Browsing by Subject "Optimal stopping problem"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Compound poisson disorder problems with nonlinear detection delay penalty cost functions(2010) Dayanik, S.The quickest detection of the unknown and unobservable disorder time, when the arrival rate and mark distribution of a compound Poisson process suddenly changes, is formulated in a Bayesian setting, where the detection delay penalty is a general smooth function of the detection delay time. Under suitable conditions, the problem is shown to be equivalent to the optimal stopping of a finite-dimensional piecewise-deterministic strongly Markov sufficient statistic. The solution of the optimal stopping problem is described in detail for the compound Poisson disorder problem with polynomial detection delay penalty function of arbitrary but fixed degree. The results are illustrated for the case of the quadratic detection delay penalty function. © Taylor & Francis Group, LLC.Item Open Access Optimal stopping problems for asset management(2012) Dayanık, S.; Egami, M.An asset manager invests the savings of some investors in a portfolio of defaultable bonds. The manager pays the investors coupons at a constant rate and receives a management fee proportional to the value of the portfolio. He/she also has the right to walk out of the contract at any time with the net terminal value of the portfolio after payment of the investors' initial funds, and is not responsible for any deficit. To control the principal losses, investors may buy from the manager a limited protection which terminates the agreement as soon as the value of the portfolio drops below a predetermined threshold. We assume that the value of the portfolio is a jump diffusion process and find an optimal termination rule of the manager with and without protection. We also derive the indifference price of a limited protection. We illustrate the solution method on a numerical example. The motivation comes from the collateralized debt obligations.