Browsing by Subject "Irradiation"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Open Access CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving(Institute of Physics Publishing, 2016-10) Serhatlioglu, M.; Ortaç, B.; Elbuken, C.; Bıyıklı, Necmi; Solmaz, M. E.In this study, we investigate the effects of CO2 laser polishing on microscopic structures fabricated by femtosecond laser assisted carving (FLAC). FLAC is the peripheral laser irradiation of 2.5D structures suitable for low repetition rate lasers and is first used to define the microwell structures in fused silica followed by chemical etching. Subsequently, the bottom surface of patterned microwells is irradiated with a pulsed CO2 laser. The surfaces were characterized using an atomic force microscope (AFM) and scanning electron microscope (SEM) in terms of roughness and high quality optical imaging before and after the CO2 laser treatment. The AFM measurements show that the surface roughness improves more than threefold after CO2 laser polishing, which promises good channel quality for applications that require optical imaging. In order to demonstrate the ability of this method to produce low surface roughness systems, we have fabricated a microfluidic channel. The channel is filled with polystyrene bead-laden fluid and imaged with transmission mode microscopy. The high quality optical images prove CO2 laser processing as a practical method to reduce the surface roughness of microfluidic channels fabricated by femtosecond laser irradiation. We further compared the traditional and laser-based glass micromachining approaches, which includes FLAC followed by the CO2 polishing technique.Item Open Access Formation of silicon nanocrystals in sapphire by ion implantation and the origin of visible photoluminescence(AIP Publishing, 2006) Yerli, S.; Serincan, U.; Dogan, I.; Tokay, S.; Genisel, M.; Aydınlı, Atilla; Turan, R.Silicon nanocrystals, average sizes ranging between 3 and 7 nm, were formed in sapphire matrix by ion implantation and subsequent annealing. Evolution of the nanocrystals was detected by Raman spectroscopy and x-ray diffraction (XRD). Raman spectra display that clusters in the matrix start to form nanocrystalline structures at annealing temperatures as low as 800 degrees C in samples with high dose Si implantation. The onset temperature of crystallization increases with decreasing dose. Raman spectroscopy and XRD reveal gradual transformation of Si clusters into crystalline form. Visible photoluminescence band appears following implantation and its intensity increases with subsequent annealing process. While the center of the peak does not shift, the intensity of the peak decreases with increasing dose. The origin of the observed photoluminescence is discussed in terms of radiation induced defects in the sapphire matrix.Item Open Access Graphene nanoreactors : photoreduction of prussian blue in aqueous solution(American Chemical Society, 2017) Nappini, Silvia; Matruglio, Alessia; Naumenko, Denys; Dal Zilio, Simone; Lazzarino, Marco; De Groot, Frank M.F.; Kocabaş, Coşkun; Balcı, Osman; Magnano, ElenaPrussian dyes are characterized by interesting photomagnetic properties due to the photoinduced electron transfer involved in the Fe oxidation and spin state changes. Ferromagnetic Prussian blue (PB) in contact with titanium dioxide (TiO2) can be reduced to paramagnetic Prussian white (PW) upon UV band gap excitation of TiO2. This process is promoted by the presence of a hole scavenger, such as water, fundamental to ensure the overall charge balance and the continuity of the process. In order to clarify the photoinduced reduction mechanism and the role of water, an innovative system of graphene nanobubbles (GNBs) filled with a PB aqueous solution was developed, enabling the application of electron spectroscopies to the liquid phase, up to now limited by the vacuum required to overcome the short electron inelastic mean free path in dense medium. In this work GNBs formed on the photocatalytic substrate are able to act as "nanoreactors", and they can control and take part in the reaction. The evolution of Fe L2,3 edge X-ray absorption spectra measured in total electron yield through the graphene membrane revealed the electron reduction from PB (FeIII-CN-FeII) to PW (FeII-CN-FeII) upon UV irradiation, shedding light on the photoinduced electron transfer mechanism in liquid phase. The results, confirmed also by Raman spectroscopy, unequivocally demonstrate that the reaction occurs preferentially in aqueous solution, where water acts as hole scavenger.Item Open Access Near-IR-triggered, remote-controlled release of metal ions: A novel strategy for caged ions(Wiley-VCH Verlag, 2014) Atilgan, A.; Eçik, E. T.; Guliyev, R.; Uyar, T. B.; Erbas-Cakmak, S.; Akkaya, E. U.A ligand incorporating a dithioethenyl moiety is cleaved into fragments which have a lower metal-ion affinity upon irradiation with low-energy red/near-IR light. The cleavage is a result of singlet oxygen generation which occurs on excitation of the photosensitizer modules. The method has many tunable factors that could make it a satisfactory caging strategy for metal ions.Item Open Access A new method of probing the phonon mechanism in superconductors, including MgB2(2001) Park, M.-A.; Savran, K.; Kim, Y.-J.Weak localization has a strong influence on both the normal and superconducting properties of metals. In particular, since weak localization leads to the decoupling of electrons and phonons, the temperature dependence of resistance (i.e. λtr) decreases with increasing disorder, as manifested by Mooij's empirical rule. In addition, Testardi's universal correlation of Tc (i.e. λ) and the resistance ratio (i.e. λtr) follows. This understanding provides a new means to probe the phonon mechanism in superconductors, including MgB2. The merits of this method are its applicability to any superconductor and its reliability because the McMillan's electron-phonon coupling constant λ and λtr change in a broad range, from finite values to zero, due to weak localization. Karkin et al's preliminary data of irradiated MgB2 show the Testardi correlation, indicating that the dominant pairing mechanism in MgB2 is a phonon-mediated interaction.Item Open Access Rapid and alternative fabrication method for microfluidic paper based analytical devices(Elsevier B.V., 2016) Malekghasemi, S.; Kahveci, E.; Duman, M.A major application of microfluidic paper-based analytical devices (µPADs) includes the field of point-of-care (POC) diagnostics. It is important for POC diagnostics to possess properties such as ease-of-use and low cost. However, µPADs need multiple instruments and fabrication steps. In this study, two different chemicals (Hexamethyldisilazane and Tetra-ethylorthosilicate) were used, and three different methods (heating, plasma treatment, and microwave irradiation) were compared to develop µPADs. Additionally, an inkjet-printing technique was used for generating a hydrophilic channel and printing certain chemical agents on different regions of a modified filter paper. A rapid and effective fabrication method to develop µPADs within 10 min was introduced using an inkjet-printing technique in conjunction with a microwave irradiation method. Environmental scanning electron microscope (ESEM) and x-ray photoelectron spectroscopy (XPS) were used for morphology characterization and determining the surface chemical compositions of the modified filter paper, respectively. Contact angle measurements were used to fulfill the hydrophobicity of the treated filter paper. The highest contact angle value (141°±1) was obtained using the microwave irradiation method over a period of 7 min, when the filter paper was modified by TEOS. Furthermore, by using this method, the XPS results of TEOS-modified filter paper revealed Si2p (23%) and Si-O bounds (81.55%) indicating the presence of Si–O–Si bridges and Si(OEt) groups, respectively. The ESEM results revealed changes in the porous structures of the papers and decreases in the pore sizes. Washburn assay measurements tested the efficiency of the generated hydrophilic channels in which similar water penetration rates were observed in the TEOS-modified filter paper and unmodified (plain) filter paper. The validation of the developed µPADs was performed by utilizing the rapid urease test as a model test system. The detection limit of the developed µPADs was measured as 1 unit ml−1 urease enzyme in detection zones within a period of 3 min. The study findings suggested that a combination of microwave irradiation with inkjet-printing technique could improve the fabrication method of µPADs, enabling faster production of µPADs that are easy to use and cost-effective with long shelf lives.Item Open Access Rational synthesis of Na and S co-catalyst TiO2-based nanofibers: presence of surface-layered TiS3 shell grains and sulfur-induced defects for efficient visible-light driven photocatalysis(Royal Society of Chemistry, 2017) Ranjith, K. S.; Uyar, TamerSurface-modified TiO2 nanofibers (NFs) with tunable visible-light photoactive catalysts were synthesised through electrospinning, followed by a sulfidation process. The utilization of sodium-based sulfidation precursors effectively led to the diffusion and integration of sulfur impurities into TiO2, modifying its band function. The optical band function of the sulfur-modified TiO2 NFs can be easily manipulated from 3.17 eV to 2.28 eV through surface modification, due to the creation of oxygen vacancies through the sulfidation process. Sulfidating TiO2 NFs introduces Ti-S-based nanograins and oxygen vacancies on the surface that favor the TiO2-TiS3 core-shell interface. These defect states extend the photocatalytic activity of the TiO2 NFs under visible irradiation and improve effective carrier separation and the production of reactive oxygen species. The surface oxygen vacancies and the Ti-S-based surface nanograins serve as charge traps and act as adsorption sites, improving the carrier mobility and avoiding charge recombination. The diffused S-modified TiO2 NFs exhibit a degradation rate of 0.0365 cm-1 for RhB dye solution, which is 4.8 times higher than that of pristine TiO2 NFs under visible irradiation. By benefiting from the sulfur states and oxygen vacancies, with a narrowed band gap of 2.3 eV, these nanofibers serve as suitable localized states for effective carrier separation.Item Open Access Template-directed photochemical homodimerization and heterodimerization reactions of cinnamic acids(American Chemical Society, 2021-09-01) Yağcı, Bilge Banu; Zorlu, Y.; Türkmen, Yunus EmreWe developed a general method for the selective photochemical homo- and heterodimerization of cinnamic acid derivatives with the use of commercially available 1,8-dihydroxynaphthalene as a covalent template. A variety of symmetrical and unsymmetrical β-truxinic acids were obtained in high yields and as single diastereomers. The use of a template not only provides the alignment of the two olefins with suitable proximity (<4.2 Å) but also allows the heterodimerization of two different cinnamic acids, leading to unsymmetrical β-truxinic acid products.Item Open Access X-ray-induced production of gold nanoparticles on a SiO2/Si system and in a poly(methyl methacrylate) matrix(American Chemical Society, 2005) Karadas, F.; Ertas, G.; Ozkaraoglu, E.; Süzer, ŞefikProlonged exposure to X-rays of HAuCl4 deposited from an aqueous solution onto a SiO2/Si substrate or into a poly(methyl methacrylate) (PMMA) matrix induces reduction of the Au3+ ions to Au0 and subsequent nucleation to gold nanoclusters as recorded by X-ray photoelectron spectroscopy. The corresponding major oxidation product is determined as chlorine {HAuCl4(ads) + X-rays -Au(ads) + (3/2)Cl 2(ada) + HCl(ads)}, which is initially adsorbed onto the surface but eventually diffuses out of the system into the vacuum. The reduced gold atoms aggregate (three-dimensionally) into gold nanoclusters as evidenced by the variation in the binding energy during X-ray exposure, which starts as 1.3 eV but approaches a value that is 0.5 eV higher than that of the bulk gold. The disappearance of the oxidation product (Cl2p signal) and the growth of the nanoclusters (related to the measured binding energy difference between the Si2p of the oxide and Au4f of the reduced gold) exhibit first-order kinetics which is approximately 3 times slower than the reduction of Au3+, indicating that both of the former processes are diffusion controlled. Similarly, gold ions incorporated into PMMA can also be reduced and aggregated to gold nanoclusters using 254 nm deep UV irradiation in air evidenced by UV - vis - NIR absorption spectrocopy.