Browsing by Subject "Nanoscale electronics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Generation of ultra-small InN nanocrystals by pulsed laser ablation of suspension in organic solution(Springer Verlag, 2017-03) Kurşungöz, C.; U. Şimşek, E.; Tuzaklı, R.; Ortaç, B.Nanostructures of InN have been extensively investigated since nano-size provides a number of advantages allowing applications in nanoscale electronic and optoelectronic devices. It is quite important to obtain pure InN nanocrystals (InN-NCs) to reveal the characteristic features, which gain interest in the literature. Here, we proposed a new approach for the synthesis of ultra-small hexagonal InN-NCs by using suspension of micron-sized InN powder in ethanol with pulsed laser ablation method. The liquid environment, laser energy and ablation time were optimized and a post-synthesis treatment, centrifugation, was performed to achieve InN-NCs with the smallest size. Besides, the micron-sized InN powder suspension, as a starting material, enabled us to obtain InN-NCs having diameters smaller than 5 nm. We also presented a detailed characterization of InN-NCs and demonstrated that the formation mechanism mainly depends on the fragmentation due to laser irradiation of the suspension.Item Open Access Self-assembled one-dimensional soft nanostructures(Royal Society of Chemistry, 2010) Toksoz, S.; Acar, H.; Güler, Mustafa O.The self-assembly process is a bottom-up approach and is the spontaneous aggregation of many different subunits into well-defined functional structures with varying properties. Self-assembly is an attractive method to develop one-dimensional nanostructures and is controlled by many factors including temperature, pH and electrolyte addition. Novel self-assembled one-dimensional nanostructures are finding applications in regenerative medicine and electronics as well as in fabrication of nanoscale electronic, mechanic, magnetic, optical, and combinatorial devices. Their utility comes from their high ratio of surface area to volume, and their quantum-confinement effects. This paper reviews one-dimensional self-assembled organic nanostructures classified according to the noncovalent forces acting on their formation.