Browsing by Subject "Microstrip patch antenna"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Comparative study of acceleration techniques for integrals and series in electromagnetic problems(IEEE, 1995-06) Kinayman, Noyan; Aksun, M. I.Most of the electromagnetic problems can be reduced down to either integrating oscillatory integrals or summing up complex series. However, limits of the integrals and the series usually extend to infinity. In addition, they may be slowly convergent. Therefore, numerically efficient techniques for evaluating the integrals or for calculating the sum of infinite series have to be used to make the numerical solution feasible and attractive. In the literature, there are a wide range of applications of such methods to various EM problems. In this paper, our main aim is to critically examine the popular series transformation (acceleration) methods which are used in electromagnetic problems and compare them by numerical examples.Item Open Access A triple-band antenna array for next-generation wireless and satellite-based applications(Cambridge University Press, 2016) Razzaqi, A. A.; Khawaja, B. A.; Ramzan M.; Zafar, M. J.; Nasir, S. A.; Mustaqim, M.; Tarar, M. A.; Tauqeer, T.In this paper, a triple-band 1 × 2 and 1 × 4 microstrip patch antenna array for next-generation wireless and satellite-based applications are presented. The targeted frequency bands are 3.6, 5.2 and 6.7 GHz, respectively. Simple design procedures and optimization techniques are discussed to achieve better antenna performance. The antenna is designed and simulated using Agilent ADS Momentum using FR4 substrate (r = 4.2 and h = 1.66 mm). The main patch of the antenna is designed for 3.6 GHz operation. A hybrid feed technique is used for antenna arrays with quarter-wave transformer-based network to match the impedance from the feed-point to the antenna to 50. The antenna is optimized to resonate at triple-bands by using two symmetrical slits. The single-element triple-band antenna is fabricated and characterized, and a comparison between the simulated and measured antenna is presented. The achieved simulated impedance bandwidths/gains for the 1 × 2 array are 1.67%/7.75, 1.06%/7.7, and 1.65%/9.4 dBi and for 1 × 4 array are 1.67%/10.2, 1.45%/8.2, and 1.05%/10 dBi for 3.6, 5.2, and 6.7 GHz bands, respectively, which are very practical. These antenna arrays can also be used for advanced antenna beam-steering systems. Copyright © Cambridge University Press and the European Microwave Association 2014.