Browsing by Subject "Ohmic contact"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Decoupling contact and mirror: an effective way to improve the reflector for flip-chip InGaN/GaN-based light-emitting diodes(Institute of Physics Publishing, 2016) Zhu B.; Liu W.; Lu S.; Zhang, Y.; Hasanov N.; Zhang X.; Ji Y.; Zhang Z.-H.; Tan S.T.; Liu, H.; Demir, Hilmi VolkanIn the conventional fabrication process of the widely-adopted Ni/Ag/Ti/Au reflector for InGaN/GaN-based flip-chip light-emitting diodes (LEDs), the contact and the mirror are entangled together with contrary processing conditions which set constraints to the device performance severely. Here we first report the concept and its effectiveness of decoupling the contact formation and the mirror construction. The ohmic contact is first formed by depositing and annealing an extremely thin layer of Ni/Ag on top of p-GaN. The mirror construction is then carried out by depositing thick layer of Ag/Ti/Au without any annealing. Compared with the conventional fabrication method of the reflector, by which the whole stack of Ni/Ag/Ti/Au is deposited and annealed together, the optical output power is improved by more than 70% at 350 mA without compromising the electrical performance. The mechanism of decoupling the contact and the mirror is analyzed with the assistance of contactless sheet resistance measurement and secondary ion mass spectrometry (SIMS) depth profile analysis. © 2016 IOP Publishing Ltd.Item Open Access Impact of the low temperature ohmic contact process on DC and forward gate bias stress operation of GaN HEMT devices(Institute of Electrical and Electronics Engineers, 2022-08-17) Odabaşı, Oğuz; Ghobadi, Amir; Ghobadi, Türkan Gamze Ulusoy; Ünal, Yakup; Salkım, Gurur; Başar, Güneş; Bütün, Bayram; Özbay, EkmelIn AlGaN/GaN high electron mobility transistors (HEMTs), high temperature processes (such as ohmic annealing with >800°C value) could deform the crystal structure and induce trap states within the bulk and surface. Expanded defect densities cause crucial problems, such as threshold voltage ( Vth ) instability, current collapse, and high leakages. In this work, a low temperature ohmic contact process (630°C, 10 minutes) is adopted with recess etch, and contact resistances <0.1Ω ⋅ mm with low sheet resistances are achieved. The positive impact of this low thermal budget process on surface morphology, DC operation, long-term stability, and forward gate bias stress of the device is studied.Item Open Access Modulating ohmic contact through InGaxNyOz interfacial layer for high-performance InGaN/GaN-based light-emitting diodes(Institute of Electrical and Electronics Engineers Inc., 2016) Zhu B.; Tan S.T.; Liu W.; Lu S.; Zhang, Y.; Chen, S.; Hasanov N.; Kang, X.; Demir, Hilmi VolkanWe report the improved performance of InGaN/GaN-based light-emitting diodes (LEDs) through the design and the formation of the InGaxNyOz interfacial layer, which maintains high reflectivity of silver and forms good ohmic contact between pristine silver and p-GaN. The interfacial layer was designed and formed by depositing a thin layer of indium tin oxide (ITO) on top of p-GaN, followed by thermal annealing, to enable the interdiffusion and the intermixing of In, Sn, Ga, O, and N atoms. Both electrical and optical performances of the LED with the optimized InGaxNyOz interfacial layer are improved, thus achieving the highest wall-plug efficiency, compared with those LEDs with and without ITO layers at operation current.Item Embargo Nonalloyed ohmic contact development with n+InGaN regrowth method and analysis of its effect on AlGaN/GaN HEMT devices(Elsevier Ltd, 2023-03-22) Toprak, Ahmet; Özbay, EkmelIn this study, the DC performance of AlGaN/GaN based HEMT devices of different geometries (designed to operate in the S, X and Ka-band frequency ranges) with regrown degenerately doped n + In0.12GaN nonalloyed ohmic contacts on different epitaxial structures were investigated. Once the optimal recess etch depth and regrowth thickness for drain and source contacts were determined, the effects of alloyed and nonalloyed ohmic contacts on the maximum drain current (IDS,max), ON‐resistance (Ron), maximum DC transconductance (gm), pinch-off voltage (Vth), drain leakage current (ID,leak), and gate leakage current (IG,leak) were investigated for S, X and Ka-band HEMT devices. The results showed that the use of nonalloyed ohmic contacts resulted in decreasing Rc with a better surface morphology. Additionally, the nonalloyed ohmic contact structure with low contact resistance caused an increase in the IDS,max and gm values by reducing the Ron resistance, and also reducing the ID,leak and IG,leak leakage currents by preventing the surface distortions and trap formations due to the absence of high temperature. Although there was no dramatic change in Vth for S, X and Ka-band HEMT devices, Vth shifts towards positive in S and X-band devices, and towards negative in Ka-band devices.