Browsing by Subject "Nanostructured materials"
Now showing 1 - 20 of 47
- Results Per Page
- Sort Options
Item Open Access Atomic and electronic structure of carbon strings(IOP Publishing Ltd., 2005) Tongay, S.; Dag, S.; Durgun, Engin; Senger, R. T.; Çıracı, SalimThis paper presents an extensive study of various string and tubular structures formed by carbon atomic chains. Our study is based on first-principles pseudopotential plane wave and finite-temperature ab initio molecular dynamics calculations. Infinite- and finite-length carbon chains exhibit unusual mechanical and electronic properties such as large cohesive energy, axial strength, high conductance, and overall structural stability even at high temperatures. They are suitable for structural and chemical functionalizations. Owing to their flexibility and reactivity they can form linear chain, ring, helix, two-dimensional rectangular and honeycomb grids, three-dimensional cubic networks, and tubular structures. Metal-semiconductor heterostructures and various quantum structures, such as multiple quantum wells and double-barrier resonant tunnelling structures, can be formed from the junctions of metallic carbon and semiconducting BN linear chains. Analysis of atomic and electronic structures of these periodic, finite, and doped structures reveals fundamentally and technologically interesting features, such as structural instabilities and chiral currents. The double covalent bonding of carbon atoms depicted through self-consistent charge density analysis underlies the chemical, mechanical, and electronic properties.Item Open Access Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors(Institute of Physics Publishing, 2017) Bıyıklı, Necmi; Haider A.In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.Item Open Access Atomic strings of group IV, III-V, and II-VI elements(American Institute of Physics, 2004) Tongay, S.; Durgun, Engin; Çıracı, SalimA systematic first-principles study of atomic strings made by group IV, III-V, and II-VI elements has revealed interesting mechanical, electronic, and transport properties. The double bond structure underlies their unusual properties. We found that linear chain of C, Si, Ge, SiGe, GaAs, InSb, and CdTe are stable and good conductor, although their parent diamond (zincblende) crystals are covalent (polar) semiconductors but, compounds SiC, BN, AlP, and ZnSe are semiconductors. First row elements do not form zigzag structures.Item Open Access Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS(American Chemical Society, 2005) Tunc, I.; Demirok, U. K.; Süzer, Şefik; Correa-Duatre, M. A.; Liz-Marzan, L. M.By recording XPS spectra while applying external voltage stress to the sample rod, we can control the extent of charging developed on core-shell-type gold nanoparticles deposited on a copper substrate, in both steady-state and time-resolved fashions. The charging manifests itself as a shift in the measured binding energy of the corresponding XPS peak. Whereas the bare gold nanoparticles exhibit no measurable binding energy shift in the Au 4f peaks, both the Au 4f and the Si 2p peaks exhibit significant and highly correlated (in time and magnitude) shifts in the case of gold (core)/silica (shell) nanoparticles. Using the shift in the Au 4f peaks, the capacitance of the 15-nm gold (core)/6-nm silica (shell) nanoparticle/nanocapacitor is estimated as 60 aF. It is further estimated that, in the fully charged situation, only 1 in 1000 silicon dioxide units in the shell carries a positive charge during our XPS analysis. Our simple method of controlling the charging, by application of an external voltage stress during XPS analysis, enables us to detect, locate, and quantify the charges developed on surface structures in a completely noncontact fashion. © 2005 American Chemical Society.Item Open Access Conjugated polymer nanoparticles(2010) Tuncel, D.; Demir, Hilmi VolkanConjugated polymer nanoparticles are highly versatile nano-structured materials that can potentially find applications in various areas such as optoelectronics, photonics, bio-imaging, bio-sensing and nanomedicine. Their straightforward synthesis in desired sizes and properties, biocompatibility and non-toxicity make these materials highly attractive for the aforementioned applications. This feature article reviews the recent developments in the synthesis, characterization, properties and application of these exciting nanostructured materials.Item Open Access Controlled optical transition rates in nanodroplets(IEEE, 2000) Özçelik, SerdarThe time-resolved fluorescence measurements of 3,3′-diethyl-5,5′-dichloro-9-phenylthiacarbocyanine (DDPT) in bulk solvents and methanol-in-oil reverse micellar systems is presented which include nano-sized methanol droplets stabilized with anionic surfactant aerosol-OT (AOT) in n-heptane, at room temperature. Relative fluorescence intensities of DDPT increase with a factor of 16 in m/o reverse micelles in comparison to those in bulk methanol. The radiative and nonradiative rate constants decreases in methanol dispersions, indicating that internal motions of DDPT in the droplets is reduced due to strong electrostatic interactions between the positively charged DDPT and the negatively charged sulfonate head-groups of AOT.Item Open Access Correlation effects in a one-dimensional electron gas with short-range interaction(Pergamon Press, 1999) Demirel, E.; Tanatar, BilalWe study the correlation effects in a one-dimensional electron gas with repulsive delta-function interaction. The correlation effects are described by a local-field correction which takes into account the short-range correlations. We find that the ground state energy is in good agreement with the exact result up to intermediate coupling strengths, showing an improvement over the STLS approximation. The compressibility, the static structure factor and the pair-correlation function are also calculated within the present approximation.Item Open Access Design and synthesis of self-assembling peptides for fabrication of functional nanomaterials(2016-12) Khalily, Mohammad ArefSelf-assembling peptides are a class of supramolecular polymers, which exploit noncovalent interactions such as hydrogen bonding, hydrophobic, electrostatic, charge-transfer complex, π-π, and van der Waals interactions to generate well-defined supramolecular nanostructures including nanospheres, nanosheets, nanotubes, and nanofibers. These versatile peptide-based supramolecular nanomaterials have been utilized in variety of applications including catalysis, sensing, light harvesting, optoelectronic, bioelectronic and tissue engineering. In this thesis, use of supramolecular peptide nanofibers formed by specially designed short peptide sequences that can form sheet-like hydrogen bonded structures for controlled synthesis of nanometer scale functional materials were explored. Specifically, n-type and p-type β-sheet forming short peptide sequences were synthesized, which assemble separately into well-ordered nanofibers in aqueous media. These p-type and n-type nanofibers coassemble via hydrogen bonding and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This smart molecular design ensures alternating arrangement of D and A chromophores within n/p-coassembled supramolecular nanowires. Supramolecular n/p- coassembled nanowires were found to be formed by alternating A-D-A unit cells having an association constant of (KA) of 5 x 105 M-1. Moreover, I designed and synthesized β-sheet forming peptide nanofibers to fabricate different metal and metal oxide nanostructures in highly controlled manner using wet chemistry and atomic layer deposition techniques. These hybrid organic-inorganic nanostructures were employed in model Suzuki coupling, alkyne-azide cycloaddition and hydrolysis of ammonia borane reactions.Item Open Access The effect of gadolinium doping on the structural, magnetic and photoluminescence properties of electrospun bismuth ferrite nanofibers(Elsevier Ltd, 2015) George Philip G.; Senthamizhan, A.; Srinivasan Natarajan, T.; Chandrasekaran G.; Annal Therese H.Gadolinium (Gd) doped Bismuth ferrite (BFO) nanofibers (Bi1-xGdxFeO3 (x=0.0, 0.05, 0.10, 0.15 and 0.20)) were synthesized via electrospinning. Scanning Electron Microscope (SEM) analysis showed that the diameter of the nanofibers ranged from 150 to 250 nm. X-Ray Diffraction (XRD) analysis revealed a structural phase transition with varying 'x', the compositions with x≤0.10 have crystal structures with space group R3c, while the compositions with x > 0.10 have crystal structures with space group Pnma. Vibrating Sample Magnetometer (VSM) analysis exhibited the weak ferromagnetic nature of the BFO nanofibers. However an increase in the saturated magnetic moment with increase in Gd dopant concentration was observed. The Photoluminescence (PL) spectra of the Bi:1-x :x nanofibers show enhanced Near Band Emission (NBE) intensity at x=0.10 due to the passivation of oxygen vacancies by Gd doping. © 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.Item Open Access Effect of solvent refractive index on the surface plasmon resonance nanoparticle optical absorption(2007) Ertas, G.; Süzer, ŞefikOptical properties of plasmon coupled silver and gold nanoparticles were studied as a function of the refractive index of the surrounding medium. Our studies confirmed that the effect of changes in the refractive index of the surrounding medium was more difficult to demonstrate from an experimental point of view, because of the very high susceptibility of nanoparticles to aggregate in aqueous and organic solvents. Whereas the position of the absorption bands of triiodide in these solvents shows a clear dependence on medium's refractive index, the surface plasmon band position of silver and gold nanoparticles do not exhibit the same dependence. This is attributed to a non-negligible interaction of these solvents with nanoparticle surfaces. Copyright © 2007 American Scientific Publishers All rights reserved.Item Open Access Elements of nanocrystal high-field carrier transport modeling(Wiley, 2007) Sevik, Cem; Bulutay, CeyhunEmbedded semiconductor nanocrystals (NCs) within wide bandgap oxide materials are being considered for light emission and solar cell applications. One of the fundamental issues is the high-field transport in NCs. This requires the combination of a number of tools: ensemble Monte Carlo carrier transport simulation, ab initio band structure of the bulk oxide, Fermi's golden rule modeling of impact ionization and Auger processes and the pseudopotential-based atomistic description of the confined NC states. These elements are outlined in this brief report.Item Open Access Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes(American Institute of Physics, 2009-04-28) Nizamoglu, S.; Demir, Hilmi VolkanIn this paper, for their use as nanoluminophors on color-conversion white light emitting diodes (LEDs), we present spectrally resolved relative quantum efficiency and relative color (photon) conversion efficiency of CdSe/ZnS core/shell nanocrystal (NC) emitters in the solid-state film. We observe that both the averaged relative quantum efficiency and the averaged relative photon conversion efficiency of these NC solids increase with the increasing photon pump energy. Therefore, the excitation LED platform emitting at shorter wavelengths facilitates such NC luminophor solids to be more efficiently pumped optically. Furthermore, we investigate the spectral time-resolved spectroscopy of NCs in solution and in film with 0.4-2.4 nmol integrated number of NCs in the spectral range of 610-660 nm. We observe that the average lifetime of NCs increases toward longer wavelengths as the number of in-film NCs increases. With the increased amount of NCs, the average lifetime increases even further and the emission of NCs is shifted further toward red. This is attributed to the enhanced nonradiative energy transfer between these NCs due to the inhomogeneous size distribution. Thus, in principle, for fine tuning of the collective color of NCs for color-conversion LEDs, it is important to control the energy transfer by changing the integrated number of NCs.Item Open Access Fabrication of supramolecular n/p-nanowires via coassembly of oppositely charged peptide-chromophore systems in aqueous media(American Chemical Society, 2017-07) Khalily, M. A.; Bakan, G.; Kucukoz, B.; Topal, A. E.; Karatay, A.; Yaglioglu, H. G.; Dana, A.; Güler, Mustafa O.Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack π-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type β-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A-D-A unit cells having an association constant (KA) of 5.18 × 105 M-1. In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics.Item Open Access Facile Synthesis of Three-Dimensional Pt-TiO2Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia–Borane(Wiley, 2016) Khalily, M. A.; Eren, H.; Akbayrak, S.; Susapto, H. H.; Bıyıklı, Necmi; Özkar, S.; Güler, Mustafa O.Three‐dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self‐assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt‐TiO2 nano‐network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom‐level thickness precision. The 3D peptide‐TiO2 nano‐network was further decorated with highly monodisperse Pt nanoparticles by using ozone‐assisted ALD. The 3D TiO2 nano‐network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia–borane, generating three equivalents of H2.Item Open Access Formation of Ge nanocrystals and SiGe in PECVD grown SiNx: Ge thin films(Elsevier, 2006) Dana, A.; Tokay, S.; Aydınlı, AtillaFormation of Ge nanocrystals in SiNx matrices has been studied using plasma enhanced chemical vapor deposition in both as deposited samples as well as in post-vacuum annealed samples. Low temperature and short duration anneals in vacuum resulted in Ge nanocrystals whereas prolonged anneals at higher temperatures resulted in Ge nanocrystals accompanied with SiGe formation at the SiNx/Si interface. Raman Scattering Spectroscopy was extensively used to track the formation of various phonon modes during the diffusion of Ge through SiNx and into the Si substrate.Item Unknown Glucose sensors based on electrospun nanofibers: a review(Springer Verlag, 2016) Senthamizhan, A.; Balusamy, B.; Uyar, TamerThe worldwide increase in the number of people suffering from diabetes has been the driving force for the development of glucose sensors. The recent past has devised various approaches to formulate glucose sensors using various nanostructure materials. This review presents a combined survey of these various approaches, with emphasis on the current progress in the use of electrospun nanofibers and their composites. Outstanding characteristics of electrospun nanofibers, including high surface area, porosity, flexibility, cost effectiveness, and portable nature, make them a good choice for sensor applications. Particularly, their nature of possessing a high surface area makes them the right fit for large immobilization sites, resulting in increased interaction with analytes. Thus, these electrospun nanofiber-based glucose sensors present a number of advantages, including increased life time, which is greatly needed for practical applications. Taking all these facts into consideration, we have highlighted the latest significant developments in the field of glucose sensors across diverse approaches.Item Unknown High optical efficiency of ZnO nanoparticles(IEEE, 2007) Tek, Sümeyra; Demir, Hilmi Volkan; Yucel, D.; Celiker G.We develop optically efficient photocatalytic ZnO nanoparticles that we chemically embed and well disperse into host PVAc thin films and experimentally demonstrate the highest optical efficiency of ∼70% in ZnO nanoparticle films, with increasing optical spectral efficiency as the excitation wavelength is swept from 370 nm to 290 nm. ©2007 Optical Society of America.Item Unknown Kilometer-long ordered nanophotonic devices by preform-to-fiber fabrication(Institute of Electrical and Electronics Engineers, 2006) Bayındır, Mehmet; Abouraddy, A.F.; Shapira O.; Viens J.; Saygin-Hinczewski, D.; Sorin, F.; Arnold, J.; Joannopoulos, J. D.; Fink, Y.A preform-to-flber approach to the fabrication of functional fiber-based devices by thermal drawing in the viscous state is presented. A macroscopic preform rod containing metallic, semiconducting, and insulating constituents in a variety of geometries and close contact produces kilometer-long novel nanostructured fibers and fiber devices. We first review the material selection criteria and then describe metal-semiconductor-metal photosensitive and thermally sensitive fibers. These flexible, lightweight, and low-cost functional fibers may pave the way for new types of fiber sensors, such as thermal sensing fabrics, artificial skin, and large-area optoelectronic screens. Next, the preform-to-fiber approach is used to fabricate spectrally tunable photodetectors that integrate a photosensitive core and a nanostructured photonic crystal structure containing a resonant cavity. An integrated, self-monitoring optical-transmission waveguide is then described that incorporates optical transport and thermal monitoring. This fiber allows one to predict power-transmission failure, which is of paramount importance if high-power optical transmission fines are to be operated safely and reliably in medical, industrial and defense applications. A hybrid electron-photon fiber consisting of a hollow core (for optical transport by means of a photonic bandgap) and metallic wires (for electron transport) is described that may be used for transporting atoms and molecules by radiation pressure. Finally, a solid microstructured fiber fabricated with a highly nonlinear chalcogenide glass enables the generation of supercontinuum light at near-infrared wavelengths.Item Unknown Linear measurements of nanomechanical phenomena using small-amplitude AFM(Materials Research Society, 2004) Hoffmann, P. M.; Patil, S.; Matei, G.; Tanülkü, A.; Grimble, R.; Özer, Ö.; Jeffery, S.; Oral, Ahmet; Pethica, J.Dynamic Atomic Force Microscopy (AFM) is typically performed at amplitudes that are quite large compared to the measured interaction range. This complicates the data interpretation as measurements become highly non-linear. A new dynamic AFM technique in which ultra-small amplitudes are used (as low as 0.15 Angstrom) is able to linearize measurements of nanomechanical phenomena in ultra-high vacuum (UHV) and in liquids. Using this new technique we have measured single atom bonding, atomic-scale dissipation and molecular ordering in liquid layers, including water.Item Unknown Magnetic and electric Aharonov-Bohm effects in nanostructures(Elsevier BV, 1996) Kulik, I. O.The paper reviews and extends the magnetic Aharonov-Bohm effect (persistent current, resistance oscillation) in normal-metal rings including spin-independent and spin-dependent hopping, Zeeman splitting, magnetic textures and wheels, ring rotation and weak coupling, as well as the electric Aharonov-Bohm effect ("persistent charge") in small metallic contacts. We then discuss dynamical screening effects in a surface charge in a metal. Energy dissipation due to motion of the surface charge has a singularity at the velocity of motion equal to the phonon propagation velocity. Surface image of an external charge inside the metal is strongly distorted at the velocity of motion larger than the Fermi velocity.
- «
- 1 (current)
- 2
- 3
- »