Browsing by Subject "Nanomaterial"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Atomic layer deposition of metal oxides on self-assembled peptide nanofiber templates for fabrication of functional nanomaterials(2016-08) Eren, HamitThere are mainly two basic approaches in nanostructured materials synthesis. The rst one is the top-down approach and requires material removal from a bulk substrate material by chemical, physical, mechanical or thermal means; acid etching, focused ion milling, and laser ablation are among these top-down synthesis techniques. It is a straightforward { albeit poor in material architecture control { method that has established its niche in today's high-volume CMOS transistor fabrication technology which already produces single-digit nanometerscale device features. On the other hand, bottom-up approach exploits ne-tuned materials assembly. Bottom-up approach is realized via direct self-assembly of target nanostructures or material growth on synthetic or natural nanotemplates. Bottom-up nanostructured materials synthesis o ers considerably wider spectrum of achievable material architectures and structural hierarchies. Synthesis of nanostructured materials on self-assembled soft nanotemplates is of signi cant importance because many biological systems utilize this very similar approach to construct complex biomolecule-templated materials. Peptide amphiphile (PA) molecules with their intrinsic property to self-assemble into nanostructures such as bers, present a versatile tool in inorganic material templating. PAs were used as soft templates in several studies for fabrication of nanoscale inorganic materials. Most of these studies are focused on in-solution material deposition on the surface of a template. Even though this approach allows successful material deposition, precise control over material thickness, uniformity, and high conformality is di cult to achieve in a repeatable manner. In order to circumvent this challenge, in this thesis, atomic layer deposition (ALD) technique was deployed for conformal coating of PA nanonetwork templates. ALD involves low-temperature iterative vapor-phase material deposition in a self-limiting fashion. In each deposition half-cycle, Ti- or Zn- containing volatile metalorganic complexes form a self-limiting uniform monolayer that consequently reacts with water vapor (H2O) as an oxygen precursor in the subsequent process half-cycle. As each half-cycle is separated with purge cycles, no gas-phase reactions occurs and material growth proceeds only with surface chemical ligand-exchange reactions. ALD approach allowed obtaining TiO2 or ZnO nanonetworks with tunable wall thickness and ultimate conformality. Obtained metal oxide-peptide hybrid materials were further treated di erently. In the case of TiO2, organic template was removed upon calcination at 450 C, a temperature at which amorphous titania transforms to anatase form. ZnO-peptide hybrid materials on the other hand, did not undergo any thermal processing, as ZnO already grows in wurtzite crystalline form during ALD process. In principle, nanostructured anatase TiO2 and wurtzite ZnO are wide bandgap semiconductors which can be used as photoanode materials. Nanostructured anodic materials still attract a great interest as the matter at nanoscale regimes can provide considerable enhancement in charge carrier separation, charge carrier transport, and active surface area. Here we demonstrate the fabrication of nanostructured TiO2 and ZnO on self-assembled soft templates. As a proof of principle, we utilized semiconducting TiO2 and ZnO in assembly of dye sensitized solar cells and studied material thickness e ect on device performance parameters such as open circuit voltage (Voc), short circuit current (Jsc), and ll factor. Three sets of nanostructured photoanodes with di erent TiO2 deposition cycles (100, 150, and 200) and ZnO deposition cycles (100, 125 and 150) were fabricated. TiO2 and ZnO nanonetworks in photoanodes form a system of interconnected nanotubes, which can facilitate electron transfer. Moreover, these networks are porous high-surface area materials and they can drastically increase number of sensitizer molecules attached to the semiconductor material surface.Item Open Access Bioactive supramolecular peptide nanofibers for regenerative medicine(Wiley, 2014) Arslan, Elif; Garip, I. Ceren; Gulseren, Gulcihan; Tekinay, Ayse B.; Güler, Mustafa O.Recent advances in understanding of cell-matrix interactions and the role of the extracellular matrix (ECM) in regulation of cellular behavior have created new perspectives for regenerative medicine. Supramolecular peptide nanofiber systems have been used as synthetic scaffolds in regenerative medicine applications due to their tailorable properties and ability to mimic ECM proteins. Through designed bioactive epitopes, peptide nanofiber systems provide biomolecular recognition sites that can trigger specific interactions with cell surface receptors. The present Review covers structural and biochemical properties of the self-assembled peptide nanofibers for tissue regeneration, and highlights studies that investigate the ability of ECM mimetic peptides to alter cellular behavior including cell adhesion, proliferation, and/or differentiation.Item Open Access Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin(2012-08) Kayaci, F.; Uyar, TamerWe produced functional nanowebs, containing vanillin, having prolonged shelf-life and high temperature stability facilitated by cyclodextrin (CD) inclusion complexation. Polyvinyl alcohol (PVA) nanowebs incorporating vanillin/cyclodextrin inclusion complex (vanillin/CD-IC) were produced via electrospinning technique. The vanillin/CD-IC was prepared with three types of CDs; α-CD, β-CD and γ-CD to find out the most favourable CD type for the stabilization of vanillin. PVA/vanillin/CD-IC nanofibres, having fibre diameters around ∼200 nm, were successfully electrospun from aqueous mixture of PVA and vanillin/CD-IC. Our results indicated that vanillin with enhanced durability and high temperature stability was achieved for PVA/vanillin/CD-IC nanowebs due to complexation of vanillin with CD, whereas the PVA nanofibres without CD-IC could not effectively preserve the vanillin. Additionally, we observed that PVA/vanillin/γ-CD-IC nanoweb was more effective for the stabilization and slow release of vanillin suggesting that the strength of interaction between vanillin and the γ-CD cavity is stronger when compared to α-CD and β-CD. © 2012 Elsevier Ltd. All rights reserved.Item Open Access Gemcitabine integrated nano-prodrug carrier system(American Chemical Society, 2017) Hamsici, S.; Ekiz, M. S.; Ciftci, G. C.; Tekinay, A. B.; Güler, Mustafa O.Peptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc-AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner.Item Open Access Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film(Springer, 2012-07-27) Alkis, S.; Alevli, M.; Burzhuev, S.; Vural, H. A.; Okyay, Ali Kemal; Ortaç, B.We report the synthesis of colloidal InN nanocrystals (InN-NCs) in organic solution through nanosecond pulsed laser ablation of high pressure chemical vapor deposition-grown InN thin film on GaN/sapphire template substrate. The size, the structural, the optical, and the chemical characteristics of InN-NCs demonstrate that the colloidal InN crystalline nanostructures in ethanol are synthesized with spherical shape within 5.9-25.3, 5.45-34.8, 3.24-36 nm particle-size distributions, increasing the pulse energy value. The colloidal InN-NCs solutions present strong absorption edge tailoring from NIR region to UV region.Item Open Access Glycosaminoglycan-Mimetic Signals Direct the Osteo/Chondrogenic Differentiation of Mesenchymal Stem Cells in a Three-Dimensional Peptide Nanofiber Extracellular Matrix Mimetic Environment(American Chemical Society, 2016-02) Arslan, E.; Güler, Mustafa O.; Tekinay, A. B.Recent efforts in bioactive scaffold development focus strongly on the elucidation of complex cellular responses through the use of synthetic systems. Designing synthetic extracellular matrix (ECM) materials must be based on understanding of cellular behaviors upon interaction with natural and artificial scaffolds. Hence, due to their ability to mimic both the biochemical and mechanical properties of the native tissue environment, supramolecular assemblies of bioactive peptide nanostructures are especially promising for development of bioactive ECM-mimetic scaffolds. In this study, we used glycosaminoglycan (GAG) mimetic peptide nanofiber gel as a three-dimensional (3D) platform to investigate how cell lineage commitment is altered by external factors. We observed that amount of fetal bovine serum (FBS) presented in the cell media had synergistic effects on the ability of GAG-mimetic nanofiber gel to mediate the differentiation of mesenchymal stem cells into osteogenic and chondrogenic lineages. In particular, lower FBS concentration in the culture medium was observed to enhance osteogenic differentiation while higher amount FBS promotes chondrogenic differentiation in tandem with the effects of the GAG-mimetic 3D peptide nanofiber network, even in the absence of externally administered growth factors. We therefore demonstrate that mesenchymal stem cell differentiation can be specifically controlled by the combined influence of growth medium components and a 3D peptide nanofiber environment.Item Open Access A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores(Optical Society of America, 2009-12-24) Erdem, T.; Nizamoglu, S.; Sun, X. W.; Demir, Hilmi VolkanWe report a photometric study of ultra-efficient light emitting diodes (LEDs) that exhibit superior color rendering index (CRI) and luminous efficacy of optical radiation (LER) using semiconductor quantum dot nanocrystal (NC) luminophores. Over 200 million systematically varied NC-LED designs have been simulated to understand feasible performance in terms of CRI vs. LER. We evaluated the effects of design parameters including peak emission wavelength, full-width-at-half-maximum, and relative amplitudes of each NC color component on LED performance. Warm-white LEDs with CRI >90 and LER >380 lm/W at a correlated color temperature of 3000 K are shown to be achieved using nanocrystal luminophores. (C) 2009 Optical Society of AmericaItem Open Access Supramolecular chirality in self-assembled peptide amphiphile nanostructures(Royal Society of Chemistry, 2015) Garifullin, R.; Güler, Mustafa O.Induced supramolecular chirality was investigated in the self-assembled peptide amphiphile (PA) nanosystems. Having shown that peptide chirality can be transferred to the covalently-attached achiral pyrene moiety upon PA self-assembly, the chiral information is transferred to molecular pyrene via weak noncovalent interactions. In the first design of a supramolecular chiral system, the chromophore was covalently attached to a peptide sequence (VVAGH) via an ε-aminohexanoic acid spacer. Covalent attachment yielded a PA molecule self-assembling into nanofibers. In the second design, the chromophore was encapsulated within the hydrophobic core of self-assembled nanofibers of another PA consisting of the same peptide sequence attached to lauric acid. We observed that supramolecular chirality was induced in the chromophore by PA assembly into chiral nanostructures, whether it was covalently attached, or noncovalently bound.Item Open Access Synthesis of blue-shifted luminescent colloidal GaN nanocrystals through femtosecond pulsed laser ablation in organic solution(Springer Netherlands, 2016-05) Demirel, A.; Öztaş T.; Kurşungöz, C.; Yılmaz, İ.; Ortaç, B.We demonstrate the synthesis of GaN nanocrystals (NCs) with the sizes of less than the doubled exciton Bohr radius leading quantum confinement effects via a single-step technique. The generation of colloidal GaN nanoparticles (NPs) in organic solution through nanosecond (ns) and femtosecond (fs) pulsed laser ablation (PLA) of GaN powder was carried out. Ns PLA in ethanol and polymer matrix resulted in amorphous GaN-NPs with the size distribution of 12.4 ± 7.0 and 6.4 ± 2.3 nm, respectively, whereas fs PLA in ethanol produced colloidal GaN-NCs with spherical shape within 4.2 ± 1.9 nm particle size distribution. XRD and selected area electron diffraction analysis of the product via fs PLA revealed that GaN-NCs are in wurtzite structure. Moreover, X-ray photoelectron spectroscopy measurements also confirm the presence of GaN nanomaterials. The colloidal GaN-NCs solution exhibits strong blue shift in the absorption spectrum compared to that of the GaN-NPs via ns PLA in ethanol. Furthermore, the photoluminescence emission behavior of fs PLA-generated GaN-NCs in the 295–400 nm wavelength range is observed with a peak position located at 305 nm showing a strong blue shift with respect to the bulk GaN.Item Open Access Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic-organic interfaces and electrical conductivity(American Chemical Society, 2017) Seker U.O.S.; Chen, A. Y.; Citorik, R. J.; Lu, T. K.Amyloids are highly ordered, hierarchal protein nanoassemblies. Functional amyloids in bacterial biofilms, such as Escherichia coli curli fibers, are formed by the polymerization of monomeric proteins secreted into the extracellular space. Curli is synthesized by living cells, is primarily composed of the major curlin subunit CsgA, and forms biological nanofibers with high aspect ratios. Here, we explore the application of curli fibers for nanotechnology by engineering curli to mediate tunable biological interfaces with inorganic materials and to controllably form gold nanoparticles and gold nanowires. Specifically, we used cell-synthesized curli fibers as templates for nucleating and growing gold nanoparticles and showed that nanoparticle size could be modulated as a function of curli fiber gold-binding affinity. Furthermore, we demonstrated that gold nanoparticles can be preseeded onto curli fibers and followed by gold enhancement to form nanowires. Using these two approaches, we created artificial cellular systems that integrate inorganic-organic materials to achieve tunable electrical conductivity. We envision that cell-synthesized amyloid nanofibers will be useful for interfacing abiotic and biotic systems to create living functional materials.