Browsing by Subject "Magnetic couplings"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Non-Markovian decoherence: A critique of the two-level approximation(Elsevier B.V., 2006) Hakioǧlu T.; Savran, K.; Sevinçli, H.; Meşe, E.The environmental decoherence in multilevelled systems in the context of two-level approximation is examined. It is found that the environmental temperature plays a minor role in the magnitudes of the decoherence rates whereas, the system-environment coupling and the environmental energy spectrum are dominant. Particularly, the latter is important in zero temperature quantum fluctuations and/or the nonequilibrium noise sources due to the large range of energies present in the environmental modes. Decoherence is found to be dominated by the short time nonresonant processes and this observation severely questions the use of the two-levelled models on decoherence.Item Open Access Size-dependent alternation of magnetoresistive properties in atomic chains(American Institute of Physics, 2006) Durgun, Engin; Senger, R. T.; Mehrez, H.; Sevinçli, H.; Çıracı, SalimSpin-polarized electronic and transport properties of carbon atomic chains are investigated when they are capped with magnetic transition-metal (TM) atoms like Cr or Co. The magnetic ground state of the TM-C n-TM chains alternates between the ferromagnetic (F) and antiferromagnetic (AF) spin configurations as a function of n. In view of the nanoscale spintronic device applications the desirable AF state is obtained for only even-n chains with Cr; conversely only odd-n chains with Co have AF ground states. When connected to appropriate metallic electrodes these atomic chains display a strong spin-valve effect. Analysis of structural, electronic, and magnetic properties of these atomic chains, as well as the indirect exchange coupling of the TM atoms through non-magnetic carbon atoms are presented.