we propose a novel method to incorporate both color and intensity information as well as regional attributes in an image towards robust of detection of tree trunks. We describe both extensions to the well-known edge-flow method as well as complementary Gabor-based edge detection methods to extract dominant edges in the vertical direction. The final stages of our algorithm then group these vertical edges into potential tree trunks using the integration of perceptual organization and all available image features. We characterize the detection performance of our algorithm for two different datasets, one homogeneous dataset with different images of the same tree types and a heterogeneous dataset with images taken from a much more diverse set of trees under more dramatic variations in illumination, viewpoint and background conditions. Our experiments show that our algorithm correctly finds up to 90% of trees with a false-positive rate lower than 15% in both datasets. These results establish that the integration of all available color, intensity and structure information results in a high performance tree trunk detection system that is suitable for use within a SLAM framework that outperforms other methods that only use image intensity information.Item Open Access Differences in illumination estimation in #thedress(Association for Research in Vision and Ophthalmology Inc., 2017) Toscani, M.; Gegenfurtner, K. R.; Doerschner, K.We investigated whether people who report different colors for #thedress do so because they have different assumptions about the illumination in #thedress scene. We introduced a spherical illumination probe (Koenderink, Pont, van Doorn, Kappers, & Todd, 2007) into the original photograph, placed in fore-, or background of the scene and-for each location-let observers manipulate the probe's chromaticity, intensity and the direction of the illumination. Their task was to adjust the probe such that it would appear as a white sphere in the scene. When the probe was located in the foreground, observers who reported the dress to be white (white perceivers) tended to produce bluer adjustments than observers who reported it as blue (blue perceivers). Blue perceivers tended to perceive the illumination as less chromatic. There were no differences in chromaticity settings between perceiver types for the probe placed in the background. Perceiver types also did not differ in their illumination intensity and direction estimates across probe locations. These results provide direct support for the idea that the ambiguity in the perceived color of the dress can be explained by the different assumptions that people have about the illumination chromaticity in the foreground of the scene. In a second experiment we explore the possibility that blue perceivers might overall be less sensitive to contextual cues, and measure white and blue perceivers' dress color matches and labels for manipulated versions of the original photo. Results indeed confirm that contextual cues predominantly affect white perceivers.Item Open Access FAME: Face association through model evolution(IEEE, 2015-06) Gölge, Eren; Duygulu, PınarWe attack the problem of building classifiers for public faces from web images collected through querying a name. The search results are very noisy even after face detection, with several irrelevant faces corresponding to other people. Moreover, the photographs are taken in the wild with large variety in poses and expressions. We propose a novel method, Face Association through Model Evolution (FAME), that is able to prune the data in an iterative way, for the models associated to a name to evolve. The idea is based on capturing discriminative and representative properties of each instance and eliminating the outliers. The final models are used to classify faces on novel datasets with different characteristics. On benchmark datasets, our results are comparable to or better than the state-of-the-art studies for the task of face identification. © 2015 IEEE.Item Open Access Farklı yapay sinir ağı temelli sınıflandırıcılar ile insan hareketi tanımlama(IEEE, 2017-05) Çatalbaş, Burak; Morgül, Ömer; Çatalbaş, Bahadırİnsan Hareketi Tanımlanması, taşıdığı önem ve sınırlı öznitelik vektörü ile yüksek sınıflandırma oranlarına ulaşmasında karşılaşılan zorluk nedeniyle popüler bir araştırma konusudur. Bireylerin hareket ölçülebilirliginin akıllı telefonların içinde gömülü bulunan atalet ölçüm birimleri sayesinde artması ile birlikte, bu alanda toplanan veri miktarı artmakta ve daha başarılı sınıflandırıcıların tasarlanabilmesine imkan saglanmaktadır. Yapay sinir ağları, konvansiyonel sınıflandırıcılara göre sınıflandırma sorunlarında daha iyi performans sergileyebilmektedir. Bu çalışmada, Irvine Kaliforniya Üniversitesi (UCI) veri setine yapay sinir ağı temelli bir sınıflandırıcı önermek için çeşitli yapay sinir ağı yapıları denenmiş olup, bu sınıflandırıcılar ile elde edilen başarı oranları literatürdeki aynı veri kümesi için bulunan sonuçlarla karşılaştırılmıştır.Item Open Access Fizik tedavi egzersizlerinin giyilebilir hareket algılayıcıları işaretlerinden dinamik zaman bükmesiyle sezimi ve değerlendirilmesi(IEEE, 2014-04) Yurtman, Aras; Barshan, BillurGiyilebilir hareket algılayıcılarından kaydedilen sinyalleri işleyerek fizik tedavi egzersizlerini algılamak ve değerlendirmek için özerk bir sistem geliştirilmiştir. Bir fizik tedavi seansındaki bir ya da birden fazla egzersiz tipini algılamak için, temeli dinamik zaman bükmesi (DZB) benzeşmezlik ölçütüne dayanan bir algoritma geliştirilmiştir. Algoritma, egzersizlerin doğru ya da yanlış yapıldığını değerlendirmekte ve varsa hata türünü saptamaktadır. Algoritmanın başarımını degerlendirmek için, beş katılımcı tarafından yapılan sekiz egzersiz hareketinin üç yürütüm türü için birer şablon ve 10’ar sınama yürütümünden oluşan bir veri kümesi kaydedilmiştir. Dolayısıyla, eğitim ve sınama kümelerinde sırasıyla 120 ve 1,200 egzersiz yürütümü bulunmaktadır. Sınama kümesi, boş zaman dilimleri de içermektedir. Öne sürülen algoritma, sınama kümesindeki 1,200 yürütümün % 8.58’ini kaçırmakta ve boş zaman dilimlerinin % 4.91’ini yanlış sezim olarak değerlendirerek toplam 1,125 yürütüm algılamaktadır. Doğruluk, sadece egzersiz sınıflandırması ele alındığında ˘ % 93.46, hem egzersiz hem de yürütüm türü sınıflandırması içinse % 88.65’tir. Sistemin bilinmeyen egzersizlere karşı davranışını sınamak için, algoritma, her egzersiz için, o egzersizin şablonları dışarıda bırakılarak çalıştırılmış ve 1,200 egzersizin sadece 10’u yanlış sezilmiştir. Bu sonuç, sistemin bilinmeyen hareketlere karşı gürbüz olduğunu göstermektedir. Öne sürülen sistem, hem bir fizik tedavi seansının yoğunluğunu kestirmek, hem de hastaya ve fizik tedavi uzmanına geribildirim vermek amacıyla egzersiz hareketlerini değerlendirmek için kullanılabilir.Item Open Access Foreword to the special issue on pattern recognition in remote sensing(Institute of Electrical and Electronics Engineers, 2012) Younan, N. H.; Aksoy, S.; King, R. L.The nine papers in this special issue focus on covering different aspects of remote sensing image analysis.Item Open Access GCap: Graph-based automatic image captioning(IEEE, 2004) Pan J.-Y.; Yang H.-J.; Faloutsos C.; Duygulu, PınarGiven an image, how do we automatically assign keywords to it? In this paper, we propose a novel, graph-based approach (GCap) which outperforms previously reported methods for automatic image captioning. Moreover, it is fast and scales well, with its training and testing time linear to the data set size. We report auto-captioning experiments on the "standard" Corel image database of 680 MBytes, where GCap outperforms recent, successful auto-captioning methods by up to 10 percentage points in captioning accuracy (50% relative improvement). © 2004 IEEE.Item Open Access Generalized texture models for detecting high-level structures in remotely sensed images(2007) Doğrusöz, EmelWith the rapid increase in the amount and resolution of remotely sensed image data, automatic extraction and classification of information obtained from such images have been an important problem in the field of pattern recognition since remotely sensed imagery is a critical resource for diverse fields such as urban land use monitoring and management, GIS and mapping, environmental change and agricultural and ecological studies. This thesis proposes statistical and structural texture models for detecting high-level structures in remotely sensed images. The high-level structures correspond to complex geospatial objects with characteristic spatial layouts in a region. As opposed to the existing approaches that are based on classifying images using pixel level methods, we propose to use simple geospatial objects as textural primitives and exploit their spatial patterns. This representation can be viewed as a “generalized texture” measure where the image elements of interest are urban primitives instead of the traditional case of pixels. The spatial patterns we are interested in correspond to the regular and irregular arrangements of these primitives within neighborhoods. The methodology we propose in this thesis has two steps. First, the primitives of interest are detected using spectral, textural and morphological features with one-class classifiers. Then, the spatial patterns of these primitives are modeled. At this step, either a statistical or a structural approach can be followed. In the statistical approach, analysis of the spatial arrangement of the primitives is done by co-occurrence-based spatial domain features and Fourier spectrum-based frequency domain features. These features are used to quantify the likelihood of presence of the focused object in the image region being analyzed. In the structural approach, a graph-theoretic representation is proposed where the primitives form the nodes of a graph and the neighborhood information is obtained through Voronoi tessellation of the image scene. Next, the graph is clustered by thresholding its minimum spanning tree and the resulting clusters are classified as regular or irregular by examining the distributions of the angles between neighboring nodes. The algorithms proposed in this thesis are illustrated with the detection of two geospatial objects: settlement areas and harbors. The first step in the modeling of these objects is the detection of primitives such as buildings for settlement areas, and boats and water for harbors. In the second step, both statistical and structural approaches are illustrated for the modeling of the spatial patterns of these objects. Results of the experiments on high-resolution Ikonos satellite imagery and DOQQ aerial imagery show that the proposed techniques can be used for detecting the presence of geospatial objects in large remote sensing image datasets.Item Open Access Hierarchical segmentation of complex structures(IEEE, 2010) Akçay, H. Gökhan; Aksoy, Selim; Soille P.We present an unsupervised hierarchical segmentation algorithm for detection of complex heterogeneous image structures that are comprised of simpler homogeneous primitive objects. An initial segmentation step produces regions corresponding to primitive objects with uniform spectral content. Next, the transitions between neighboring regions are modeled and clustered. We assume that the clusters that are dense and large enough in this transition space can be considered as significant. Then, the neighboring regions belonging to the significant clusters are merged to obtain the next level in the hierarchy. The experiments show that the algorithm that iteratively clusters and merges region groups is able to segment high-level complex structures in a hierarchical manner. © 2010 IEEE.