Browsing by Subject "Legal NLP"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A transformer-based prior legal case retrieval method(IEEE - Institute of Electrical and Electronics Engineers, 2023-08-28) Öztürk, Ceyhun Emre; Özçelik, Şemsi Barış; Koç, AykutIn this work, BERTurk-Legal, a transformer-based language model, is introduced to retrieve prior legal cases. BERTurk-Legal is pre-trained on a dataset from the Turkish legal domain. This dataset does not contain any labels related to the prior court case retrieval task. Masked language modeling is used to train BERTurk-Legal in a self-supervised manner. With zero-shot classification, BERTurk-Legal provides state-of-the-art results on the dataset consisting of legal cases of the Court of Cassation of Turkey. The results of the experiments show the necessity of developing language models specific to the Turkish law domain.Item Open Access Feedforward neural network based case prediction in Turkish higher courts(2022-08-29) Aras, Arda C.; Öztürk, Ceyhun E.; Koç, AykutThanks to natural language processing (NLP) methods, legal texts can be processed by computers and decision prediction applications can be developed in the legal tech field. Increase in the available data sources in the Turkish legal system provides an opportunity to develop NLP applications as well. In order to develop these applications, the necessary corpora and datasets should be created. In this work, legal case texts from the Turkish Higher Courts that are open to public access and free from personal data are used to develop decision prediction methods. Feedforward neural networks (FFNN) are deployed using word embeddings and the features extracted from texts via the Principal Component Analysis (PCA) algorithm. %85.4 Macro F1 score level is achieved.