Browsing by Subject "Magnetic anomalies"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Autonomous multiple teams establishment for mobile sensor networks by SVMs within a potential field(2012) Nazlibilek, S.In this work, a new method and algorithm for autonomous teams establishment with mobile sensor network units by SVMs based on task allocations within a potential field is proposed. The sensor network deployed into the environment using the algorithm is composed of robot units with sensing capability of magnetic anomaly of the earth. A new algorithm is developed for task assignment. It is based on the optimization of weights between robots and tasks. The weights are composed of skill ratings of the robots and priorities of the tasks. Multiple teams of mobile units are established in a local area based on these mission vectors. A mission vector is the genetic and gained background information of the mobile units. The genetic background is the inherent structure of their knowledge base in a vector form but it can be dynamically updated with the information gained later on by experience. The mission is performed in a magnetic anomaly environment. The initial values of the mission vectors are loaded by the task assignment algorithm. The mission vectors are updated at the beginning of each sampling period of the motion. Then the teams of robots are created by the support vector machines. A linear optimal hyperplane is calculated by the use of SVM algorithm during training period. Then the robots are classified as teams by use of SVM mechanism embedded in the robots. The support vector machines are implemented in the robots by ordinary op-amps and basic logical gates. Team establishment is tested by simulations and a practical test-bed. Both simulations and the actual operation of the system prove that the system functions satisfactorily. © 2012 Elsevier Ltd. All rights reserved.Item Open Access Autonomous navigation of robotic units in mobile sensor network(2012) Nazlibilek, S.This work is motivated by the problem of detecting buried anti-tank and anti-personnel mines in roads or some border regions. The problem is tried to be solved by use of small mobile robotic sensors and their some abilities such as measurement of local fields, navigation around a region, communications with each other, and constituting team within a mission area. The aim of this work is to investigate the navigation problem for the team behavior of mobile sensors within a potential field available in a small-scale environment such as an indoor area or an outdoor region. The mobile sensor network here is a collection of robotic units with sensing capability of earth magnetic field anomalies. A new kind of positioning system is needed for their collective behavior. In this work, a new method of navigation is proposed as a local positioning system. It utilizes ultrasound and radio frequency information to determine the coordinates of the points inside the operational area. The method proposed here is compared with the ultra wideband ranging ping-pong method that is used widely in recent applications. A time division multiple access method is used for the communications among the mobile sensors. The results on the positioning methods together with several simulations and experimental works are given. It is shown that the positioning method utilizing ultrasound-radio frequency method can give fairly good results. © 2012 Elsevier Ltd. All rights reserved.Item Open Access Identification of materials with magnetic characteristics by neural networks(2012) Nazlibilek, S.; Ege, Y.; Kalender O.; Sensoy, M.G.; Karacor, D.; Sazli, M.H.In industry, there is a need for remote sensing and autonomous method for the identification of the ferromagnetic materials used. The system is desired to have the characteristics of improved accuracy and low power consumption. It must also autonomous and fast enough for the decision. In this work, the details of inaccurate and low power remote sensing mechanism and autonomous identification system are given. The remote sensing mechanism utilizes KMZ51 anisotropic magneto-resistive sensor with high sensitivity and low power consumption. The images and most appropriate mathematical curves and formulas for the magnetic anomalies created by the magnetic materials are obtained by 2-D motion of the sensor over the material. The contribution of the paper is the use of the images obtained by the measurement of the perpendicular component of the Earth magnetic field that is a new method for the purpose of identification of an unknown magnetic material. The identification system is based on two kinds of neural network structures. The MultiLayer Perceptron (MLP) and the Radial Basis Function (RBF) network types are used for training of the neural networks. In this work, 23 different materials such as SAE/AISI 1030, 1035, 1040, 1060, 4140 and 8260 are identified. Besides the ferromagnetic materials, three objects are also successfully identified. Two of them are anti-personal and anti-tank mines and one is an empty can box. It is shown that the identification system can also be used as a buried mine identification system. The neural networks are trained with images which are originally obtained by the remote sensing system and the system is operated by images with added Gaussian white noises. © 2012 Elsevier Ltd. All rights reserved.Item Open Access Numerical analysis for remote identification of materials with magnetic characteristics(2011) Ege, Y.; Şensoy, M.G.; Kalender O.; Nazlibilek, S.There is a variety of methods used for remote sensing of objects such as acoustic, ground penetration radar detection, electromagnetic induction spectroscopy, infrared imaging, thermal neutron activation, core four-pole resonance, neutron backscattering, X-ray backscattering, and magnetic anomaly. The method that has to be used can be determined by the type of material, geographical location (underground or water), etc. Recent studies have been concentrated on the improvement of the criteria such as sensing distances, accuracy, and power consumption. In this paper, anomalies created by materials with magnetic characteristics at the perpendicular component of the Earth magnetic field have been detected by using a KMZ51 anisotropic magnetoresistive sensor with high sensitivity and low power consumption, and also, the effects of physical properties of materials on magnetic anomaly have been investigated. By analyzing the graphics obtained by 2-D motion of the sensor over the material, the most appropriate mathematical curves and formulas have been determined. Based on the physical properties of the magnetic material, the variations of the variables constituting the formulas of the curves have been analyzed. The contribution of this paper is the use of the results of these analyses for the purpose of identification of an unknown magnetic material. This is a new approach for the detection and determination of materials with magnetic characteristics by sensing the variation at the perpendicular component of the Earth magnetic field. The identification process has been explained in detail in this paper. © 2011 IEEE.