Browsing by Subject "Neovascularization (pathology)"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction(Acta Materialia Inc, 2017) Rufaihah, A. J.; Yasa, I. C.; Ramanujam, V. S.; Arularasu, S. C.; Kofidis, T.; Güler, Mustafa O.; Tekinay, A. B.Myocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas. Here, we demonstrate that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization in cardiovascular tissue after myocardial infarction, without the addition of any biologically derived factors or stem cells. When the GAG mimetic nanofiber gels were injected in the infarct site of rodent myocardial infarct model, increased VEGF-A expression and recruitment of vascular cells was observed. This was accompanied with significant degree of neovascularization and better cardiac performance when compared to the control saline group. The results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. Statement of Significance We present a synthetic bioactive peptide nanofiber system can enhance cardiac function and enhance cardiovascular regeneration after myocardial infarction (MI) without the addition of growth factors, stem cells or other biologically derived molecules. Current state of the art in cardiac repair after MI utilize at least one of the above mentioned biologically derived molecules, thus our approach is ground-breaking for cardiovascular therapy after MI. In this work, we showed that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization and cardiomyocyte differentiation for the regeneration of cardiovascular tissue after myocardial infarction in a rat infarct model. When the peptide nanofiber gels were injected in infarct site at rodent myocardial infarct model, recruitment of vascular cells was observed, neovascularization was significantly induced and cardiac performance was improved. These results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair.Item Open Access Endothelial progenitor cells display clonal restriction in multiple myeloma(BioMed Central Ltd., 2006) Braunstein, M.; Özçelik, T.; Baǧişlar, S.; Vakil, V.; Smith, E. L. P.; Dai, K.; Akyerli, C. B.; Batuman O. A.Background: In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods: A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH). Results: In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71 % (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI. Conclusion: Our results suggest that EPCs in at least a substantial subpopulation of MM patients are related to the neoplastic clone and that this is an important mechanism for upregulation of tumor neovascularization in MM. © 2006 Braunstein et al; licensee BioMed Central Ltd.Item Open Access HER2 and proliferation of wound-induced breast carcinoma(The Lancet Publishing, 2003-11-01) Tez, M.; Göçmen, E.; Özçelik, T.